1369324
[linux.git] /
1 // SPDX-License-Identifier: GPL-2.0
2
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2019-2022 Linaro Ltd.
5  */
6
7 #include <linux/types.h>
8 #include <linux/device.h>
9 #include <linux/slab.h>
10 #include <linux/bitfield.h>
11 #include <linux/if_rmnet.h>
12 #include <linux/dma-direction.h>
13
14 #include "gsi.h"
15 #include "gsi_trans.h"
16 #include "ipa.h"
17 #include "ipa_data.h"
18 #include "ipa_endpoint.h"
19 #include "ipa_cmd.h"
20 #include "ipa_mem.h"
21 #include "ipa_modem.h"
22 #include "ipa_table.h"
23 #include "ipa_gsi.h"
24 #include "ipa_power.h"
25
26 /* Hardware is told about receive buffers once a "batch" has been queued */
27 #define IPA_REPLENISH_BATCH     16              /* Must be non-zero */
28
29 /* The amount of RX buffer space consumed by standard skb overhead */
30 #define IPA_RX_BUFFER_OVERHEAD  (PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0))
31
32 /* Where to find the QMAP mux_id for a packet within modem-supplied metadata */
33 #define IPA_ENDPOINT_QMAP_METADATA_MASK         0x000000ff /* host byte order */
34
35 #define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX       3
36
37 /** enum ipa_status_opcode - status element opcode hardware values */
38 enum ipa_status_opcode {
39         IPA_STATUS_OPCODE_PACKET                = 0x01,
40         IPA_STATUS_OPCODE_DROPPED_PACKET        = 0x04,
41         IPA_STATUS_OPCODE_SUSPENDED_PACKET      = 0x08,
42         IPA_STATUS_OPCODE_PACKET_2ND_PASS       = 0x40,
43 };
44
45 /** enum ipa_status_exception - status element exception type */
46 enum ipa_status_exception {
47         /* 0 means no exception */
48         IPA_STATUS_EXCEPTION_DEAGGR             = 0x01,
49 };
50
51 /* Status element provided by hardware */
52 struct ipa_status {
53         u8 opcode;              /* enum ipa_status_opcode */
54         u8 exception;           /* enum ipa_status_exception */
55         __le16 mask;
56         __le16 pkt_len;
57         u8 endp_src_idx;
58         u8 endp_dst_idx;
59         __le32 metadata;
60         __le32 flags1;
61         __le64 flags2;
62         __le32 flags3;
63         __le32 flags4;
64 };
65
66 /* Field masks for struct ipa_status structure fields */
67 #define IPA_STATUS_MASK_TAG_VALID_FMASK         GENMASK(4, 4)
68 #define IPA_STATUS_SRC_IDX_FMASK                GENMASK(4, 0)
69 #define IPA_STATUS_DST_IDX_FMASK                GENMASK(4, 0)
70 #define IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK      GENMASK(31, 22)
71 #define IPA_STATUS_FLAGS2_TAG_FMASK             GENMASK_ULL(63, 16)
72
73 /* Compute the aggregation size value to use for a given buffer size */
74 static u32 ipa_aggr_size_kb(u32 rx_buffer_size, bool aggr_hard_limit)
75 {
76         /* A hard aggregation limit will not be crossed; aggregation closes
77          * if saving incoming data would cross the hard byte limit boundary.
78          *
79          * With a soft limit, aggregation closes *after* the size boundary
80          * has been crossed.  In that case the limit must leave enough space
81          * after that limit to receive a full MTU of data plus overhead.
82          */
83         if (!aggr_hard_limit)
84                 rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
85
86         /* The byte limit is encoded as a number of kilobytes */
87
88         return rx_buffer_size / SZ_1K;
89 }
90
91 static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count,
92                             const struct ipa_gsi_endpoint_data *all_data,
93                             const struct ipa_gsi_endpoint_data *data)
94 {
95         const struct ipa_gsi_endpoint_data *other_data;
96         struct device *dev = &ipa->pdev->dev;
97         enum ipa_endpoint_name other_name;
98
99         if (ipa_gsi_endpoint_data_empty(data))
100                 return true;
101
102         if (!data->toward_ipa) {
103                 const struct ipa_endpoint_rx *rx_config;
104                 const struct ipa_reg *reg;
105                 u32 buffer_size;
106                 u32 aggr_size;
107                 u32 limit;
108
109                 if (data->endpoint.filter_support) {
110                         dev_err(dev, "filtering not supported for "
111                                         "RX endpoint %u\n",
112                                 data->endpoint_id);
113                         return false;
114                 }
115
116                 /* Nothing more to check for non-AP RX */
117                 if (data->ee_id != GSI_EE_AP)
118                         return true;
119
120                 rx_config = &data->endpoint.config.rx;
121
122                 /* The buffer size must hold an MTU plus overhead */
123                 buffer_size = rx_config->buffer_size;
124                 limit = IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
125                 if (buffer_size < limit) {
126                         dev_err(dev, "RX buffer size too small for RX endpoint %u (%u < %u)\n",
127                                 data->endpoint_id, buffer_size, limit);
128                         return false;
129                 }
130
131                 if (!data->endpoint.config.aggregation) {
132                         bool result = true;
133
134                         /* No aggregation; check for bogus aggregation data */
135                         if (rx_config->aggr_time_limit) {
136                                 dev_err(dev,
137                                         "time limit with no aggregation for RX endpoint %u\n",
138                                         data->endpoint_id);
139                                 result = false;
140                         }
141
142                         if (rx_config->aggr_hard_limit) {
143                                 dev_err(dev, "hard limit with no aggregation for RX endpoint %u\n",
144                                         data->endpoint_id);
145                                 result = false;
146                         }
147
148                         if (rx_config->aggr_close_eof) {
149                                 dev_err(dev, "close EOF with no aggregation for RX endpoint %u\n",
150                                         data->endpoint_id);
151                                 result = false;
152                         }
153
154                         return result;  /* Nothing more to check */
155                 }
156
157                 /* For an endpoint supporting receive aggregation, the byte
158                  * limit defines the point at which aggregation closes.  This
159                  * check ensures the receive buffer size doesn't result in a
160                  * limit that exceeds what's representable in the aggregation
161                  * byte limit field.
162                  */
163                 aggr_size = ipa_aggr_size_kb(buffer_size - NET_SKB_PAD,
164                                              rx_config->aggr_hard_limit);
165                 reg = ipa_reg(ipa, ENDP_INIT_AGGR);
166
167                 limit = ipa_reg_field_max(reg, BYTE_LIMIT);
168                 if (aggr_size > limit) {
169                         dev_err(dev, "aggregated size too large for RX endpoint %u (%u KB > %u KB)\n",
170                                 data->endpoint_id, aggr_size, limit);
171
172                         return false;
173                 }
174
175                 return true;    /* Nothing more to check for RX */
176         }
177
178         /* Starting with IPA v4.5 sequencer replication is obsolete */
179         if (ipa->version >= IPA_VERSION_4_5) {
180                 if (data->endpoint.config.tx.seq_rep_type) {
181                         dev_err(dev, "no-zero seq_rep_type TX endpoint %u\n",
182                                 data->endpoint_id);
183                         return false;
184                 }
185         }
186
187         if (data->endpoint.config.status_enable) {
188                 other_name = data->endpoint.config.tx.status_endpoint;
189                 if (other_name >= count) {
190                         dev_err(dev, "status endpoint name %u out of range "
191                                         "for endpoint %u\n",
192                                 other_name, data->endpoint_id);
193                         return false;
194                 }
195
196                 /* Status endpoint must be defined... */
197                 other_data = &all_data[other_name];
198                 if (ipa_gsi_endpoint_data_empty(other_data)) {
199                         dev_err(dev, "DMA endpoint name %u undefined "
200                                         "for endpoint %u\n",
201                                 other_name, data->endpoint_id);
202                         return false;
203                 }
204
205                 /* ...and has to be an RX endpoint... */
206                 if (other_data->toward_ipa) {
207                         dev_err(dev,
208                                 "status endpoint for endpoint %u not RX\n",
209                                 data->endpoint_id);
210                         return false;
211                 }
212
213                 /* ...and if it's to be an AP endpoint... */
214                 if (other_data->ee_id == GSI_EE_AP) {
215                         /* ...make sure it has status enabled. */
216                         if (!other_data->endpoint.config.status_enable) {
217                                 dev_err(dev,
218                                         "status not enabled for endpoint %u\n",
219                                         other_data->endpoint_id);
220                                 return false;
221                         }
222                 }
223         }
224
225         if (data->endpoint.config.dma_mode) {
226                 other_name = data->endpoint.config.dma_endpoint;
227                 if (other_name >= count) {
228                         dev_err(dev, "DMA endpoint name %u out of range "
229                                         "for endpoint %u\n",
230                                 other_name, data->endpoint_id);
231                         return false;
232                 }
233
234                 other_data = &all_data[other_name];
235                 if (ipa_gsi_endpoint_data_empty(other_data)) {
236                         dev_err(dev, "DMA endpoint name %u undefined "
237                                         "for endpoint %u\n",
238                                 other_name, data->endpoint_id);
239                         return false;
240                 }
241         }
242
243         return true;
244 }
245
246 /* Validate endpoint configuration data.  Return max defined endpoint ID */
247 static u32 ipa_endpoint_max(struct ipa *ipa, u32 count,
248                             const struct ipa_gsi_endpoint_data *data)
249 {
250         const struct ipa_gsi_endpoint_data *dp = data;
251         struct device *dev = &ipa->pdev->dev;
252         enum ipa_endpoint_name name;
253         u32 max;
254
255         if (count > IPA_ENDPOINT_COUNT) {
256                 dev_err(dev, "too many endpoints specified (%u > %u)\n",
257                         count, IPA_ENDPOINT_COUNT);
258                 return 0;
259         }
260
261         /* Make sure needed endpoints have defined data */
262         if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) {
263                 dev_err(dev, "command TX endpoint not defined\n");
264                 return 0;
265         }
266         if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) {
267                 dev_err(dev, "LAN RX endpoint not defined\n");
268                 return 0;
269         }
270         if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) {
271                 dev_err(dev, "AP->modem TX endpoint not defined\n");
272                 return 0;
273         }
274         if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) {
275                 dev_err(dev, "AP<-modem RX endpoint not defined\n");
276                 return 0;
277         }
278
279         max = 0;
280         for (name = 0; name < count; name++, dp++) {
281                 if (!ipa_endpoint_data_valid_one(ipa, count, data, dp))
282                         return 0;
283                 max = max_t(u32, max, dp->endpoint_id);
284         }
285
286         return max;
287 }
288
289 /* Allocate a transaction to use on a non-command endpoint */
290 static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint,
291                                                   u32 tre_count)
292 {
293         struct gsi *gsi = &endpoint->ipa->gsi;
294         u32 channel_id = endpoint->channel_id;
295         enum dma_data_direction direction;
296
297         direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
298
299         return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction);
300 }
301
302 /* suspend_delay represents suspend for RX, delay for TX endpoints.
303  * Note that suspend is not supported starting with IPA v4.0, and
304  * delay mode should not be used starting with IPA v4.2.
305  */
306 static bool
307 ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay)
308 {
309         struct ipa *ipa = endpoint->ipa;
310         const struct ipa_reg *reg;
311         u32 field_id;
312         u32 offset;
313         bool state;
314         u32 mask;
315         u32 val;
316
317         if (endpoint->toward_ipa)
318                 WARN_ON(ipa->version >= IPA_VERSION_4_2);
319         else
320                 WARN_ON(ipa->version >= IPA_VERSION_4_0);
321
322         reg = ipa_reg(ipa, ENDP_INIT_CTRL);
323         offset = ipa_reg_n_offset(reg, endpoint->endpoint_id);
324         val = ioread32(ipa->reg_virt + offset);
325
326         field_id = endpoint->toward_ipa ? ENDP_DELAY : ENDP_SUSPEND;
327         mask = ipa_reg_bit(reg, field_id);
328
329         state = !!(val & mask);
330
331         /* Don't bother if it's already in the requested state */
332         if (suspend_delay != state) {
333                 val ^= mask;
334                 iowrite32(val, ipa->reg_virt + offset);
335         }
336
337         return state;
338 }
339
340 /* We don't care what the previous state was for delay mode */
341 static void
342 ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable)
343 {
344         /* Delay mode should not be used for IPA v4.2+ */
345         WARN_ON(endpoint->ipa->version >= IPA_VERSION_4_2);
346         WARN_ON(!endpoint->toward_ipa);
347
348         (void)ipa_endpoint_init_ctrl(endpoint, enable);
349 }
350
351 static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint)
352 {
353         u32 endpoint_id = endpoint->endpoint_id;
354         struct ipa *ipa = endpoint->ipa;
355         u32 unit = endpoint_id / 32;
356         const struct ipa_reg *reg;
357         u32 val;
358
359         WARN_ON(!test_bit(endpoint_id, ipa->available));
360
361         reg = ipa_reg(ipa, STATE_AGGR_ACTIVE);
362         val = ioread32(ipa->reg_virt + ipa_reg_n_offset(reg, unit));
363
364         return !!(val & BIT(endpoint_id % 32));
365 }
366
367 static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint)
368 {
369         u32 endpoint_id = endpoint->endpoint_id;
370         u32 mask = BIT(endpoint_id % 32);
371         struct ipa *ipa = endpoint->ipa;
372         u32 unit = endpoint_id / 32;
373         const struct ipa_reg *reg;
374
375         WARN_ON(!test_bit(endpoint_id, ipa->available));
376
377         reg = ipa_reg(ipa, AGGR_FORCE_CLOSE);
378         iowrite32(mask, ipa->reg_virt + ipa_reg_n_offset(reg, unit));
379 }
380
381 /**
382  * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt
383  * @endpoint:   Endpoint on which to emulate a suspend
384  *
385  *  Emulate suspend IPA interrupt to unsuspend an endpoint suspended
386  *  with an open aggregation frame.  This is to work around a hardware
387  *  issue in IPA version 3.5.1 where the suspend interrupt will not be
388  *  generated when it should be.
389  */
390 static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint)
391 {
392         struct ipa *ipa = endpoint->ipa;
393
394         if (!endpoint->config.aggregation)
395                 return;
396
397         /* Nothing to do if the endpoint doesn't have aggregation open */
398         if (!ipa_endpoint_aggr_active(endpoint))
399                 return;
400
401         /* Force close aggregation */
402         ipa_endpoint_force_close(endpoint);
403
404         ipa_interrupt_simulate_suspend(ipa->interrupt);
405 }
406
407 /* Returns previous suspend state (true means suspend was enabled) */
408 static bool
409 ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable)
410 {
411         bool suspended;
412
413         if (endpoint->ipa->version >= IPA_VERSION_4_0)
414                 return enable;  /* For IPA v4.0+, no change made */
415
416         WARN_ON(endpoint->toward_ipa);
417
418         suspended = ipa_endpoint_init_ctrl(endpoint, enable);
419
420         /* A client suspended with an open aggregation frame will not
421          * generate a SUSPEND IPA interrupt.  If enabling suspend, have
422          * ipa_endpoint_suspend_aggr() handle this.
423          */
424         if (enable && !suspended)
425                 ipa_endpoint_suspend_aggr(endpoint);
426
427         return suspended;
428 }
429
430 /* Put all modem RX endpoints into suspend mode, and stop transmission
431  * on all modem TX endpoints.  Prior to IPA v4.2, endpoint DELAY mode is
432  * used for TX endpoints; starting with IPA v4.2 we use GSI channel flow
433  * control instead.
434  */
435 void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable)
436 {
437         u32 endpoint_id = 0;
438
439         while (endpoint_id < ipa->endpoint_count) {
440                 struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id++];
441
442                 if (endpoint->ee_id != GSI_EE_MODEM)
443                         continue;
444
445                 if (!endpoint->toward_ipa)
446                         (void)ipa_endpoint_program_suspend(endpoint, enable);
447                 else if (ipa->version < IPA_VERSION_4_2)
448                         ipa_endpoint_program_delay(endpoint, enable);
449                 else
450                         gsi_modem_channel_flow_control(&ipa->gsi,
451                                                        endpoint->channel_id,
452                                                        enable);
453         }
454 }
455
456 /* Reset all modem endpoints to use the default exception endpoint */
457 int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa)
458 {
459         struct gsi_trans *trans;
460         u32 endpoint_id;
461         u32 count;
462
463         /* We need one command per modem TX endpoint, plus the commands
464          * that clear the pipeline.
465          */
466         count = ipa->modem_tx_count + ipa_cmd_pipeline_clear_count();
467         trans = ipa_cmd_trans_alloc(ipa, count);
468         if (!trans) {
469                 dev_err(&ipa->pdev->dev,
470                         "no transaction to reset modem exception endpoints\n");
471                 return -EBUSY;
472         }
473
474         for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count) {
475                 struct ipa_endpoint *endpoint;
476                 const struct ipa_reg *reg;
477                 u32 offset;
478
479                 /* We only reset modem TX endpoints */
480                 endpoint = &ipa->endpoint[endpoint_id];
481                 if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa))
482                         continue;
483
484                 reg = ipa_reg(ipa, ENDP_STATUS);
485                 offset = ipa_reg_n_offset(reg, endpoint_id);
486
487                 /* Value written is 0, and all bits are updated.  That
488                  * means status is disabled on the endpoint, and as a
489                  * result all other fields in the register are ignored.
490                  */
491                 ipa_cmd_register_write_add(trans, offset, 0, ~0, false);
492         }
493
494         ipa_cmd_pipeline_clear_add(trans);
495
496         gsi_trans_commit_wait(trans);
497
498         ipa_cmd_pipeline_clear_wait(ipa);
499
500         return 0;
501 }
502
503 static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint)
504 {
505         u32 endpoint_id = endpoint->endpoint_id;
506         struct ipa *ipa = endpoint->ipa;
507         enum ipa_cs_offload_en enabled;
508         const struct ipa_reg *reg;
509         u32 val = 0;
510
511         reg = ipa_reg(ipa, ENDP_INIT_CFG);
512         /* FRAG_OFFLOAD_EN is 0 */
513         if (endpoint->config.checksum) {
514                 enum ipa_version version = ipa->version;
515
516                 if (endpoint->toward_ipa) {
517                         u32 off;
518
519                         /* Checksum header offset is in 4-byte units */
520                         off = sizeof(struct rmnet_map_header) / sizeof(u32);
521                         val |= ipa_reg_encode(reg, CS_METADATA_HDR_OFFSET, off);
522
523                         enabled = version < IPA_VERSION_4_5
524                                         ? IPA_CS_OFFLOAD_UL
525                                         : IPA_CS_OFFLOAD_INLINE;
526                 } else {
527                         enabled = version < IPA_VERSION_4_5
528                                         ? IPA_CS_OFFLOAD_DL
529                                         : IPA_CS_OFFLOAD_INLINE;
530                 }
531         } else {
532                 enabled = IPA_CS_OFFLOAD_NONE;
533         }
534         val |= ipa_reg_encode(reg, CS_OFFLOAD_EN, enabled);
535         /* CS_GEN_QMB_MASTER_SEL is 0 */
536
537         iowrite32(val, ipa->reg_virt + ipa_reg_n_offset(reg, endpoint_id));
538 }
539
540 static void ipa_endpoint_init_nat(struct ipa_endpoint *endpoint)
541 {
542         u32 endpoint_id = endpoint->endpoint_id;
543         struct ipa *ipa = endpoint->ipa;
544         const struct ipa_reg *reg;
545         u32 val;
546
547         if (!endpoint->toward_ipa)
548                 return;
549
550         reg = ipa_reg(ipa, ENDP_INIT_NAT);
551         val = ipa_reg_encode(reg, NAT_EN, IPA_NAT_BYPASS);
552
553         iowrite32(val, ipa->reg_virt + ipa_reg_n_offset(reg, endpoint_id));
554 }
555
556 static u32
557 ipa_qmap_header_size(enum ipa_version version, struct ipa_endpoint *endpoint)
558 {
559         u32 header_size = sizeof(struct rmnet_map_header);
560
561         /* Without checksum offload, we just have the MAP header */
562         if (!endpoint->config.checksum)
563                 return header_size;
564
565         if (version < IPA_VERSION_4_5) {
566                 /* Checksum header inserted for AP TX endpoints only */
567                 if (endpoint->toward_ipa)
568                         header_size += sizeof(struct rmnet_map_ul_csum_header);
569         } else {
570                 /* Checksum header is used in both directions */
571                 header_size += sizeof(struct rmnet_map_v5_csum_header);
572         }
573
574         return header_size;
575 }
576
577 /* Encoded value for ENDP_INIT_HDR register HDR_LEN* field(s) */
578 static u32 ipa_header_size_encode(enum ipa_version version,
579                                   const struct ipa_reg *reg, u32 header_size)
580 {
581         u32 field_max = ipa_reg_field_max(reg, HDR_LEN);
582         u32 val;
583
584         /* We know field_max can be used as a mask (2^n - 1) */
585         val = ipa_reg_encode(reg, HDR_LEN, header_size & field_max);
586         if (version < IPA_VERSION_4_5) {
587                 WARN_ON(header_size > field_max);
588                 return val;
589         }
590
591         /* IPA v4.5 adds a few more most-significant bits */
592         header_size >>= hweight32(field_max);
593         WARN_ON(header_size > ipa_reg_field_max(reg, HDR_LEN_MSB));
594         val |= ipa_reg_encode(reg, HDR_LEN_MSB, header_size);
595
596         return val;
597 }
598
599 /* Encoded value for ENDP_INIT_HDR register OFST_METADATA* field(s) */
600 static u32 ipa_metadata_offset_encode(enum ipa_version version,
601                                       const struct ipa_reg *reg, u32 offset)
602 {
603         u32 field_max = ipa_reg_field_max(reg, HDR_OFST_METADATA);
604         u32 val;
605
606         /* We know field_max can be used as a mask (2^n - 1) */
607         val = ipa_reg_encode(reg, HDR_OFST_METADATA, offset);
608         if (version < IPA_VERSION_4_5) {
609                 WARN_ON(offset > field_max);
610                 return val;
611         }
612
613         /* IPA v4.5 adds a few more most-significant bits */
614         offset >>= hweight32(field_max);
615         WARN_ON(offset > ipa_reg_field_max(reg, HDR_OFST_METADATA_MSB));
616         val |= ipa_reg_encode(reg, HDR_OFST_METADATA_MSB, offset);
617
618         return val;
619 }
620
621 /**
622  * ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register
623  * @endpoint:   Endpoint pointer
624  *
625  * We program QMAP endpoints so each packet received is preceded by a QMAP
626  * header structure.  The QMAP header contains a 1-byte mux_id and 2-byte
627  * packet size field, and we have the IPA hardware populate both for each
628  * received packet.  The header is configured (in the HDR_EXT register)
629  * to use big endian format.
630  *
631  * The packet size is written into the QMAP header's pkt_len field.  That
632  * location is defined here using the HDR_OFST_PKT_SIZE field.
633  *
634  * The mux_id comes from a 4-byte metadata value supplied with each packet
635  * by the modem.  It is *not* a QMAP header, but it does contain the mux_id
636  * value that we want, in its low-order byte.  A bitmask defined in the
637  * endpoint's METADATA_MASK register defines which byte within the modem
638  * metadata contains the mux_id.  And the OFST_METADATA field programmed
639  * here indicates where the extracted byte should be placed within the QMAP
640  * header.
641  */
642 static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint)
643 {
644         u32 endpoint_id = endpoint->endpoint_id;
645         struct ipa *ipa = endpoint->ipa;
646         const struct ipa_reg *reg;
647         u32 val = 0;
648
649         reg = ipa_reg(ipa, ENDP_INIT_HDR);
650         if (endpoint->config.qmap) {
651                 enum ipa_version version = ipa->version;
652                 size_t header_size;
653
654                 header_size = ipa_qmap_header_size(version, endpoint);
655                 val = ipa_header_size_encode(version, reg, header_size);
656
657                 /* Define how to fill fields in a received QMAP header */
658                 if (!endpoint->toward_ipa) {
659                         u32 off;     /* Field offset within header */
660
661                         /* Where IPA will write the metadata value */
662                         off = offsetof(struct rmnet_map_header, mux_id);
663                         val |= ipa_metadata_offset_encode(version, reg, off);
664
665                         /* Where IPA will write the length */
666                         off = offsetof(struct rmnet_map_header, pkt_len);
667                         /* Upper bits are stored in HDR_EXT with IPA v4.5 */
668                         if (version >= IPA_VERSION_4_5)
669                                 off &= ipa_reg_field_max(reg, HDR_OFST_PKT_SIZE);
670
671                         val |= ipa_reg_bit(reg, HDR_OFST_PKT_SIZE_VALID);
672                         val |= ipa_reg_encode(reg, HDR_OFST_PKT_SIZE, off);
673                 }
674                 /* For QMAP TX, metadata offset is 0 (modem assumes this) */
675                 val |= ipa_reg_bit(reg, HDR_OFST_METADATA_VALID);
676
677                 /* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */
678                 /* HDR_A5_MUX is 0 */
679                 /* HDR_LEN_INC_DEAGG_HDR is 0 */
680                 /* HDR_METADATA_REG_VALID is 0 (TX only, version < v4.5) */
681         }
682
683         iowrite32(val, ipa->reg_virt + ipa_reg_n_offset(reg, endpoint_id));
684 }
685
686 static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint)
687 {
688         u32 pad_align = endpoint->config.rx.pad_align;
689         u32 endpoint_id = endpoint->endpoint_id;
690         struct ipa *ipa = endpoint->ipa;
691         const struct ipa_reg *reg;
692         u32 val = 0;
693
694         reg = ipa_reg(ipa, ENDP_INIT_HDR_EXT);
695         if (endpoint->config.qmap) {
696                 /* We have a header, so we must specify its endianness */
697                 val |= ipa_reg_bit(reg, HDR_ENDIANNESS);        /* big endian */
698
699                 /* A QMAP header contains a 6 bit pad field at offset 0.
700                  * The RMNet driver assumes this field is meaningful in
701                  * packets it receives, and assumes the header's payload
702                  * length includes that padding.  The RMNet driver does
703                  * *not* pad packets it sends, however, so the pad field
704                  * (although 0) should be ignored.
705                  */
706                 if (!endpoint->toward_ipa) {
707                         val |= ipa_reg_bit(reg, HDR_TOTAL_LEN_OR_PAD_VALID);
708                         /* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */
709                         val |= ipa_reg_bit(reg, HDR_PAYLOAD_LEN_INC_PADDING);
710                         /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */
711                 }
712         }
713
714         /* HDR_PAYLOAD_LEN_INC_PADDING is 0 */
715         if (!endpoint->toward_ipa)
716                 val |= ipa_reg_encode(reg, HDR_PAD_TO_ALIGNMENT, pad_align);
717
718         /* IPA v4.5 adds some most-significant bits to a few fields,
719          * two of which are defined in the HDR (not HDR_EXT) register.
720          */
721         if (ipa->version >= IPA_VERSION_4_5) {
722                 /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0, so MSB is 0 */
723                 if (endpoint->config.qmap && !endpoint->toward_ipa) {
724                         u32 mask = ipa_reg_field_max(reg, HDR_OFST_PKT_SIZE);
725                         u32 off;     /* Field offset within header */
726
727                         off = offsetof(struct rmnet_map_header, pkt_len);
728                         /* Low bits are in the ENDP_INIT_HDR register */
729                         off >>= hweight32(mask);
730                         val |= ipa_reg_encode(reg, HDR_OFST_PKT_SIZE_MSB, off);
731                         /* HDR_ADDITIONAL_CONST_LEN is 0 so MSB is 0 */
732                 }
733         }
734
735         iowrite32(val, ipa->reg_virt + ipa_reg_n_offset(reg, endpoint_id));
736 }
737
738 static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint)
739 {
740         u32 endpoint_id = endpoint->endpoint_id;
741         struct ipa *ipa = endpoint->ipa;
742         const struct ipa_reg *reg;
743         u32 val = 0;
744         u32 offset;
745
746         if (endpoint->toward_ipa)
747                 return;         /* Register not valid for TX endpoints */
748
749         reg = ipa_reg(ipa,  ENDP_INIT_HDR_METADATA_MASK);
750         offset = ipa_reg_n_offset(reg, endpoint_id);
751
752         /* Note that HDR_ENDIANNESS indicates big endian header fields */
753         if (endpoint->config.qmap)
754                 val = (__force u32)cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK);
755
756         iowrite32(val, ipa->reg_virt + offset);
757 }
758
759 static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint)
760 {
761         struct ipa *ipa = endpoint->ipa;
762         const struct ipa_reg *reg;
763         u32 offset;
764         u32 val;
765
766         if (!endpoint->toward_ipa)
767                 return;         /* Register not valid for RX endpoints */
768
769         reg = ipa_reg(ipa, ENDP_INIT_MODE);
770         if (endpoint->config.dma_mode) {
771                 enum ipa_endpoint_name name = endpoint->config.dma_endpoint;
772                 u32 dma_endpoint_id = ipa->name_map[name]->endpoint_id;
773
774                 val = ipa_reg_encode(reg, ENDP_MODE, IPA_DMA);
775                 val |= ipa_reg_encode(reg, DEST_PIPE_INDEX, dma_endpoint_id);
776         } else {
777                 val = ipa_reg_encode(reg, ENDP_MODE, IPA_BASIC);
778         }
779         /* All other bits unspecified (and 0) */
780
781         offset = ipa_reg_n_offset(reg, endpoint->endpoint_id);
782         iowrite32(val, ipa->reg_virt + offset);
783 }
784
785 /* For IPA v4.5+, times are expressed using Qtime.  The AP uses one of two
786  * pulse generators (0 and 1) to measure elapsed time.  In ipa_qtime_config()
787  * they're configured to have granularity 100 usec and 1 msec, respectively.
788  *
789  * The return value is the positive or negative Qtime value to use to
790  * express the (microsecond) time provided.  A positive return value
791  * means pulse generator 0 can be used; otherwise use pulse generator 1.
792  */
793 static int ipa_qtime_val(u32 microseconds, u32 max)
794 {
795         u32 val;
796
797         /* Use 100 microsecond granularity if possible */
798         val = DIV_ROUND_CLOSEST(microseconds, 100);
799         if (val <= max)
800                 return (int)val;
801
802         /* Have to use pulse generator 1 (millisecond granularity) */
803         val = DIV_ROUND_CLOSEST(microseconds, 1000);
804         WARN_ON(val > max);
805
806         return (int)-val;
807 }
808
809 /* Encode the aggregation timer limit (microseconds) based on IPA version */
810 static u32 aggr_time_limit_encode(struct ipa *ipa, const struct ipa_reg *reg,
811                                   u32 microseconds)
812 {
813         u32 max;
814         u32 val;
815
816         if (!microseconds)
817                 return 0;       /* Nothing to compute if time limit is 0 */
818
819         max = ipa_reg_field_max(reg, TIME_LIMIT);
820         if (ipa->version >= IPA_VERSION_4_5) {
821                 u32 gran_sel;
822                 int ret;
823
824                 /* Compute the Qtime limit value to use */
825                 ret = ipa_qtime_val(microseconds, max);
826                 if (ret < 0) {
827                         val = -ret;
828                         gran_sel = ipa_reg_bit(reg, AGGR_GRAN_SEL);
829                 } else {
830                         val = ret;
831                         gran_sel = 0;
832                 }
833
834                 return gran_sel | ipa_reg_encode(reg, TIME_LIMIT, val);
835         }
836
837         /* We program aggregation granularity in ipa_hardware_config() */
838         val = DIV_ROUND_CLOSEST(microseconds, IPA_AGGR_GRANULARITY);
839         WARN(val > max, "aggr_time_limit too large (%u > %u usec)\n",
840              microseconds, max * IPA_AGGR_GRANULARITY);
841
842         return ipa_reg_encode(reg, TIME_LIMIT, val);
843 }
844
845 static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint)
846 {
847         u32 endpoint_id = endpoint->endpoint_id;
848         struct ipa *ipa = endpoint->ipa;
849         const struct ipa_reg *reg;
850         u32 val = 0;
851
852         reg = ipa_reg(ipa, ENDP_INIT_AGGR);
853         if (endpoint->config.aggregation) {
854                 if (!endpoint->toward_ipa) {
855                         const struct ipa_endpoint_rx *rx_config;
856                         u32 buffer_size;
857                         u32 limit;
858
859                         rx_config = &endpoint->config.rx;
860                         val |= ipa_reg_encode(reg, AGGR_EN, IPA_ENABLE_AGGR);
861                         val |= ipa_reg_encode(reg, AGGR_TYPE, IPA_GENERIC);
862
863                         buffer_size = rx_config->buffer_size;
864                         limit = ipa_aggr_size_kb(buffer_size - NET_SKB_PAD,
865                                                  rx_config->aggr_hard_limit);
866                         val |= ipa_reg_encode(reg, BYTE_LIMIT, limit);
867
868                         limit = rx_config->aggr_time_limit;
869                         val |= aggr_time_limit_encode(ipa, reg, limit);
870
871                         /* AGGR_PKT_LIMIT is 0 (unlimited) */
872
873                         if (rx_config->aggr_close_eof)
874                                 val |= ipa_reg_bit(reg, SW_EOF_ACTIVE);
875                 } else {
876                         val |= ipa_reg_encode(reg, AGGR_EN, IPA_ENABLE_DEAGGR);
877                         val |= ipa_reg_encode(reg, AGGR_TYPE, IPA_QCMAP);
878                         /* other fields ignored */
879                 }
880                 /* AGGR_FORCE_CLOSE is 0 */
881                 /* AGGR_GRAN_SEL is 0 for IPA v4.5 */
882         } else {
883                 val |= ipa_reg_encode(reg, AGGR_EN, IPA_BYPASS_AGGR);
884                 /* other fields ignored */
885         }
886
887         iowrite32(val, ipa->reg_virt + ipa_reg_n_offset(reg, endpoint_id));
888 }
889
890 /* The head-of-line blocking timer is defined as a tick count.  For
891  * IPA version 4.5 the tick count is based on the Qtimer, which is
892  * derived from the 19.2 MHz SoC XO clock.  For older IPA versions
893  * each tick represents 128 cycles of the IPA core clock.
894  *
895  * Return the encoded value representing the timeout period provided
896  * that should be written to the ENDP_INIT_HOL_BLOCK_TIMER register.
897  */
898 static u32 hol_block_timer_encode(struct ipa *ipa, const struct ipa_reg *reg,
899                                   u32 microseconds)
900 {
901         u32 width;
902         u32 scale;
903         u64 ticks;
904         u64 rate;
905         u32 high;
906         u32 val;
907
908         if (!microseconds)
909                 return 0;       /* Nothing to compute if timer period is 0 */
910
911         if (ipa->version >= IPA_VERSION_4_5) {
912                 u32 max = ipa_reg_field_max(reg, TIMER_LIMIT);
913                 u32 gran_sel;
914                 int ret;
915
916                 /* Compute the Qtime limit value to use */
917                 ret = ipa_qtime_val(microseconds, max);
918                 if (ret < 0) {
919                         val = -ret;
920                         gran_sel = ipa_reg_bit(reg, TIMER_GRAN_SEL);
921                 } else {
922                         val = ret;
923                         gran_sel = 0;
924                 }
925
926                 return gran_sel | ipa_reg_encode(reg, TIMER_LIMIT, val);
927         }
928
929         /* Use 64 bit arithmetic to avoid overflow */
930         rate = ipa_core_clock_rate(ipa);
931         ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC);
932
933         /* We still need the result to fit into the field */
934         WARN_ON(ticks > ipa_reg_field_max(reg, TIMER_BASE_VALUE));
935
936         /* IPA v3.5.1 through v4.1 just record the tick count */
937         if (ipa->version < IPA_VERSION_4_2)
938                 return ipa_reg_encode(reg, TIMER_BASE_VALUE, (u32)ticks);
939
940         /* For IPA v4.2, the tick count is represented by base and
941          * scale fields within the 32-bit timer register, where:
942          *     ticks = base << scale;
943          * The best precision is achieved when the base value is as
944          * large as possible.  Find the highest set bit in the tick
945          * count, and extract the number of bits in the base field
946          * such that high bit is included.
947          */
948         high = fls(ticks);              /* 1..32 (or warning above) */
949         width = hweight32(ipa_reg_fmask(reg, TIMER_BASE_VALUE));
950         scale = high > width ? high - width : 0;
951         if (scale) {
952                 /* If we're scaling, round up to get a closer result */
953                 ticks += 1 << (scale - 1);
954                 /* High bit was set, so rounding might have affected it */
955                 if (fls(ticks) != high)
956                         scale++;
957         }
958
959         val = ipa_reg_encode(reg, TIMER_SCALE, scale);
960         val |= ipa_reg_encode(reg, TIMER_BASE_VALUE, (u32)ticks >> scale);
961
962         return val;
963 }
964
965 /* If microseconds is 0, timeout is immediate */
966 static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint,
967                                               u32 microseconds)
968 {
969         u32 endpoint_id = endpoint->endpoint_id;
970         struct ipa *ipa = endpoint->ipa;
971         const struct ipa_reg *reg;
972         u32 val;
973
974         /* This should only be changed when HOL_BLOCK_EN is disabled */
975         reg = ipa_reg(ipa, ENDP_INIT_HOL_BLOCK_TIMER);
976         val = hol_block_timer_encode(ipa, reg, microseconds);
977
978         iowrite32(val, ipa->reg_virt + ipa_reg_n_offset(reg, endpoint_id));
979 }
980
981 static void
982 ipa_endpoint_init_hol_block_en(struct ipa_endpoint *endpoint, bool enable)
983 {
984         u32 endpoint_id = endpoint->endpoint_id;
985         struct ipa *ipa = endpoint->ipa;
986         const struct ipa_reg *reg;
987         u32 offset;
988         u32 val;
989
990         reg = ipa_reg(ipa, ENDP_INIT_HOL_BLOCK_EN);
991         offset = ipa_reg_n_offset(reg, endpoint_id);
992         val = enable ? ipa_reg_bit(reg, HOL_BLOCK_EN) : 0;
993
994         iowrite32(val, ipa->reg_virt + offset);
995
996         /* When enabling, the register must be written twice for IPA v4.5+ */
997         if (enable && ipa->version >= IPA_VERSION_4_5)
998                 iowrite32(val, ipa->reg_virt + offset);
999 }
1000
1001 /* Assumes HOL_BLOCK is in disabled state */
1002 static void ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint,
1003                                                u32 microseconds)
1004 {
1005         ipa_endpoint_init_hol_block_timer(endpoint, microseconds);
1006         ipa_endpoint_init_hol_block_en(endpoint, true);
1007 }
1008
1009 static void ipa_endpoint_init_hol_block_disable(struct ipa_endpoint *endpoint)
1010 {
1011         ipa_endpoint_init_hol_block_en(endpoint, false);
1012 }
1013
1014 void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa)
1015 {
1016         u32 endpoint_id = 0;
1017
1018         while (endpoint_id < ipa->endpoint_count) {
1019                 struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id++];
1020
1021                 if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM)
1022                         continue;
1023
1024                 ipa_endpoint_init_hol_block_disable(endpoint);
1025                 ipa_endpoint_init_hol_block_enable(endpoint, 0);
1026         }
1027 }
1028
1029 static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint)
1030 {
1031         u32 endpoint_id = endpoint->endpoint_id;
1032         struct ipa *ipa = endpoint->ipa;
1033         const struct ipa_reg *reg;
1034         u32 val = 0;
1035
1036         if (!endpoint->toward_ipa)
1037                 return;         /* Register not valid for RX endpoints */
1038
1039         reg = ipa_reg(ipa, ENDP_INIT_DEAGGR);
1040         /* DEAGGR_HDR_LEN is 0 */
1041         /* PACKET_OFFSET_VALID is 0 */
1042         /* PACKET_OFFSET_LOCATION is ignored (not valid) */
1043         /* MAX_PACKET_LEN is 0 (not enforced) */
1044
1045         iowrite32(val, ipa->reg_virt + ipa_reg_n_offset(reg, endpoint_id));
1046 }
1047
1048 static void ipa_endpoint_init_rsrc_grp(struct ipa_endpoint *endpoint)
1049 {
1050         u32 resource_group = endpoint->config.resource_group;
1051         u32 endpoint_id = endpoint->endpoint_id;
1052         struct ipa *ipa = endpoint->ipa;
1053         const struct ipa_reg *reg;
1054         u32 val;
1055
1056         reg = ipa_reg(ipa, ENDP_INIT_RSRC_GRP);
1057         val = ipa_reg_encode(reg, ENDP_RSRC_GRP, resource_group);
1058
1059         iowrite32(val, ipa->reg_virt + ipa_reg_n_offset(reg, endpoint_id));
1060 }
1061
1062 static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint)
1063 {
1064         u32 endpoint_id = endpoint->endpoint_id;
1065         struct ipa *ipa = endpoint->ipa;
1066         const struct ipa_reg *reg;
1067         u32 val;
1068
1069         if (!endpoint->toward_ipa)
1070                 return;         /* Register not valid for RX endpoints */
1071
1072         reg = ipa_reg(ipa, ENDP_INIT_SEQ);
1073
1074         /* Low-order byte configures primary packet processing */
1075         val = ipa_reg_encode(reg, SEQ_TYPE, endpoint->config.tx.seq_type);
1076
1077         /* Second byte (if supported) configures replicated packet processing */
1078         if (ipa->version < IPA_VERSION_4_5)
1079                 val |= ipa_reg_encode(reg, SEQ_REP_TYPE,
1080                                       endpoint->config.tx.seq_rep_type);
1081
1082         iowrite32(val, ipa->reg_virt + ipa_reg_n_offset(reg, endpoint_id));
1083 }
1084
1085 /**
1086  * ipa_endpoint_skb_tx() - Transmit a socket buffer
1087  * @endpoint:   Endpoint pointer
1088  * @skb:        Socket buffer to send
1089  *
1090  * Returns:     0 if successful, or a negative error code
1091  */
1092 int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb)
1093 {
1094         struct gsi_trans *trans;
1095         u32 nr_frags;
1096         int ret;
1097
1098         /* Make sure source endpoint's TLV FIFO has enough entries to
1099          * hold the linear portion of the skb and all its fragments.
1100          * If not, see if we can linearize it before giving up.
1101          */
1102         nr_frags = skb_shinfo(skb)->nr_frags;
1103         if (nr_frags > endpoint->skb_frag_max) {
1104                 if (skb_linearize(skb))
1105                         return -E2BIG;
1106                 nr_frags = 0;
1107         }
1108
1109         trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags);
1110         if (!trans)
1111                 return -EBUSY;
1112
1113         ret = gsi_trans_skb_add(trans, skb);
1114         if (ret)
1115                 goto err_trans_free;
1116         trans->data = skb;      /* transaction owns skb now */
1117
1118         gsi_trans_commit(trans, !netdev_xmit_more());
1119
1120         return 0;
1121
1122 err_trans_free:
1123         gsi_trans_free(trans);
1124
1125         return -ENOMEM;
1126 }
1127
1128 static void ipa_endpoint_status(struct ipa_endpoint *endpoint)
1129 {
1130         u32 endpoint_id = endpoint->endpoint_id;
1131         struct ipa *ipa = endpoint->ipa;
1132         const struct ipa_reg *reg;
1133         u32 val = 0;
1134
1135         reg = ipa_reg(ipa, ENDP_STATUS);
1136         if (endpoint->config.status_enable) {
1137                 val |= ipa_reg_bit(reg, STATUS_EN);
1138                 if (endpoint->toward_ipa) {
1139                         enum ipa_endpoint_name name;
1140                         u32 status_endpoint_id;
1141
1142                         name = endpoint->config.tx.status_endpoint;
1143                         status_endpoint_id = ipa->name_map[name]->endpoint_id;
1144
1145                         val |= ipa_reg_encode(reg, STATUS_ENDP,
1146                                               status_endpoint_id);
1147                 }
1148                 /* STATUS_LOCATION is 0, meaning status element precedes
1149                  * packet (not present for IPA v4.5+)
1150                  */
1151                 /* STATUS_PKT_SUPPRESS_FMASK is 0 (not present for v4.0+) */
1152         }
1153
1154         iowrite32(val, ipa->reg_virt + ipa_reg_n_offset(reg, endpoint_id));
1155 }
1156
1157 static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint,
1158                                       struct gsi_trans *trans)
1159 {
1160         struct page *page;
1161         u32 buffer_size;
1162         u32 offset;
1163         u32 len;
1164         int ret;
1165
1166         buffer_size = endpoint->config.rx.buffer_size;
1167         page = dev_alloc_pages(get_order(buffer_size));
1168         if (!page)
1169                 return -ENOMEM;
1170
1171         /* Offset the buffer to make space for skb headroom */
1172         offset = NET_SKB_PAD;
1173         len = buffer_size - offset;
1174
1175         ret = gsi_trans_page_add(trans, page, len, offset);
1176         if (ret)
1177                 put_page(page);
1178         else
1179                 trans->data = page;     /* transaction owns page now */
1180
1181         return ret;
1182 }
1183
1184 /**
1185  * ipa_endpoint_replenish() - Replenish endpoint receive buffers
1186  * @endpoint:   Endpoint to be replenished
1187  *
1188  * The IPA hardware can hold a fixed number of receive buffers for an RX
1189  * endpoint, based on the number of entries in the underlying channel ring
1190  * buffer.  If an endpoint's "backlog" is non-zero, it indicates how many
1191  * more receive buffers can be supplied to the hardware.  Replenishing for
1192  * an endpoint can be disabled, in which case buffers are not queued to
1193  * the hardware.
1194  */
1195 static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint)
1196 {
1197         struct gsi_trans *trans;
1198
1199         if (!test_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags))
1200                 return;
1201
1202         /* Skip it if it's already active */
1203         if (test_and_set_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags))
1204                 return;
1205
1206         while ((trans = ipa_endpoint_trans_alloc(endpoint, 1))) {
1207                 bool doorbell;
1208
1209                 if (ipa_endpoint_replenish_one(endpoint, trans))
1210                         goto try_again_later;
1211
1212
1213                 /* Ring the doorbell if we've got a full batch */
1214                 doorbell = !(++endpoint->replenish_count % IPA_REPLENISH_BATCH);
1215                 gsi_trans_commit(trans, doorbell);
1216         }
1217
1218         clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
1219
1220         return;
1221
1222 try_again_later:
1223         gsi_trans_free(trans);
1224         clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
1225
1226         /* Whenever a receive buffer transaction completes we'll try to
1227          * replenish again.  It's unlikely, but if we fail to supply even
1228          * one buffer, nothing will trigger another replenish attempt.
1229          * If the hardware has no receive buffers queued, schedule work to
1230          * try replenishing again.
1231          */
1232         if (gsi_channel_trans_idle(&endpoint->ipa->gsi, endpoint->channel_id))
1233                 schedule_delayed_work(&endpoint->replenish_work,
1234                                       msecs_to_jiffies(1));
1235 }
1236
1237 static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint)
1238 {
1239         set_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
1240
1241         /* Start replenishing if hardware currently has no buffers */
1242         if (gsi_channel_trans_idle(&endpoint->ipa->gsi, endpoint->channel_id))
1243                 ipa_endpoint_replenish(endpoint);
1244 }
1245
1246 static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint)
1247 {
1248         clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
1249 }
1250
1251 static void ipa_endpoint_replenish_work(struct work_struct *work)
1252 {
1253         struct delayed_work *dwork = to_delayed_work(work);
1254         struct ipa_endpoint *endpoint;
1255
1256         endpoint = container_of(dwork, struct ipa_endpoint, replenish_work);
1257
1258         ipa_endpoint_replenish(endpoint);
1259 }
1260
1261 static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint,
1262                                   void *data, u32 len, u32 extra)
1263 {
1264         struct sk_buff *skb;
1265
1266         if (!endpoint->netdev)
1267                 return;
1268
1269         skb = __dev_alloc_skb(len, GFP_ATOMIC);
1270         if (skb) {
1271                 /* Copy the data into the socket buffer and receive it */
1272                 skb_put(skb, len);
1273                 memcpy(skb->data, data, len);
1274                 skb->truesize += extra;
1275         }
1276
1277         ipa_modem_skb_rx(endpoint->netdev, skb);
1278 }
1279
1280 static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint,
1281                                    struct page *page, u32 len)
1282 {
1283         u32 buffer_size = endpoint->config.rx.buffer_size;
1284         struct sk_buff *skb;
1285
1286         /* Nothing to do if there's no netdev */
1287         if (!endpoint->netdev)
1288                 return false;
1289
1290         WARN_ON(len > SKB_WITH_OVERHEAD(buffer_size - NET_SKB_PAD));
1291
1292         skb = build_skb(page_address(page), buffer_size);
1293         if (skb) {
1294                 /* Reserve the headroom and account for the data */
1295                 skb_reserve(skb, NET_SKB_PAD);
1296                 skb_put(skb, len);
1297         }
1298
1299         /* Receive the buffer (or record drop if unable to build it) */
1300         ipa_modem_skb_rx(endpoint->netdev, skb);
1301
1302         return skb != NULL;
1303 }
1304
1305 /* The format of a packet status element is the same for several status
1306  * types (opcodes).  Other types aren't currently supported.
1307  */
1308 static bool ipa_status_format_packet(enum ipa_status_opcode opcode)
1309 {
1310         switch (opcode) {
1311         case IPA_STATUS_OPCODE_PACKET:
1312         case IPA_STATUS_OPCODE_DROPPED_PACKET:
1313         case IPA_STATUS_OPCODE_SUSPENDED_PACKET:
1314         case IPA_STATUS_OPCODE_PACKET_2ND_PASS:
1315                 return true;
1316         default:
1317                 return false;
1318         }
1319 }
1320
1321 static bool ipa_endpoint_status_skip(struct ipa_endpoint *endpoint,
1322                                      const struct ipa_status *status)
1323 {
1324         u32 endpoint_id;
1325
1326         if (!ipa_status_format_packet(status->opcode))
1327                 return true;
1328         if (!status->pkt_len)
1329                 return true;
1330         endpoint_id = u8_get_bits(status->endp_dst_idx,
1331                                   IPA_STATUS_DST_IDX_FMASK);
1332         if (endpoint_id != endpoint->endpoint_id)
1333                 return true;
1334
1335         return false;   /* Don't skip this packet, process it */
1336 }
1337
1338 static bool ipa_endpoint_status_tag(struct ipa_endpoint *endpoint,
1339                                     const struct ipa_status *status)
1340 {
1341         struct ipa_endpoint *command_endpoint;
1342         struct ipa *ipa = endpoint->ipa;
1343         u32 endpoint_id;
1344
1345         if (!le16_get_bits(status->mask, IPA_STATUS_MASK_TAG_VALID_FMASK))
1346                 return false;   /* No valid tag */
1347
1348         /* The status contains a valid tag.  We know the packet was sent to
1349          * this endpoint (already verified by ipa_endpoint_status_skip()).
1350          * If the packet came from the AP->command TX endpoint we know
1351          * this packet was sent as part of the pipeline clear process.
1352          */
1353         endpoint_id = u8_get_bits(status->endp_src_idx,
1354                                   IPA_STATUS_SRC_IDX_FMASK);
1355         command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
1356         if (endpoint_id == command_endpoint->endpoint_id) {
1357                 complete(&ipa->completion);
1358         } else {
1359                 dev_err(&ipa->pdev->dev,
1360                         "unexpected tagged packet from endpoint %u\n",
1361                         endpoint_id);
1362         }
1363
1364         return true;
1365 }
1366
1367 /* Return whether the status indicates the packet should be dropped */
1368 static bool ipa_endpoint_status_drop(struct ipa_endpoint *endpoint,
1369                                      const struct ipa_status *status)
1370 {
1371         u32 val;
1372
1373         /* If the status indicates a tagged transfer, we'll drop the packet */
1374         if (ipa_endpoint_status_tag(endpoint, status))
1375                 return true;
1376
1377         /* Deaggregation exceptions we drop; all other types we consume */
1378         if (status->exception)
1379                 return status->exception == IPA_STATUS_EXCEPTION_DEAGGR;
1380
1381         /* Drop the packet if it fails to match a routing rule; otherwise no */
1382         val = le32_get_bits(status->flags1, IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
1383
1384         return val == field_max(IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
1385 }
1386
1387 static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint,
1388                                       struct page *page, u32 total_len)
1389 {
1390         u32 buffer_size = endpoint->config.rx.buffer_size;
1391         void *data = page_address(page) + NET_SKB_PAD;
1392         u32 unused = buffer_size - total_len;
1393         u32 resid = total_len;
1394
1395         while (resid) {
1396                 const struct ipa_status *status = data;
1397                 u32 align;
1398                 u32 len;
1399
1400                 if (resid < sizeof(*status)) {
1401                         dev_err(&endpoint->ipa->pdev->dev,
1402                                 "short message (%u bytes < %zu byte status)\n",
1403                                 resid, sizeof(*status));
1404                         break;
1405                 }
1406
1407                 /* Skip over status packets that lack packet data */
1408                 if (ipa_endpoint_status_skip(endpoint, status)) {
1409                         data += sizeof(*status);
1410                         resid -= sizeof(*status);
1411                         continue;
1412                 }
1413
1414                 /* Compute the amount of buffer space consumed by the packet,
1415                  * including the status element.  If the hardware is configured
1416                  * to pad packet data to an aligned boundary, account for that.
1417                  * And if checksum offload is enabled a trailer containing
1418                  * computed checksum information will be appended.
1419                  */
1420                 align = endpoint->config.rx.pad_align ? : 1;
1421                 len = le16_to_cpu(status->pkt_len);
1422                 len = sizeof(*status) + ALIGN(len, align);
1423                 if (endpoint->config.checksum)
1424                         len += sizeof(struct rmnet_map_dl_csum_trailer);
1425
1426                 if (!ipa_endpoint_status_drop(endpoint, status)) {
1427                         void *data2;
1428                         u32 extra;
1429                         u32 len2;
1430
1431                         /* Client receives only packet data (no status) */
1432                         data2 = data + sizeof(*status);
1433                         len2 = le16_to_cpu(status->pkt_len);
1434
1435                         /* Have the true size reflect the extra unused space in
1436                          * the original receive buffer.  Distribute the "cost"
1437                          * proportionately across all aggregated packets in the
1438                          * buffer.
1439                          */
1440                         extra = DIV_ROUND_CLOSEST(unused * len, total_len);
1441                         ipa_endpoint_skb_copy(endpoint, data2, len2, extra);
1442                 }
1443
1444                 /* Consume status and the full packet it describes */
1445                 data += len;
1446                 resid -= len;
1447         }
1448 }
1449
1450 void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint,
1451                                  struct gsi_trans *trans)
1452 {
1453         struct page *page;
1454
1455         if (endpoint->toward_ipa)
1456                 return;
1457
1458         if (trans->cancelled)
1459                 goto done;
1460
1461         /* Parse or build a socket buffer using the actual received length */
1462         page = trans->data;
1463         if (endpoint->config.status_enable)
1464                 ipa_endpoint_status_parse(endpoint, page, trans->len);
1465         else if (ipa_endpoint_skb_build(endpoint, page, trans->len))
1466                 trans->data = NULL;     /* Pages have been consumed */
1467 done:
1468         ipa_endpoint_replenish(endpoint);
1469 }
1470
1471 void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint,
1472                                 struct gsi_trans *trans)
1473 {
1474         if (endpoint->toward_ipa) {
1475                 struct ipa *ipa = endpoint->ipa;
1476
1477                 /* Nothing to do for command transactions */
1478                 if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) {
1479                         struct sk_buff *skb = trans->data;
1480
1481                         if (skb)
1482                                 dev_kfree_skb_any(skb);
1483                 }
1484         } else {
1485                 struct page *page = trans->data;
1486
1487                 if (page)
1488                         put_page(page);
1489         }
1490 }
1491
1492 void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id)
1493 {
1494         const struct ipa_reg *reg;
1495         u32 val;
1496
1497         reg = ipa_reg(ipa, ROUTE);
1498         /* ROUTE_DIS is 0 */
1499         val = ipa_reg_encode(reg, ROUTE_DEF_PIPE, endpoint_id);
1500         val |= ipa_reg_bit(reg, ROUTE_DEF_HDR_TABLE);
1501         /* ROUTE_DEF_HDR_OFST is 0 */
1502         val |= ipa_reg_encode(reg, ROUTE_FRAG_DEF_PIPE, endpoint_id);
1503         val |= ipa_reg_bit(reg, ROUTE_DEF_RETAIN_HDR);
1504
1505         iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg));
1506 }
1507
1508 void ipa_endpoint_default_route_clear(struct ipa *ipa)
1509 {
1510         ipa_endpoint_default_route_set(ipa, 0);
1511 }
1512
1513 /**
1514  * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active
1515  * @endpoint:   Endpoint to be reset
1516  *
1517  * If aggregation is active on an RX endpoint when a reset is performed
1518  * on its underlying GSI channel, a special sequence of actions must be
1519  * taken to ensure the IPA pipeline is properly cleared.
1520  *
1521  * Return:      0 if successful, or a negative error code
1522  */
1523 static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint)
1524 {
1525         struct device *dev = &endpoint->ipa->pdev->dev;
1526         struct ipa *ipa = endpoint->ipa;
1527         struct gsi *gsi = &ipa->gsi;
1528         bool suspended = false;
1529         dma_addr_t addr;
1530         u32 retries;
1531         u32 len = 1;
1532         void *virt;
1533         int ret;
1534
1535         virt = kzalloc(len, GFP_KERNEL);
1536         if (!virt)
1537                 return -ENOMEM;
1538
1539         addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE);
1540         if (dma_mapping_error(dev, addr)) {
1541                 ret = -ENOMEM;
1542                 goto out_kfree;
1543         }
1544
1545         /* Force close aggregation before issuing the reset */
1546         ipa_endpoint_force_close(endpoint);
1547
1548         /* Reset and reconfigure the channel with the doorbell engine
1549          * disabled.  Then poll until we know aggregation is no longer
1550          * active.  We'll re-enable the doorbell (if appropriate) when
1551          * we reset again below.
1552          */
1553         gsi_channel_reset(gsi, endpoint->channel_id, false);
1554
1555         /* Make sure the channel isn't suspended */
1556         suspended = ipa_endpoint_program_suspend(endpoint, false);
1557
1558         /* Start channel and do a 1 byte read */
1559         ret = gsi_channel_start(gsi, endpoint->channel_id);
1560         if (ret)
1561                 goto out_suspend_again;
1562
1563         ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr);
1564         if (ret)
1565                 goto err_endpoint_stop;
1566
1567         /* Wait for aggregation to be closed on the channel */
1568         retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX;
1569         do {
1570                 if (!ipa_endpoint_aggr_active(endpoint))
1571                         break;
1572                 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
1573         } while (retries--);
1574
1575         /* Check one last time */
1576         if (ipa_endpoint_aggr_active(endpoint))
1577                 dev_err(dev, "endpoint %u still active during reset\n",
1578                         endpoint->endpoint_id);
1579
1580         gsi_trans_read_byte_done(gsi, endpoint->channel_id);
1581
1582         ret = gsi_channel_stop(gsi, endpoint->channel_id);
1583         if (ret)
1584                 goto out_suspend_again;
1585
1586         /* Finally, reset and reconfigure the channel again (re-enabling
1587          * the doorbell engine if appropriate).  Sleep for 1 millisecond to
1588          * complete the channel reset sequence.  Finish by suspending the
1589          * channel again (if necessary).
1590          */
1591         gsi_channel_reset(gsi, endpoint->channel_id, true);
1592
1593         usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
1594
1595         goto out_suspend_again;
1596
1597 err_endpoint_stop:
1598         (void)gsi_channel_stop(gsi, endpoint->channel_id);
1599 out_suspend_again:
1600         if (suspended)
1601                 (void)ipa_endpoint_program_suspend(endpoint, true);
1602         dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE);
1603 out_kfree:
1604         kfree(virt);
1605
1606         return ret;
1607 }
1608
1609 static void ipa_endpoint_reset(struct ipa_endpoint *endpoint)
1610 {
1611         u32 channel_id = endpoint->channel_id;
1612         struct ipa *ipa = endpoint->ipa;
1613         bool special;
1614         int ret = 0;
1615
1616         /* On IPA v3.5.1, if an RX endpoint is reset while aggregation
1617          * is active, we need to handle things specially to recover.
1618          * All other cases just need to reset the underlying GSI channel.
1619          */
1620         special = ipa->version < IPA_VERSION_4_0 && !endpoint->toward_ipa &&
1621                         endpoint->config.aggregation;
1622         if (special && ipa_endpoint_aggr_active(endpoint))
1623                 ret = ipa_endpoint_reset_rx_aggr(endpoint);
1624         else
1625                 gsi_channel_reset(&ipa->gsi, channel_id, true);
1626
1627         if (ret)
1628                 dev_err(&ipa->pdev->dev,
1629                         "error %d resetting channel %u for endpoint %u\n",
1630                         ret, endpoint->channel_id, endpoint->endpoint_id);
1631 }
1632
1633 static void ipa_endpoint_program(struct ipa_endpoint *endpoint)
1634 {
1635         if (endpoint->toward_ipa) {
1636                 /* Newer versions of IPA use GSI channel flow control
1637                  * instead of endpoint DELAY mode to prevent sending data.
1638                  * Flow control is disabled for newly-allocated channels,
1639                  * and we can assume flow control is not (ever) enabled
1640                  * for AP TX channels.
1641                  */
1642                 if (endpoint->ipa->version < IPA_VERSION_4_2)
1643                         ipa_endpoint_program_delay(endpoint, false);
1644         } else {
1645                 /* Ensure suspend mode is off on all AP RX endpoints */
1646                 (void)ipa_endpoint_program_suspend(endpoint, false);
1647         }
1648         ipa_endpoint_init_cfg(endpoint);
1649         ipa_endpoint_init_nat(endpoint);
1650         ipa_endpoint_init_hdr(endpoint);
1651         ipa_endpoint_init_hdr_ext(endpoint);
1652         ipa_endpoint_init_hdr_metadata_mask(endpoint);
1653         ipa_endpoint_init_mode(endpoint);
1654         ipa_endpoint_init_aggr(endpoint);
1655         if (!endpoint->toward_ipa) {
1656                 if (endpoint->config.rx.holb_drop)
1657                         ipa_endpoint_init_hol_block_enable(endpoint, 0);
1658                 else
1659                         ipa_endpoint_init_hol_block_disable(endpoint);
1660         }
1661         ipa_endpoint_init_deaggr(endpoint);
1662         ipa_endpoint_init_rsrc_grp(endpoint);
1663         ipa_endpoint_init_seq(endpoint);
1664         ipa_endpoint_status(endpoint);
1665 }
1666
1667 int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint)
1668 {
1669         u32 endpoint_id = endpoint->endpoint_id;
1670         struct ipa *ipa = endpoint->ipa;
1671         struct gsi *gsi = &ipa->gsi;
1672         int ret;
1673
1674         ret = gsi_channel_start(gsi, endpoint->channel_id);
1675         if (ret) {
1676                 dev_err(&ipa->pdev->dev,
1677                         "error %d starting %cX channel %u for endpoint %u\n",
1678                         ret, endpoint->toward_ipa ? 'T' : 'R',
1679                         endpoint->channel_id, endpoint_id);
1680                 return ret;
1681         }
1682
1683         if (!endpoint->toward_ipa) {
1684                 ipa_interrupt_suspend_enable(ipa->interrupt, endpoint_id);
1685                 ipa_endpoint_replenish_enable(endpoint);
1686         }
1687
1688         __set_bit(endpoint_id, ipa->enabled);
1689
1690         return 0;
1691 }
1692
1693 void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint)
1694 {
1695         u32 endpoint_id = endpoint->endpoint_id;
1696         struct ipa *ipa = endpoint->ipa;
1697         struct gsi *gsi = &ipa->gsi;
1698         int ret;
1699
1700         if (!test_bit(endpoint_id, ipa->enabled))
1701                 return;
1702
1703         __clear_bit(endpoint_id, endpoint->ipa->enabled);
1704
1705         if (!endpoint->toward_ipa) {
1706                 ipa_endpoint_replenish_disable(endpoint);
1707                 ipa_interrupt_suspend_disable(ipa->interrupt, endpoint_id);
1708         }
1709
1710         /* Note that if stop fails, the channel's state is not well-defined */
1711         ret = gsi_channel_stop(gsi, endpoint->channel_id);
1712         if (ret)
1713                 dev_err(&ipa->pdev->dev,
1714                         "error %d attempting to stop endpoint %u\n", ret,
1715                         endpoint_id);
1716 }
1717
1718 void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint)
1719 {
1720         struct device *dev = &endpoint->ipa->pdev->dev;
1721         struct gsi *gsi = &endpoint->ipa->gsi;
1722         int ret;
1723
1724         if (!test_bit(endpoint->endpoint_id, endpoint->ipa->enabled))
1725                 return;
1726
1727         if (!endpoint->toward_ipa) {
1728                 ipa_endpoint_replenish_disable(endpoint);
1729                 (void)ipa_endpoint_program_suspend(endpoint, true);
1730         }
1731
1732         ret = gsi_channel_suspend(gsi, endpoint->channel_id);
1733         if (ret)
1734                 dev_err(dev, "error %d suspending channel %u\n", ret,
1735                         endpoint->channel_id);
1736 }
1737
1738 void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint)
1739 {
1740         struct device *dev = &endpoint->ipa->pdev->dev;
1741         struct gsi *gsi = &endpoint->ipa->gsi;
1742         int ret;
1743
1744         if (!test_bit(endpoint->endpoint_id, endpoint->ipa->enabled))
1745                 return;
1746
1747         if (!endpoint->toward_ipa)
1748                 (void)ipa_endpoint_program_suspend(endpoint, false);
1749
1750         ret = gsi_channel_resume(gsi, endpoint->channel_id);
1751         if (ret)
1752                 dev_err(dev, "error %d resuming channel %u\n", ret,
1753                         endpoint->channel_id);
1754         else if (!endpoint->toward_ipa)
1755                 ipa_endpoint_replenish_enable(endpoint);
1756 }
1757
1758 void ipa_endpoint_suspend(struct ipa *ipa)
1759 {
1760         if (!ipa->setup_complete)
1761                 return;
1762
1763         if (ipa->modem_netdev)
1764                 ipa_modem_suspend(ipa->modem_netdev);
1765
1766         ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1767         ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1768 }
1769
1770 void ipa_endpoint_resume(struct ipa *ipa)
1771 {
1772         if (!ipa->setup_complete)
1773                 return;
1774
1775         ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1776         ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1777
1778         if (ipa->modem_netdev)
1779                 ipa_modem_resume(ipa->modem_netdev);
1780 }
1781
1782 static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint)
1783 {
1784         struct gsi *gsi = &endpoint->ipa->gsi;
1785         u32 channel_id = endpoint->channel_id;
1786
1787         /* Only AP endpoints get set up */
1788         if (endpoint->ee_id != GSI_EE_AP)
1789                 return;
1790
1791         endpoint->skb_frag_max = gsi->channel[channel_id].trans_tre_max - 1;
1792         if (!endpoint->toward_ipa) {
1793                 /* RX transactions require a single TRE, so the maximum
1794                  * backlog is the same as the maximum outstanding TREs.
1795                  */
1796                 clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
1797                 clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
1798                 INIT_DELAYED_WORK(&endpoint->replenish_work,
1799                                   ipa_endpoint_replenish_work);
1800         }
1801
1802         ipa_endpoint_program(endpoint);
1803
1804         __set_bit(endpoint->endpoint_id, endpoint->ipa->set_up);
1805 }
1806
1807 static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint)
1808 {
1809         __clear_bit(endpoint->endpoint_id, endpoint->ipa->set_up);
1810
1811         if (!endpoint->toward_ipa)
1812                 cancel_delayed_work_sync(&endpoint->replenish_work);
1813
1814         ipa_endpoint_reset(endpoint);
1815 }
1816
1817 void ipa_endpoint_setup(struct ipa *ipa)
1818 {
1819         u32 endpoint_id;
1820
1821         for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count)
1822                 ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]);
1823 }
1824
1825 void ipa_endpoint_teardown(struct ipa *ipa)
1826 {
1827         u32 endpoint_id;
1828
1829         for_each_set_bit(endpoint_id, ipa->set_up, ipa->endpoint_count)
1830                 ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]);
1831 }
1832
1833 void ipa_endpoint_deconfig(struct ipa *ipa)
1834 {
1835         ipa->available_count = 0;
1836         bitmap_free(ipa->available);
1837         ipa->available = NULL;
1838 }
1839
1840 int ipa_endpoint_config(struct ipa *ipa)
1841 {
1842         struct device *dev = &ipa->pdev->dev;
1843         const struct ipa_reg *reg;
1844         u32 endpoint_id;
1845         u32 tx_count;
1846         u32 rx_count;
1847         u32 rx_base;
1848         u32 limit;
1849         u32 val;
1850
1851         /* Prior to IPA v3.5, the FLAVOR_0 register was not supported.
1852          * Furthermore, the endpoints were not grouped such that TX
1853          * endpoint numbers started with 0 and RX endpoints had numbers
1854          * higher than all TX endpoints, so we can't do the simple
1855          * direction check used for newer hardware below.
1856          *
1857          * For hardware that doesn't support the FLAVOR_0 register,
1858          * just set the available mask to support any endpoint, and
1859          * assume the configuration is valid.
1860          */
1861         if (ipa->version < IPA_VERSION_3_5) {
1862                 ipa->available = bitmap_zalloc(IPA_ENDPOINT_MAX, GFP_KERNEL);
1863                 if (!ipa->available)
1864                         return -ENOMEM;
1865                 ipa->available_count = IPA_ENDPOINT_MAX;
1866
1867                 bitmap_set(ipa->available, 0, IPA_ENDPOINT_MAX);
1868
1869                 return 0;
1870         }
1871
1872         /* Find out about the endpoints supplied by the hardware, and ensure
1873          * the highest one doesn't exceed the number supported by software.
1874          */
1875         reg = ipa_reg(ipa, FLAVOR_0);
1876         val = ioread32(ipa->reg_virt + ipa_reg_offset(reg));
1877
1878         /* Our RX is an IPA producer; our TX is an IPA consumer. */
1879         tx_count = ipa_reg_decode(reg, MAX_CONS_PIPES, val);
1880         rx_count = ipa_reg_decode(reg, MAX_PROD_PIPES, val);
1881         rx_base = ipa_reg_decode(reg, PROD_LOWEST, val);
1882
1883         limit = rx_base + rx_count;
1884         if (limit > IPA_ENDPOINT_MAX) {
1885                 dev_err(dev, "too many endpoints, %u > %u\n",
1886                         limit, IPA_ENDPOINT_MAX);
1887                 return -EINVAL;
1888         }
1889
1890         /* Allocate and initialize the available endpoint bitmap */
1891         ipa->available = bitmap_zalloc(limit, GFP_KERNEL);
1892         if (!ipa->available)
1893                 return -ENOMEM;
1894         ipa->available_count = limit;
1895
1896         /* Mark all supported RX and TX endpoints as available */
1897         bitmap_set(ipa->available, 0, tx_count);
1898         bitmap_set(ipa->available, rx_base, rx_count);
1899
1900         for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count) {
1901                 struct ipa_endpoint *endpoint;
1902
1903                 if (endpoint_id >= limit) {
1904                         dev_err(dev, "invalid endpoint id, %u > %u\n",
1905                                 endpoint_id, limit - 1);
1906                         goto err_free_bitmap;
1907                 }
1908
1909                 if (!test_bit(endpoint_id, ipa->available)) {
1910                         dev_err(dev, "unavailable endpoint id %u\n",
1911                                 endpoint_id);
1912                         goto err_free_bitmap;
1913                 }
1914
1915                 /* Make sure it's pointing in the right direction */
1916                 endpoint = &ipa->endpoint[endpoint_id];
1917                 if (endpoint->toward_ipa) {
1918                         if (endpoint_id < tx_count)
1919                                 continue;
1920                 } else if (endpoint_id >= rx_base) {
1921                         continue;
1922                 }
1923
1924                 dev_err(dev, "endpoint id %u wrong direction\n", endpoint_id);
1925                 goto err_free_bitmap;
1926         }
1927
1928         return 0;
1929
1930 err_free_bitmap:
1931         ipa_endpoint_deconfig(ipa);
1932
1933         return -EINVAL;
1934 }
1935
1936 static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name,
1937                                   const struct ipa_gsi_endpoint_data *data)
1938 {
1939         struct ipa_endpoint *endpoint;
1940
1941         endpoint = &ipa->endpoint[data->endpoint_id];
1942
1943         if (data->ee_id == GSI_EE_AP)
1944                 ipa->channel_map[data->channel_id] = endpoint;
1945         ipa->name_map[name] = endpoint;
1946
1947         endpoint->ipa = ipa;
1948         endpoint->ee_id = data->ee_id;
1949         endpoint->channel_id = data->channel_id;
1950         endpoint->endpoint_id = data->endpoint_id;
1951         endpoint->toward_ipa = data->toward_ipa;
1952         endpoint->config = data->endpoint.config;
1953
1954         __set_bit(endpoint->endpoint_id, ipa->defined);
1955 }
1956
1957 static void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint)
1958 {
1959         __clear_bit(endpoint->endpoint_id, endpoint->ipa->defined);
1960
1961         memset(endpoint, 0, sizeof(*endpoint));
1962 }
1963
1964 void ipa_endpoint_exit(struct ipa *ipa)
1965 {
1966         u32 endpoint_id;
1967
1968         ipa->filtered = 0;
1969
1970         for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count)
1971                 ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]);
1972
1973         bitmap_free(ipa->enabled);
1974         ipa->enabled = NULL;
1975         bitmap_free(ipa->set_up);
1976         ipa->set_up = NULL;
1977         bitmap_free(ipa->defined);
1978         ipa->defined = NULL;
1979
1980         memset(ipa->name_map, 0, sizeof(ipa->name_map));
1981         memset(ipa->channel_map, 0, sizeof(ipa->channel_map));
1982 }
1983
1984 /* Returns a bitmask of endpoints that support filtering, or 0 on error */
1985 int ipa_endpoint_init(struct ipa *ipa, u32 count,
1986                       const struct ipa_gsi_endpoint_data *data)
1987 {
1988         enum ipa_endpoint_name name;
1989         u32 filtered;
1990
1991         BUILD_BUG_ON(!IPA_REPLENISH_BATCH);
1992
1993         /* Number of endpoints is one more than the maximum ID */
1994         ipa->endpoint_count = ipa_endpoint_max(ipa, count, data) + 1;
1995         if (!ipa->endpoint_count)
1996                 return -EINVAL;
1997
1998         /* Initialize endpoint state bitmaps */
1999         ipa->defined = bitmap_zalloc(ipa->endpoint_count, GFP_KERNEL);
2000         if (!ipa->defined)
2001                 return -ENOMEM;
2002
2003         ipa->set_up = bitmap_zalloc(ipa->endpoint_count, GFP_KERNEL);
2004         if (!ipa->set_up)
2005                 goto err_free_defined;
2006
2007         ipa->enabled = bitmap_zalloc(ipa->endpoint_count, GFP_KERNEL);
2008         if (!ipa->enabled)
2009                 goto err_free_set_up;
2010
2011         filtered = 0;
2012         for (name = 0; name < count; name++, data++) {
2013                 if (ipa_gsi_endpoint_data_empty(data))
2014                         continue;       /* Skip over empty slots */
2015
2016                 ipa_endpoint_init_one(ipa, name, data);
2017
2018                 if (data->endpoint.filter_support)
2019                         filtered |= BIT(data->endpoint_id);
2020                 if (data->ee_id == GSI_EE_MODEM && data->toward_ipa)
2021                         ipa->modem_tx_count++;
2022         }
2023
2024         /* Make sure the set of filtered endpoints is valid */
2025         if (!ipa_filtered_valid(ipa, filtered)) {
2026                 ipa_endpoint_exit(ipa);
2027
2028                 return -EINVAL;
2029         }
2030
2031         ipa->filtered = filtered;
2032
2033         return 0;
2034
2035 err_free_set_up:
2036         bitmap_free(ipa->set_up);
2037         ipa->set_up = NULL;
2038 err_free_defined:
2039         bitmap_free(ipa->defined);
2040         ipa->defined = NULL;
2041
2042         return -ENOMEM;
2043 }