arm64: io: permit offset addressing
Currently our IO accessors all use register addressing without offsets,
but we could safely use offset addressing (without writeback) to
simplify and optimize the generated code.
To function correctly under a hypervisor which emulates IO accesses, we
must ensure that any faulting/trapped IO access results in an ESR_ELx
value with ESR_ELX.ISS.ISV=1 and with the tranfer register described in
ESR_ELx.ISS.SRT. This means that we can only use loads/stores of a
single general purpose register (or the zero register), and must avoid
writeback addressing modes. However, we can use immediate offset
addressing modes, as these still provide ESR_ELX.ISS.ISV=1 and a valid
ESR_ELx.ISS.SRT when those accesses fault at Stage-2.
Currently we only use register addressing without offsets. We use the
"r" constraint to place the address into a register, and manually
generate the register addressing by surrounding the resulting register
operand with square braces, e.g.
| static __always_inline void __raw_writeq(u64 val, volatile void __iomem *addr)
| {
| asm volatile("str %x0, [%1]" : : "rZ" (val), "r" (addr));
| }
Due to this, sequences of adjacent accesses need to generate addresses
using separate instructions. For example, the following code:
| void writeq_zero_8_times(void *ptr)
| {
| writeq_relaxed(0, ptr + 8 * 0);
| writeq_relaxed(0, ptr + 8 * 1);
| writeq_relaxed(0, ptr + 8 * 2);
| writeq_relaxed(0, ptr + 8 * 3);
| writeq_relaxed(0, ptr + 8 * 4);
| writeq_relaxed(0, ptr + 8 * 5);
| writeq_relaxed(0, ptr + 8 * 6);
| writeq_relaxed(0, ptr + 8 * 7);
| }
... is compiled to:
| <writeq_zero_8_times>:
| str xzr, [x0]
| add x1, x0, #0x8
| str xzr, [x1]
| add x1, x0, #0x10
| str xzr, [x1]
| add x1, x0, #0x18
| str xzr, [x1]
| add x1, x0, #0x20
| str xzr, [x1]
| add x1, x0, #0x28
| str xzr, [x1]
| add x1, x0, #0x30
| str xzr, [x1]
| add x0, x0, #0x38
| str xzr, [x0]
| ret
As described above, we could safely use immediate offset addressing,
which would allow the ADDs to be folded into the address generation for
the STRs, resulting in simpler and smaller generated assembly. We can do
this by using the "o" constraint to allow the compiler to generate
offset addressing (without writeback) for a memory operand, e.g.
| static __always_inline void __raw_writeq(u64 val, volatile void __iomem *addr)
| {
| volatile u64 __iomem *ptr = addr;
| asm volatile("str %x0, %1" : : "rZ" (val), "o" (*ptr));
| }
... which results in the earlier code sequence being compiled to:
| <writeq_zero_8_times>:
| str xzr, [x0]
| str xzr, [x0, #8]
| str xzr, [x0, #16]
| str xzr, [x0, #24]
| str xzr, [x0, #32]
| str xzr, [x0, #40]
| str xzr, [x0, #48]
| str xzr, [x0, #56]
| ret
As Will notes at:
https://lore.kernel.org/linux-arm-kernel/
20240117160528.GA3398@willie-the-truck/
... some compilers struggle with a plain "o" constraint, so it's
preferable to use "Qo", where the additional "Q" constraint permits
using non-offset register addressing.
This patch modifies our IO write accessors to use "Qo" constraints,
resulting in the better code generation described above. The IO read
accessors are left as-is because ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE
requires that non-offset register addressing is used, as the LDAR
instruction does not support offset addressing.
When compiling v6.8-rc1 defconfig with GCC 13.2.0, this saves ~4KiB of
text:
| [mark@lakrids:~/src/linux]% ls -al vmlinux-*
| -rwxr-xr-x 1 mark mark
153960576 Jan 23 12:01 vmlinux-after
| -rwxr-xr-x 1 mark mark
153862192 Jan 23 11:57 vmlinux-before
|
| [mark@lakrids:~/src/linux]% size vmlinux-before vmlinux-after
| text data bss dec hex filename
|
26708921 16690350 622736
44022007 29fb8f7 vmlinux-before
|
26704761 16690414 622736
44017911 29fa8f7 vmlinux-after
... though due to internal alignment of sections, this has no impact on
the size of the resulting Image:
| [mark@lakrids:~/src/linux]% ls -al Image-*
| -rw-r--r-- 1 mark mark
43590144 Jan 23 12:01 Image-after
| -rw-r--r-- 1 mark mark
43590144 Jan 23 11:57 Image-before
Aside from the better code generation, there should be no functional
change as a result of this patch. I have lightly tested this patch,
including booting under KVM (where some devices such as PL011 are
emulated).
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20240124111259.874975-1-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>