mtd: rawnand: rockchip: NFC driver for RK3308, RK2928 and others
authorYifeng Zhao <yifeng.zhao@rock-chips.com>
Thu, 10 Dec 2020 00:21:32 +0000 (08:21 +0800)
committerMiquel Raynal <miquel.raynal@bootlin.com>
Thu, 10 Dec 2020 21:37:33 +0000 (22:37 +0100)
This driver supports Rockchip NFC (NAND Flash Controller) found on RK3308,
RK2928, RKPX30, RV1108 and other SOCs. The driver has been tested using
8-bit NAND interface on the ARM based RK3308 platform.

Support Rockchip SoCs and NFC versions:
- PX30 and RK3326(NFCv900).
ECC: 16/40/60/70 bits/1KB.
CLOCK: ahb and nfc.
- RK3308 and RV1108(NFCv800).
ECC: 16 bits/1KB.
CLOCK: ahb and nfc.
- RK3036 and RK3128(NFCv622).
ECC: 16/24/40/60 bits/1KB.
CLOCK: ahb and nfc.
- RK3066, RK3188 and RK2928(NFCv600).
ECC: 16/24/40/60 bits/1KB.
CLOCK: ahb.

Supported features:
- Read full page data by DMA.
- Support HW ECC(one step is 1KB).
- Support 2 - 32K page size.
- Support 8 CS(depend on SoCs)

Limitations:
- No support for the ecc step size is 512.
- Untested on some SoCs.
- No support for subpages.
- No support for the builtin randomizer.
- The original bad block mask is not supported. It is recommended to use
  the BBT(bad block table).

Suggested-by: Johan Jonker <jbx6244@gmail.com>
Signed-off-by: Yifeng Zhao <yifeng.zhao@rock-chips.com>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201210002134.5686-3-yifeng.zhao@rock-chips.com
drivers/mtd/nand/raw/Kconfig
drivers/mtd/nand/raw/Makefile
drivers/mtd/nand/raw/rockchip-nand-controller.c [new file with mode: 0644]

index c321442f4ea689c0610b6d2e5f396466fce3a19e..442a039b92f32c549bea42e2facb7499e72e9816 100644 (file)
@@ -449,6 +449,18 @@ config MTD_NAND_INTEL_LGM
          Enables support for NAND Flash chips on Intel's LGM SoC.
          NAND flash controller interfaced through the External Bus Unit.
 
+config MTD_NAND_ROCKCHIP
+       tristate "Rockchip NAND controller"
+       depends on ARCH_ROCKCHIP && HAS_IOMEM
+       help
+         Enables support for NAND controller on Rockchip SoCs.
+         There are four different versions of NAND FLASH Controllers,
+         including:
+           NFC v600: RK2928, RK3066, RK3188
+           NFC v622: RK3036, RK3128
+           NFC v800: RK3308, RV1108
+           NFC v900: PX30, RK3326
+
 comment "Misc"
 
 config MTD_SM_COMMON
index 9a63174df1b96e9bb0a6ef022eba5b11e00cc882..32475a28d8f8e996528080d8acf9ca0f98c12cb4 100644 (file)
@@ -57,6 +57,7 @@ obj-$(CONFIG_MTD_NAND_MESON)          += meson_nand.o
 obj-$(CONFIG_MTD_NAND_CADENCE)         += cadence-nand-controller.o
 obj-$(CONFIG_MTD_NAND_ARASAN)          += arasan-nand-controller.o
 obj-$(CONFIG_MTD_NAND_INTEL_LGM)       += intel-nand-controller.o
+obj-$(CONFIG_MTD_NAND_ROCKCHIP)                += rockchip-nand-controller.o
 
 nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o
 nand-objs += nand_onfi.o
diff --git a/drivers/mtd/nand/raw/rockchip-nand-controller.c b/drivers/mtd/nand/raw/rockchip-nand-controller.c
new file mode 100644 (file)
index 0000000..796b678
--- /dev/null
@@ -0,0 +1,1495 @@
+// SPDX-License-Identifier: GPL-2.0 OR MIT
+/*
+ * Rockchip NAND Flash controller driver.
+ * Copyright (C) 2020 Rockchip Inc.
+ * Author: Yifeng Zhao <yifeng.zhao@rock-chips.com>
+ */
+
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/dma-mapping.h>
+#include <linux/dmaengine.h>
+#include <linux/interrupt.h>
+#include <linux/iopoll.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+
+/*
+ * NFC Page Data Layout:
+ *     1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
+ *     1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
+ *     ......
+ * NAND Page Data Layout:
+ *     1024 * n data + m Bytes oob
+ * Original Bad Block Mask Location:
+ *     First byte of oob(spare).
+ * nand_chip->oob_poi data layout:
+ *     4Bytes sys data + .... + 4Bytes sys data + ECC data.
+ */
+
+/* NAND controller register definition */
+#define NFC_READ                       (0)
+#define NFC_WRITE                      (1)
+
+#define NFC_FMCTL                      (0x00)
+#define   FMCTL_CE_SEL_M               0xFF
+#define   FMCTL_CE_SEL(x)              (1 << (x))
+#define   FMCTL_WP                     BIT(8)
+#define   FMCTL_RDY                    BIT(9)
+
+#define NFC_FMWAIT                     (0x04)
+#define   FLCTL_RST                    BIT(0)
+#define   FLCTL_WR                     (1)     /* 0: read, 1: write */
+#define   FLCTL_XFER_ST                        BIT(2)
+#define   FLCTL_XFER_EN                        BIT(3)
+#define   FLCTL_ACORRECT               BIT(10) /* Auto correct error bits. */
+#define   FLCTL_XFER_READY             BIT(20)
+#define   FLCTL_XFER_SECTOR            (22)
+#define   FLCTL_TOG_FIX                        BIT(29)
+
+#define   BCHCTL_BANK_M                        (7 << 5)
+#define   BCHCTL_BANK                  (5)
+
+#define   DMA_ST                       BIT(0)
+#define   DMA_WR                       (1)     /* 0: write, 1: read */
+#define   DMA_EN                       BIT(2)
+#define   DMA_AHB_SIZE                 (3)     /* 0: 1, 1: 2, 2: 4 */
+#define   DMA_BURST_SIZE               (6)     /* 0: 1, 3: 4, 5: 8, 7: 16 */
+#define   DMA_INC_NUM                  (9)     /* 1 - 16 */
+
+#define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\
+         (((x) >> (e).high) & (e).high_mask) << (e).low_bn)
+#define   INT_DMA                      BIT(0)
+#define NFC_BANK                       (0x800)
+#define NFC_BANK_STEP                  (0x100)
+#define   BANK_DATA                    (0x00)
+#define   BANK_ADDR                    (0x04)
+#define   BANK_CMD                     (0x08)
+#define NFC_SRAM0                      (0x1000)
+#define NFC_SRAM1                      (0x1400)
+#define NFC_SRAM_SIZE                  (0x400)
+#define NFC_TIMEOUT                    (500000)
+#define NFC_MAX_OOB_PER_STEP           128
+#define NFC_MIN_OOB_PER_STEP           64
+#define MAX_DATA_SIZE                  0xFFFC
+#define MAX_ADDRESS_CYC                        6
+#define NFC_ECC_MAX_MODES              4
+#define NFC_MAX_NSELS                  (8) /* Some Socs only have 1 or 2 CSs. */
+#define NFC_SYS_DATA_SIZE              (4) /* 4 bytes sys data in oob pre 1024 data.*/
+#define RK_DEFAULT_CLOCK_RATE          (150 * 1000 * 1000) /* 150 Mhz */
+#define ACCTIMING(csrw, rwpw, rwcs)    ((csrw) << 12 | (rwpw) << 5 | (rwcs))
+
+enum nfc_type {
+       NFC_V6,
+       NFC_V8,
+       NFC_V9,
+};
+
+/**
+ * struct rk_ecc_cnt_status: represent a ecc status data.
+ * @err_flag_bit: error flag bit index at register.
+ * @low: ECC count low bit index at register.
+ * @low_mask: mask bit.
+ * @low_bn: ECC count low bit number.
+ * @high: ECC count high bit index at register.
+ * @high_mask: mask bit
+ */
+struct ecc_cnt_status {
+       u8 err_flag_bit;
+       u8 low;
+       u8 low_mask;
+       u8 low_bn;
+       u8 high;
+       u8 high_mask;
+};
+
+/**
+ * @type: NFC version
+ * @ecc_strengths: ECC strengths
+ * @ecc_cfgs: ECC config values
+ * @flctl_off: FLCTL register offset
+ * @bchctl_off: BCHCTL register offset
+ * @dma_data_buf_off: DMA_DATA_BUF register offset
+ * @dma_oob_buf_off: DMA_OOB_BUF register offset
+ * @dma_cfg_off: DMA_CFG register offset
+ * @dma_st_off: DMA_ST register offset
+ * @bch_st_off: BCG_ST register offset
+ * @randmz_off: RANDMZ register offset
+ * @int_en_off: interrupt enable register offset
+ * @int_clr_off: interrupt clean register offset
+ * @int_st_off: interrupt status register offset
+ * @oob0_off: oob0 register offset
+ * @oob1_off: oob1 register offset
+ * @ecc0: represent ECC0 status data
+ * @ecc1: represent ECC1 status data
+ */
+struct nfc_cfg {
+       enum nfc_type type;
+       u8 ecc_strengths[NFC_ECC_MAX_MODES];
+       u32 ecc_cfgs[NFC_ECC_MAX_MODES];
+       u32 flctl_off;
+       u32 bchctl_off;
+       u32 dma_cfg_off;
+       u32 dma_data_buf_off;
+       u32 dma_oob_buf_off;
+       u32 dma_st_off;
+       u32 bch_st_off;
+       u32 randmz_off;
+       u32 int_en_off;
+       u32 int_clr_off;
+       u32 int_st_off;
+       u32 oob0_off;
+       u32 oob1_off;
+       struct ecc_cnt_status ecc0;
+       struct ecc_cnt_status ecc1;
+};
+
+struct rk_nfc_nand_chip {
+       struct list_head node;
+       struct nand_chip chip;
+
+       u16 boot_blks;
+       u16 metadata_size;
+       u32 boot_ecc;
+       u32 timing;
+
+       u8 nsels;
+       u8 sels[0];
+       /* Nothing after this field. */
+};
+
+struct rk_nfc {
+       struct nand_controller controller;
+       const struct nfc_cfg *cfg;
+       struct device *dev;
+
+       struct clk *nfc_clk;
+       struct clk *ahb_clk;
+       void __iomem *regs;
+
+       u32 selected_bank;
+       u32 band_offset;
+       u32 cur_ecc;
+       u32 cur_timing;
+
+       struct completion done;
+       struct list_head chips;
+
+       u8 *page_buf;
+       u32 *oob_buf;
+       u32 page_buf_size;
+       u32 oob_buf_size;
+
+       unsigned long assigned_cs;
+};
+
+static inline struct rk_nfc_nand_chip *rk_nfc_to_rknand(struct nand_chip *chip)
+{
+       return container_of(chip, struct rk_nfc_nand_chip, chip);
+}
+
+static inline u8 *rk_nfc_buf_to_data_ptr(struct nand_chip *chip, const u8 *p, int i)
+{
+       return (u8 *)p + i * chip->ecc.size;
+}
+
+static inline u8 *rk_nfc_buf_to_oob_ptr(struct nand_chip *chip, int i)
+{
+       u8 *poi;
+
+       poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE;
+
+       return poi;
+}
+
+static inline u8 *rk_nfc_buf_to_oob_ecc_ptr(struct nand_chip *chip, int i)
+{
+       struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
+       u8 *poi;
+
+       poi = chip->oob_poi + rknand->metadata_size + chip->ecc.bytes * i;
+
+       return poi;
+}
+
+static inline int rk_nfc_data_len(struct nand_chip *chip)
+{
+       return chip->ecc.size + chip->ecc.bytes + NFC_SYS_DATA_SIZE;
+}
+
+static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i)
+{
+       struct rk_nfc *nfc = nand_get_controller_data(chip);
+
+       return nfc->page_buf + i * rk_nfc_data_len(chip);
+}
+
+static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i)
+{
+       struct rk_nfc *nfc = nand_get_controller_data(chip);
+
+       return nfc->page_buf + i * rk_nfc_data_len(chip) + chip->ecc.size;
+}
+
+static int rk_nfc_hw_ecc_setup(struct nand_chip *chip, u32 strength)
+{
+       struct rk_nfc *nfc = nand_get_controller_data(chip);
+       u32 reg, i;
+
+       for (i = 0; i < NFC_ECC_MAX_MODES; i++) {
+               if (strength == nfc->cfg->ecc_strengths[i]) {
+                       reg = nfc->cfg->ecc_cfgs[i];
+                       break;
+               }
+       }
+
+       if (i >= NFC_ECC_MAX_MODES)
+               return -EINVAL;
+
+       writel(reg, nfc->regs + nfc->cfg->bchctl_off);
+
+       /* Save chip ECC setting */
+       nfc->cur_ecc = strength;
+
+       return 0;
+}
+
+static void rk_nfc_select_chip(struct nand_chip *chip, int cs)
+{
+       struct rk_nfc *nfc = nand_get_controller_data(chip);
+       struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
+       struct nand_ecc_ctrl *ecc = &chip->ecc;
+       u32 val;
+
+       if (cs < 0) {
+               nfc->selected_bank = -1;
+               /* Deselect the currently selected target. */
+               val = readl_relaxed(nfc->regs + NFC_FMCTL);
+               val &= ~FMCTL_CE_SEL_M;
+               writel(val, nfc->regs + NFC_FMCTL);
+               return;
+       }
+
+       nfc->selected_bank = rknand->sels[cs];
+       nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP;
+
+       val = readl_relaxed(nfc->regs + NFC_FMCTL);
+       val &= ~FMCTL_CE_SEL_M;
+       val |= FMCTL_CE_SEL(nfc->selected_bank);
+
+       writel(val, nfc->regs + NFC_FMCTL);
+
+       /*
+        * Compare current chip timing with selected chip timing and
+        * change if needed.
+        */
+       if (nfc->cur_timing != rknand->timing) {
+               writel(rknand->timing, nfc->regs + NFC_FMWAIT);
+               nfc->cur_timing = rknand->timing;
+       }
+
+       /*
+        * Compare current chip ECC setting with selected chip ECC setting and
+        * change if needed.
+        */
+       if (nfc->cur_ecc != ecc->strength)
+               rk_nfc_hw_ecc_setup(chip, ecc->strength);
+}
+
+static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc)
+{
+       int rc;
+       u32 val;
+
+       rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val,
+                                       val & FMCTL_RDY, 10, NFC_TIMEOUT);
+
+       return rc;
+}
+
+static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len)
+{
+       int i;
+
+       for (i = 0; i < len; i++)
+               buf[i] = readb_relaxed(nfc->regs + nfc->band_offset +
+                                      BANK_DATA);
+}
+
+static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len)
+{
+       int i;
+
+       for (i = 0; i < len; i++)
+               writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA);
+}
+
+static int rk_nfc_cmd(struct nand_chip *chip,
+                     const struct nand_subop *subop)
+{
+       struct rk_nfc *nfc = nand_get_controller_data(chip);
+       unsigned int i, j, remaining, start;
+       int reg_offset = nfc->band_offset;
+       u8 *inbuf = NULL;
+       const u8 *outbuf;
+       u32 cnt = 0;
+       int ret = 0;
+
+       for (i = 0; i < subop->ninstrs; i++) {
+               const struct nand_op_instr *instr = &subop->instrs[i];
+
+               switch (instr->type) {
+               case NAND_OP_CMD_INSTR:
+                       writeb(instr->ctx.cmd.opcode,
+                              nfc->regs + reg_offset + BANK_CMD);
+                       break;
+
+               case NAND_OP_ADDR_INSTR:
+                       remaining = nand_subop_get_num_addr_cyc(subop, i);
+                       start = nand_subop_get_addr_start_off(subop, i);
+
+                       for (j = 0; j < 8 && j + start < remaining; j++)
+                               writeb(instr->ctx.addr.addrs[j + start],
+                                      nfc->regs + reg_offset + BANK_ADDR);
+                       break;
+
+               case NAND_OP_DATA_IN_INSTR:
+               case NAND_OP_DATA_OUT_INSTR:
+                       start = nand_subop_get_data_start_off(subop, i);
+                       cnt = nand_subop_get_data_len(subop, i);
+
+                       if (instr->type == NAND_OP_DATA_OUT_INSTR) {
+                               outbuf = instr->ctx.data.buf.out + start;
+                               rk_nfc_write_buf(nfc, outbuf, cnt);
+                       } else {
+                               inbuf = instr->ctx.data.buf.in + start;
+                               rk_nfc_read_buf(nfc, inbuf, cnt);
+                       }
+                       break;
+
+               case NAND_OP_WAITRDY_INSTR:
+                       if (rk_nfc_wait_ioready(nfc) < 0) {
+                               ret = -ETIMEDOUT;
+                               dev_err(nfc->dev, "IO not ready\n");
+                       }
+                       break;
+               }
+       }
+
+       return ret;
+}
+
+static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER(
+       NAND_OP_PARSER_PATTERN(
+               rk_nfc_cmd,
+               NAND_OP_PARSER_PAT_CMD_ELEM(true),
+               NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
+               NAND_OP_PARSER_PAT_CMD_ELEM(true),
+               NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
+               NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)),
+       NAND_OP_PARSER_PATTERN(
+               rk_nfc_cmd,
+               NAND_OP_PARSER_PAT_CMD_ELEM(true),
+               NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
+               NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE),
+               NAND_OP_PARSER_PAT_CMD_ELEM(true),
+               NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
+);
+
+static int rk_nfc_exec_op(struct nand_chip *chip,
+                         const struct nand_operation *op,
+                         bool check_only)
+{
+       if (!check_only)
+               rk_nfc_select_chip(chip, op->cs);
+
+       return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op,
+                                     check_only);
+}
+
+static int rk_nfc_setup_interface(struct nand_chip *chip, int target,
+                                 const struct nand_interface_config *conf)
+{
+       struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
+       struct rk_nfc *nfc = nand_get_controller_data(chip);
+       const struct nand_sdr_timings *timings;
+       u32 rate, tc2rw, trwpw, trw2c;
+       u32 temp;
+
+       if (target < 0)
+               return 0;
+
+       timings = nand_get_sdr_timings(conf);
+       if (IS_ERR(timings))
+               return -EOPNOTSUPP;
+
+       if (IS_ERR(nfc->nfc_clk))
+               rate = clk_get_rate(nfc->ahb_clk);
+       else
+               rate = clk_get_rate(nfc->nfc_clk);
+
+       /* Turn clock rate into kHz. */
+       rate /= 1000;
+
+       tc2rw = 1;
+       trw2c = 1;
+
+       trwpw = max(timings->tWC_min, timings->tRC_min) / 1000;
+       trwpw = DIV_ROUND_UP(trwpw * rate, 1000000);
+
+       temp = timings->tREA_max / 1000;
+       temp = DIV_ROUND_UP(temp * rate, 1000000);
+
+       if (trwpw < temp)
+               trwpw = temp;
+
+       /*
+        * ACCON: access timing control register
+        * -------------------------------------
+        * 31:18: reserved
+        * 17:12: csrw, clock cycles from the falling edge of CSn to the
+        *   falling edge of RDn or WRn
+        * 11:11: reserved
+        * 10:05: rwpw, the width of RDn or WRn in processor clock cycles
+        * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the
+        *   rising edge of CSn
+        */
+
+       /* Save chip timing */
+       rknand->timing = ACCTIMING(tc2rw, trwpw, trw2c);
+
+       return 0;
+}
+
+static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB,
+                             dma_addr_t dma_data, dma_addr_t dma_oob)
+{
+       u32 dma_reg, fl_reg, bch_reg;
+
+       dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) |
+             (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM);
+
+       fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT |
+                (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX;
+
+       if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) {
+               bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off);
+               bch_reg = (bch_reg & (~BCHCTL_BANK_M)) |
+                         (nfc->selected_bank << BCHCTL_BANK);
+               writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off);
+       }
+
+       writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off);
+       writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off);
+       writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off);
+       writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
+       fl_reg |= FLCTL_XFER_ST;
+       writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
+}
+
+static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc)
+{
+       void __iomem *ptr;
+       u32 reg;
+
+       ptr = nfc->regs + nfc->cfg->flctl_off;
+
+       return readl_relaxed_poll_timeout(ptr, reg,
+                                        reg & FLCTL_XFER_READY,
+                                        10, NFC_TIMEOUT);
+}
+
+static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
+                                int oob_on, int page)
+{
+       struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
+       struct rk_nfc *nfc = nand_get_controller_data(chip);
+       struct mtd_info *mtd = nand_to_mtd(chip);
+       struct nand_ecc_ctrl *ecc = &chip->ecc;
+       int i, pages_per_blk;
+
+       pages_per_blk = mtd->erasesize / mtd->writesize;
+       if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
+           (page < (pages_per_blk * rknand->boot_blks)) &&
+           rknand->boot_ecc != ecc->strength) {
+               /*
+                * There's currently no method to notify the MTD framework that
+                * a different ECC strength is in use for the boot blocks.
+                */
+               return -EIO;
+       }
+
+       if (!buf)
+               memset(nfc->page_buf, 0xff, mtd->writesize + mtd->oobsize);
+
+       for (i = 0; i < ecc->steps; i++) {
+               /* Copy data to the NFC buffer. */
+               if (buf)
+                       memcpy(rk_nfc_data_ptr(chip, i),
+                              rk_nfc_buf_to_data_ptr(chip, buf, i),
+                              ecc->size);
+               /*
+                * The first four bytes of OOB are reserved for the
+                * boot ROM. In some debugging cases, such as with a
+                * read, erase and write back test these 4 bytes stored
+                * in OOB also need to be written back.
+                *
+                * The function nand_block_bad detects bad blocks like:
+                *
+                * bad = chip->oob_poi[chip->badblockpos];
+                *
+                * chip->badblockpos == 0 for a large page NAND Flash,
+                * so chip->oob_poi[0] is the bad block mask (BBM).
+                *
+                * The OOB data layout on the NFC is:
+                *
+                *    PA0  PA1  PA2  PA3  | BBM OOB1 OOB2 OOB3 | ...
+                *
+                * or
+                *
+                *    0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
+                *
+                * The code here just swaps the first 4 bytes with the last
+                * 4 bytes without losing any data.
+                *
+                * The chip->oob_poi data layout:
+                *
+                *    BBM  OOB1 OOB2 OOB3 |......|  PA0  PA1  PA2  PA3
+                *
+                * The rk_nfc_ooblayout_free() function already has reserved
+                * these 4 bytes with:
+                *
+                * oob_region->offset = NFC_SYS_DATA_SIZE + 2;
+                */
+               if (!i)
+                       memcpy(rk_nfc_oob_ptr(chip, i),
+                              rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
+                              NFC_SYS_DATA_SIZE);
+               else
+                       memcpy(rk_nfc_oob_ptr(chip, i),
+                              rk_nfc_buf_to_oob_ptr(chip, i - 1),
+                              NFC_SYS_DATA_SIZE);
+               /* Copy ECC data to the NFC buffer. */
+               memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
+                      rk_nfc_buf_to_oob_ecc_ptr(chip, i),
+                      ecc->bytes);
+       }
+
+       nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+       rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize);
+       return nand_prog_page_end_op(chip);
+}
+
+static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
+                                  int oob_on, int page)
+{
+       struct mtd_info *mtd = nand_to_mtd(chip);
+       struct rk_nfc *nfc = nand_get_controller_data(chip);
+       struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
+       struct nand_ecc_ctrl *ecc = &chip->ecc;
+       int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
+                       NFC_MIN_OOB_PER_STEP;
+       int pages_per_blk = mtd->erasesize / mtd->writesize;
+       int ret = 0, i, boot_rom_mode = 0;
+       dma_addr_t dma_data, dma_oob;
+       u32 reg;
+       u8 *oob;
+
+       nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+
+       if (buf)
+               memcpy(nfc->page_buf, buf, mtd->writesize);
+       else
+               memset(nfc->page_buf, 0xFF, mtd->writesize);
+
+       /*
+        * The first blocks (4, 8 or 16 depending on the device) are used
+        * by the boot ROM and the first 32 bits of OOB need to link to
+        * the next page address in the same block. We can't directly copy
+        * OOB data from the MTD framework, because this page address
+        * conflicts for example with the bad block marker (BBM),
+        * so we shift all OOB data including the BBM with 4 byte positions.
+        * As a consequence the OOB size available to the MTD framework is
+        * also reduced with 4 bytes.
+        *
+        *    PA0  PA1  PA2  PA3 | BBM OOB1 OOB2 OOB3 | ...
+        *
+        * If a NAND is not a boot medium or the page is not a boot block,
+        * the first 4 bytes are left untouched by writing 0xFF to them.
+        *
+        *   0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
+        *
+        * Configure the ECC algorithm supported by the boot ROM.
+        */
+       if ((page < (pages_per_blk * rknand->boot_blks)) &&
+           (chip->options & NAND_IS_BOOT_MEDIUM)) {
+               boot_rom_mode = 1;
+               if (rknand->boot_ecc != ecc->strength)
+                       rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
+       }
+
+       for (i = 0; i < ecc->steps; i++) {
+               if (!i) {
+                       reg = 0xFFFFFFFF;
+               } else {
+                       oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
+                       reg = oob[0] | oob[1] << 8 | oob[2] << 16 |
+                             oob[3] << 24;
+               }
+
+               if (!i && boot_rom_mode)
+                       reg = (page & (pages_per_blk - 1)) * 4;
+
+               if (nfc->cfg->type == NFC_V9)
+                       nfc->oob_buf[i] = reg;
+               else
+                       nfc->oob_buf[i * (oob_step / 4)] = reg;
+       }
+
+       dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf,
+                                 mtd->writesize, DMA_TO_DEVICE);
+       dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
+                                ecc->steps * oob_step,
+                                DMA_TO_DEVICE);
+
+       reinit_completion(&nfc->done);
+       writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
+
+       rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data,
+                         dma_oob);
+       ret = wait_for_completion_timeout(&nfc->done,
+                                         msecs_to_jiffies(100));
+       if (!ret)
+               dev_warn(nfc->dev, "write: wait dma done timeout.\n");
+       /*
+        * Whether the DMA transfer is completed or not. The driver
+        * needs to check the NFC`s status register to see if the data
+        * transfer was completed.
+        */
+       ret = rk_nfc_wait_for_xfer_done(nfc);
+
+       dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
+                        DMA_TO_DEVICE);
+       dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
+                        DMA_TO_DEVICE);
+
+       if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
+               rk_nfc_hw_ecc_setup(chip, ecc->strength);
+
+       if (ret) {
+               dev_err(nfc->dev, "write: wait transfer done timeout.\n");
+               return -ETIMEDOUT;
+       }
+
+       return nand_prog_page_end_op(chip);
+}
+
+static int rk_nfc_write_oob(struct nand_chip *chip, int page)
+{
+       return rk_nfc_write_page_hwecc(chip, NULL, 1, page);
+}
+
+static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on,
+                               int page)
+{
+       struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
+       struct rk_nfc *nfc = nand_get_controller_data(chip);
+       struct mtd_info *mtd = nand_to_mtd(chip);
+       struct nand_ecc_ctrl *ecc = &chip->ecc;
+       int i, pages_per_blk;
+
+       pages_per_blk = mtd->erasesize / mtd->writesize;
+       if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
+           (page < (pages_per_blk * rknand->boot_blks)) &&
+           rknand->boot_ecc != ecc->strength) {
+               /*
+                * There's currently no method to notify the MTD framework that
+                * a different ECC strength is in use for the boot blocks.
+                */
+               return -EIO;
+       }
+
+       nand_read_page_op(chip, page, 0, NULL, 0);
+       rk_nfc_read_buf(nfc, nfc->page_buf, mtd->writesize + mtd->oobsize);
+       for (i = 0; i < ecc->steps; i++) {
+               /*
+                * The first four bytes of OOB are reserved for the
+                * boot ROM. In some debugging cases, such as with a read,
+                * erase and write back test, these 4 bytes also must be
+                * saved somewhere, otherwise this information will be
+                * lost during a write back.
+                */
+               if (!i)
+                       memcpy(rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
+                              rk_nfc_oob_ptr(chip, i),
+                              NFC_SYS_DATA_SIZE);
+               else
+                       memcpy(rk_nfc_buf_to_oob_ptr(chip, i - 1),
+                              rk_nfc_oob_ptr(chip, i),
+                              NFC_SYS_DATA_SIZE);
+
+               /* Copy ECC data from the NFC buffer. */
+               memcpy(rk_nfc_buf_to_oob_ecc_ptr(chip, i),
+                      rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
+                      ecc->bytes);
+
+               /* Copy data from the NFC buffer. */
+               if (buf)
+                       memcpy(rk_nfc_buf_to_data_ptr(chip, buf, i),
+                              rk_nfc_data_ptr(chip, i),
+                              ecc->size);
+       }
+
+       return 0;
+}
+
+static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, int oob_on,
+                                 int page)
+{
+       struct mtd_info *mtd = nand_to_mtd(chip);
+       struct rk_nfc *nfc = nand_get_controller_data(chip);
+       struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
+       struct nand_ecc_ctrl *ecc = &chip->ecc;
+       int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
+                       NFC_MIN_OOB_PER_STEP;
+       int pages_per_blk = mtd->erasesize / mtd->writesize;
+       dma_addr_t dma_data, dma_oob;
+       int ret = 0, i, cnt, boot_rom_mode = 0;
+       int max_bitflips = 0, bch_st, ecc_fail = 0;
+       u8 *oob;
+       u32 tmp;
+
+       nand_read_page_op(chip, page, 0, NULL, 0);
+
+       dma_data = dma_map_single(nfc->dev, nfc->page_buf,
+                                 mtd->writesize,
+                                 DMA_FROM_DEVICE);
+       dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
+                                ecc->steps * oob_step,
+                                DMA_FROM_DEVICE);
+
+       /*
+        * The first blocks (4, 8 or 16 depending on the device)
+        * are used by the boot ROM.
+        * Configure the ECC algorithm supported by the boot ROM.
+        */
+       if ((page < (pages_per_blk * rknand->boot_blks)) &&
+           (chip->options & NAND_IS_BOOT_MEDIUM)) {
+               boot_rom_mode = 1;
+               if (rknand->boot_ecc != ecc->strength)
+                       rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
+       }
+
+       reinit_completion(&nfc->done);
+       writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
+       rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data,
+                         dma_oob);
+       ret = wait_for_completion_timeout(&nfc->done,
+                                         msecs_to_jiffies(100));
+       if (!ret)
+               dev_warn(nfc->dev, "read: wait dma done timeout.\n");
+       /*
+        * Whether the DMA transfer is completed or not. The driver
+        * needs to check the NFC`s status register to see if the data
+        * transfer was completed.
+        */
+       ret = rk_nfc_wait_for_xfer_done(nfc);
+
+       dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
+                        DMA_FROM_DEVICE);
+       dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
+                        DMA_FROM_DEVICE);
+
+       if (ret) {
+               ret = -ETIMEDOUT;
+               dev_err(nfc->dev, "read: wait transfer done timeout.\n");
+               goto timeout_err;
+       }
+
+       for (i = 1; i < ecc->steps; i++) {
+               oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
+               if (nfc->cfg->type == NFC_V9)
+                       tmp = nfc->oob_buf[i];
+               else
+                       tmp = nfc->oob_buf[i * (oob_step / 4)];
+               *oob++ = (u8)tmp;
+               *oob++ = (u8)(tmp >> 8);
+               *oob++ = (u8)(tmp >> 16);
+               *oob++ = (u8)(tmp >> 24);
+       }
+
+       for (i = 0; i < (ecc->steps / 2); i++) {
+               bch_st = readl_relaxed(nfc->regs +
+                                      nfc->cfg->bch_st_off + i * 4);
+               if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) ||
+                   bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) {
+                       mtd->ecc_stats.failed++;
+                       ecc_fail = 1;
+               } else {
+                       cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0);
+                       mtd->ecc_stats.corrected += cnt;
+                       max_bitflips = max_t(u32, max_bitflips, cnt);
+
+                       cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1);
+                       mtd->ecc_stats.corrected += cnt;
+                       max_bitflips = max_t(u32, max_bitflips, cnt);
+               }
+       }
+
+       if (buf)
+               memcpy(buf, nfc->page_buf, mtd->writesize);
+
+timeout_err:
+       if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
+               rk_nfc_hw_ecc_setup(chip, ecc->strength);
+
+       if (ret)
+               return ret;
+
+       if (ecc_fail) {
+               dev_err(nfc->dev, "read page: %x ecc error!\n", page);
+               return 0;
+       }
+
+       return max_bitflips;
+}
+
+static int rk_nfc_read_oob(struct nand_chip *chip, int page)
+{
+       return rk_nfc_read_page_hwecc(chip, NULL, 1, page);
+}
+
+static inline void rk_nfc_hw_init(struct rk_nfc *nfc)
+{
+       /* Disable flash wp. */
+       writel(FMCTL_WP, nfc->regs + NFC_FMCTL);
+       /* Config default timing 40ns at 150 Mhz NFC clock. */
+       writel(0x1081, nfc->regs + NFC_FMWAIT);
+       nfc->cur_timing = 0x1081;
+       /* Disable randomizer and DMA. */
+       writel(0, nfc->regs + nfc->cfg->randmz_off);
+       writel(0, nfc->regs + nfc->cfg->dma_cfg_off);
+       writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off);
+}
+
+static irqreturn_t rk_nfc_irq(int irq, void *id)
+{
+       struct rk_nfc *nfc = id;
+       u32 sta, ien;
+
+       sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off);
+       ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off);
+
+       if (!(sta & ien))
+               return IRQ_NONE;
+
+       writel(sta, nfc->regs + nfc->cfg->int_clr_off);
+       writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off);
+
+       complete(&nfc->done);
+
+       return IRQ_HANDLED;
+}
+
+static int rk_nfc_enable_clks(struct device *dev, struct rk_nfc *nfc)
+{
+       int ret;
+
+       if (!IS_ERR(nfc->nfc_clk)) {
+               ret = clk_prepare_enable(nfc->nfc_clk);
+               if (ret) {
+                       dev_err(dev, "failed to enable NFC clk\n");
+                       return ret;
+               }
+       }
+
+       ret = clk_prepare_enable(nfc->ahb_clk);
+       if (ret) {
+               dev_err(dev, "failed to enable ahb clk\n");
+               if (!IS_ERR(nfc->nfc_clk))
+                       clk_disable_unprepare(nfc->nfc_clk);
+               return ret;
+       }
+
+       return 0;
+}
+
+static void rk_nfc_disable_clks(struct rk_nfc *nfc)
+{
+       if (!IS_ERR(nfc->nfc_clk))
+               clk_disable_unprepare(nfc->nfc_clk);
+       clk_disable_unprepare(nfc->ahb_clk);
+}
+
+static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
+                                struct mtd_oob_region *oob_region)
+{
+       struct nand_chip *chip = mtd_to_nand(mtd);
+       struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
+
+       if (section)
+               return -ERANGE;
+
+       /*
+        * The beginning of the OOB area stores the reserved data for the NFC,
+        * the size of the reserved data is NFC_SYS_DATA_SIZE bytes.
+        */
+       oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
+       oob_region->offset = NFC_SYS_DATA_SIZE + 2;
+
+       return 0;
+}
+
+static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
+                               struct mtd_oob_region *oob_region)
+{
+       struct nand_chip *chip = mtd_to_nand(mtd);
+       struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
+
+       if (section)
+               return -ERANGE;
+
+       oob_region->length = mtd->oobsize - rknand->metadata_size;
+       oob_region->offset = rknand->metadata_size;
+
+       return 0;
+}
+
+static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = {
+       .free = rk_nfc_ooblayout_free,
+       .ecc = rk_nfc_ooblayout_ecc,
+};
+
+static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
+{
+       struct nand_chip *chip = mtd_to_nand(mtd);
+       struct rk_nfc *nfc = nand_get_controller_data(chip);
+       struct nand_ecc_ctrl *ecc = &chip->ecc;
+       const u8 *strengths = nfc->cfg->ecc_strengths;
+       u8 max_strength, nfc_max_strength;
+       int i;
+
+       nfc_max_strength = nfc->cfg->ecc_strengths[0];
+       /* If optional dt settings not present. */
+       if (!ecc->size || !ecc->strength ||
+           ecc->strength > nfc_max_strength) {
+               chip->ecc.size = 1024;
+               ecc->steps = mtd->writesize / ecc->size;
+
+               /*
+                * HW ECC always requests the number of ECC bytes per 1024 byte
+                * blocks. The first 4 OOB bytes are reserved for sys data.
+                */
+               max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 /
+                                fls(8 * 1024);
+               if (max_strength > nfc_max_strength)
+                       max_strength = nfc_max_strength;
+
+               for (i = 0; i < 4; i++) {
+                       if (max_strength >= strengths[i])
+                               break;
+               }
+
+               if (i >= 4) {
+                       dev_err(nfc->dev, "unsupported ECC strength\n");
+                       return -EOPNOTSUPP;
+               }
+
+               ecc->strength = strengths[i];
+       }
+       ecc->steps = mtd->writesize / ecc->size;
+       ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * chip->ecc.size), 8);
+
+       return 0;
+}
+
+static int rk_nfc_attach_chip(struct nand_chip *chip)
+{
+       struct mtd_info *mtd = nand_to_mtd(chip);
+       struct device *dev = mtd->dev.parent;
+       struct rk_nfc *nfc = nand_get_controller_data(chip);
+       struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
+       struct nand_ecc_ctrl *ecc = &chip->ecc;
+       int new_page_len, new_oob_len;
+       void *buf;
+       int ret;
+
+       if (chip->options & NAND_BUSWIDTH_16) {
+               dev_err(dev, "16 bits bus width not supported");
+               return -EINVAL;
+       }
+
+       if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
+               return 0;
+
+       ret = rk_nfc_ecc_init(dev, mtd);
+       if (ret)
+               return ret;
+
+       rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps;
+
+       if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) {
+               dev_err(dev,
+                       "driver needs at least %d bytes of meta data\n",
+                       NFC_SYS_DATA_SIZE + 2);
+               return -EIO;
+       }
+
+       /* Check buffer first, avoid duplicate alloc buffer. */
+       new_page_len = mtd->writesize + mtd->oobsize;
+       if (nfc->page_buf && new_page_len > nfc->page_buf_size) {
+               buf = krealloc(nfc->page_buf, new_page_len,
+                              GFP_KERNEL | GFP_DMA);
+               if (!buf)
+                       return -ENOMEM;
+               nfc->page_buf = buf;
+               nfc->page_buf_size = new_page_len;
+       }
+
+       new_oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP;
+       if (nfc->oob_buf && new_oob_len > nfc->oob_buf_size) {
+               buf = krealloc(nfc->oob_buf, new_oob_len,
+                              GFP_KERNEL | GFP_DMA);
+               if (!buf) {
+                       kfree(nfc->page_buf);
+                       nfc->page_buf = NULL;
+                       return -ENOMEM;
+               }
+               nfc->oob_buf = buf;
+               nfc->oob_buf_size = new_oob_len;
+       }
+
+       if (!nfc->page_buf) {
+               nfc->page_buf = kzalloc(new_page_len, GFP_KERNEL | GFP_DMA);
+               if (!nfc->page_buf)
+                       return -ENOMEM;
+               nfc->page_buf_size = new_page_len;
+       }
+
+       if (!nfc->oob_buf) {
+               nfc->oob_buf = kzalloc(new_oob_len, GFP_KERNEL | GFP_DMA);
+               if (!nfc->oob_buf) {
+                       kfree(nfc->page_buf);
+                       nfc->page_buf = NULL;
+                       return -ENOMEM;
+               }
+               nfc->oob_buf_size = new_oob_len;
+       }
+
+       chip->ecc.write_page_raw = rk_nfc_write_page_raw;
+       chip->ecc.write_page = rk_nfc_write_page_hwecc;
+       chip->ecc.write_oob = rk_nfc_write_oob;
+
+       chip->ecc.read_page_raw = rk_nfc_read_page_raw;
+       chip->ecc.read_page = rk_nfc_read_page_hwecc;
+       chip->ecc.read_oob = rk_nfc_read_oob;
+
+       return 0;
+}
+
+static const struct nand_controller_ops rk_nfc_controller_ops = {
+       .attach_chip = rk_nfc_attach_chip,
+       .exec_op = rk_nfc_exec_op,
+       .setup_interface = rk_nfc_setup_interface,
+};
+
+static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc,
+                                struct device_node *np)
+{
+       struct rk_nfc_nand_chip *rknand;
+       struct nand_chip *chip;
+       struct mtd_info *mtd;
+       int nsels;
+       u32 tmp;
+       int ret;
+       int i;
+
+       if (!of_get_property(np, "reg", &nsels))
+               return -ENODEV;
+       nsels /= sizeof(u32);
+       if (!nsels || nsels > NFC_MAX_NSELS) {
+               dev_err(dev, "invalid reg property size %d\n", nsels);
+               return -EINVAL;
+       }
+
+       rknand = devm_kzalloc(dev, sizeof(*rknand) + nsels * sizeof(u8),
+                             GFP_KERNEL);
+       if (!rknand)
+               return -ENOMEM;
+
+       rknand->nsels = nsels;
+       for (i = 0; i < nsels; i++) {
+               ret = of_property_read_u32_index(np, "reg", i, &tmp);
+               if (ret) {
+                       dev_err(dev, "reg property failure : %d\n", ret);
+                       return ret;
+               }
+
+               if (tmp >= NFC_MAX_NSELS) {
+                       dev_err(dev, "invalid CS: %u\n", tmp);
+                       return -EINVAL;
+               }
+
+               if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
+                       dev_err(dev, "CS %u already assigned\n", tmp);
+                       return -EINVAL;
+               }
+
+               rknand->sels[i] = tmp;
+       }
+
+       chip = &rknand->chip;
+       chip->controller = &nfc->controller;
+
+       nand_set_flash_node(chip, np);
+
+       nand_set_controller_data(chip, nfc);
+
+       chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE;
+       chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
+
+       /* Set default mode in case dt entry is missing. */
+       chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
+
+       mtd = nand_to_mtd(chip);
+       mtd->owner = THIS_MODULE;
+       mtd->dev.parent = dev;
+
+       if (!mtd->name) {
+               dev_err(nfc->dev, "NAND label property is mandatory\n");
+               return -EINVAL;
+       }
+
+       mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops);
+       rk_nfc_hw_init(nfc);
+       ret = nand_scan(chip, nsels);
+       if (ret)
+               return ret;
+
+       if (chip->options & NAND_IS_BOOT_MEDIUM) {
+               ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp);
+               rknand->boot_blks = ret ? 0 : tmp;
+
+               ret = of_property_read_u32(np, "rockchip,boot-ecc-strength",
+                                          &tmp);
+               rknand->boot_ecc = ret ? chip->ecc.strength : tmp;
+       }
+
+       ret = mtd_device_register(mtd, NULL, 0);
+       if (ret) {
+               dev_err(dev, "MTD parse partition error\n");
+               nand_cleanup(chip);
+               return ret;
+       }
+
+       list_add_tail(&rknand->node, &nfc->chips);
+
+       return 0;
+}
+
+static void rk_nfc_chips_cleanup(struct rk_nfc *nfc)
+{
+       struct rk_nfc_nand_chip *rknand, *tmp;
+       struct nand_chip *chip;
+       int ret;
+
+       list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) {
+               chip = &rknand->chip;
+               ret = mtd_device_unregister(nand_to_mtd(chip));
+               WARN_ON(ret);
+               nand_cleanup(chip);
+               list_del(&rknand->node);
+       }
+}
+
+static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc)
+{
+       struct device_node *np = dev->of_node, *nand_np;
+       int nchips = of_get_child_count(np);
+       int ret;
+
+       if (!nchips || nchips > NFC_MAX_NSELS) {
+               dev_err(nfc->dev, "incorrect number of NAND chips (%d)\n",
+                       nchips);
+               return -EINVAL;
+       }
+
+       for_each_child_of_node(np, nand_np) {
+               ret = rk_nfc_nand_chip_init(dev, nfc, nand_np);
+               if (ret) {
+                       of_node_put(nand_np);
+                       rk_nfc_chips_cleanup(nfc);
+                       return ret;
+               }
+       }
+
+       return 0;
+}
+
+static struct nfc_cfg nfc_v6_cfg = {
+               .type                   = NFC_V6,
+               .ecc_strengths          = {60, 40, 24, 16},
+               .ecc_cfgs               = {
+                       0x00040011, 0x00040001, 0x00000011, 0x00000001,
+               },
+               .flctl_off              = 0x08,
+               .bchctl_off             = 0x0C,
+               .dma_cfg_off            = 0x10,
+               .dma_data_buf_off       = 0x14,
+               .dma_oob_buf_off        = 0x18,
+               .dma_st_off             = 0x1C,
+               .bch_st_off             = 0x20,
+               .randmz_off             = 0x150,
+               .int_en_off             = 0x16C,
+               .int_clr_off            = 0x170,
+               .int_st_off             = 0x174,
+               .oob0_off               = 0x200,
+               .oob1_off               = 0x230,
+               .ecc0                   = {
+                       .err_flag_bit   = 2,
+                       .low            = 3,
+                       .low_mask       = 0x1F,
+                       .low_bn         = 5,
+                       .high           = 27,
+                       .high_mask      = 0x1,
+               },
+               .ecc1                   = {
+                       .err_flag_bit   = 15,
+                       .low            = 16,
+                       .low_mask       = 0x1F,
+                       .low_bn         = 5,
+                       .high           = 29,
+                       .high_mask      = 0x1,
+               },
+};
+
+static struct nfc_cfg nfc_v8_cfg = {
+               .type                   = NFC_V8,
+               .ecc_strengths          = {16, 16, 16, 16},
+               .ecc_cfgs               = {
+                       0x00000001, 0x00000001, 0x00000001, 0x00000001,
+               },
+               .flctl_off              = 0x08,
+               .bchctl_off             = 0x0C,
+               .dma_cfg_off            = 0x10,
+               .dma_data_buf_off       = 0x14,
+               .dma_oob_buf_off        = 0x18,
+               .dma_st_off             = 0x1C,
+               .bch_st_off             = 0x20,
+               .randmz_off             = 0x150,
+               .int_en_off             = 0x16C,
+               .int_clr_off            = 0x170,
+               .int_st_off             = 0x174,
+               .oob0_off               = 0x200,
+               .oob1_off               = 0x230,
+               .ecc0                   = {
+                       .err_flag_bit   = 2,
+                       .low            = 3,
+                       .low_mask       = 0x1F,
+                       .low_bn         = 5,
+                       .high           = 27,
+                       .high_mask      = 0x1,
+               },
+               .ecc1                   = {
+                       .err_flag_bit   = 15,
+                       .low            = 16,
+                       .low_mask       = 0x1F,
+                       .low_bn         = 5,
+                       .high           = 29,
+                       .high_mask      = 0x1,
+               },
+};
+
+static struct nfc_cfg nfc_v9_cfg = {
+               .type                   = NFC_V9,
+               .ecc_strengths          = {70, 60, 40, 16},
+               .ecc_cfgs               = {
+                       0x00000001, 0x06000001, 0x04000001, 0x02000001,
+               },
+               .flctl_off              = 0x10,
+               .bchctl_off             = 0x20,
+               .dma_cfg_off            = 0x30,
+               .dma_data_buf_off       = 0x34,
+               .dma_oob_buf_off        = 0x38,
+               .dma_st_off             = 0x3C,
+               .bch_st_off             = 0x150,
+               .randmz_off             = 0x208,
+               .int_en_off             = 0x120,
+               .int_clr_off            = 0x124,
+               .int_st_off             = 0x128,
+               .oob0_off               = 0x200,
+               .oob1_off               = 0x204,
+               .ecc0                   = {
+                       .err_flag_bit   = 2,
+                       .low            = 3,
+                       .low_mask       = 0x7F,
+                       .low_bn         = 7,
+                       .high           = 0,
+                       .high_mask      = 0x0,
+               },
+               .ecc1                   = {
+                       .err_flag_bit   = 18,
+                       .low            = 19,
+                       .low_mask       = 0x7F,
+                       .low_bn         = 7,
+                       .high           = 0,
+                       .high_mask      = 0x0,
+               },
+};
+
+static const struct of_device_id rk_nfc_id_table[] = {
+       {
+               .compatible = "rockchip,px30-nfc",
+               .data = &nfc_v9_cfg
+       },
+       {
+               .compatible = "rockchip,rk2928-nfc",
+               .data = &nfc_v6_cfg
+       },
+       {
+               .compatible = "rockchip,rv1108-nfc",
+               .data = &nfc_v8_cfg
+       },
+       { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, rk_nfc_id_table);
+
+static int rk_nfc_probe(struct platform_device *pdev)
+{
+       struct device *dev = &pdev->dev;
+       struct rk_nfc *nfc;
+       int ret, irq;
+
+       nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
+       if (!nfc)
+               return -ENOMEM;
+
+       nand_controller_init(&nfc->controller);
+       INIT_LIST_HEAD(&nfc->chips);
+       nfc->controller.ops = &rk_nfc_controller_ops;
+
+       nfc->cfg = of_device_get_match_data(dev);
+       nfc->dev = dev;
+
+       init_completion(&nfc->done);
+
+       nfc->regs = devm_platform_ioremap_resource(pdev, 0);
+       if (IS_ERR(nfc->regs)) {
+               ret = PTR_ERR(nfc->regs);
+               goto release_nfc;
+       }
+
+       nfc->nfc_clk = devm_clk_get(dev, "nfc");
+       if (IS_ERR(nfc->nfc_clk)) {
+               dev_dbg(dev, "no NFC clk\n");
+               /* Some earlier models, such as rk3066, have no NFC clk. */
+       }
+
+       nfc->ahb_clk = devm_clk_get(dev, "ahb");
+       if (IS_ERR(nfc->ahb_clk)) {
+               dev_err(dev, "no ahb clk\n");
+               ret = PTR_ERR(nfc->ahb_clk);
+               goto release_nfc;
+       }
+
+       ret = rk_nfc_enable_clks(dev, nfc);
+       if (ret)
+               goto release_nfc;
+
+       irq = platform_get_irq(pdev, 0);
+       if (irq < 0) {
+               dev_err(dev, "no NFC irq resource\n");
+               ret = -EINVAL;
+               goto clk_disable;
+       }
+
+       writel(0, nfc->regs + nfc->cfg->int_en_off);
+       ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc);
+       if (ret) {
+               dev_err(dev, "failed to request NFC irq\n");
+               goto clk_disable;
+       }
+
+       platform_set_drvdata(pdev, nfc);
+
+       ret = rk_nfc_nand_chips_init(dev, nfc);
+       if (ret) {
+               dev_err(dev, "failed to init NAND chips\n");
+               goto clk_disable;
+       }
+       return 0;
+
+clk_disable:
+       rk_nfc_disable_clks(nfc);
+release_nfc:
+       return ret;
+}
+
+static int rk_nfc_remove(struct platform_device *pdev)
+{
+       struct rk_nfc *nfc = platform_get_drvdata(pdev);
+
+       kfree(nfc->page_buf);
+       kfree(nfc->oob_buf);
+       rk_nfc_chips_cleanup(nfc);
+       rk_nfc_disable_clks(nfc);
+
+       return 0;
+}
+
+static int __maybe_unused rk_nfc_suspend(struct device *dev)
+{
+       struct rk_nfc *nfc = dev_get_drvdata(dev);
+
+       rk_nfc_disable_clks(nfc);
+
+       return 0;
+}
+
+static int __maybe_unused rk_nfc_resume(struct device *dev)
+{
+       struct rk_nfc *nfc = dev_get_drvdata(dev);
+       struct rk_nfc_nand_chip *rknand;
+       struct nand_chip *chip;
+       int ret;
+       u32 i;
+
+       ret = rk_nfc_enable_clks(dev, nfc);
+       if (ret)
+               return ret;
+
+       /* Reset NAND chip if VCC was powered off. */
+       list_for_each_entry(rknand, &nfc->chips, node) {
+               chip = &rknand->chip;
+               for (i = 0; i < rknand->nsels; i++)
+                       nand_reset(chip, i);
+       }
+
+       return 0;
+}
+
+static const struct dev_pm_ops rk_nfc_pm_ops = {
+       SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume)
+};
+
+static struct platform_driver rk_nfc_driver = {
+       .probe = rk_nfc_probe,
+       .remove = rk_nfc_remove,
+       .driver = {
+               .name = "rockchip-nfc",
+               .of_match_table = rk_nfc_id_table,
+               .pm = &rk_nfc_pm_ops,
+       },
+};
+
+module_platform_driver(rk_nfc_driver);
+
+MODULE_LICENSE("Dual MIT/GPL");
+MODULE_AUTHOR("Yifeng Zhao <yifeng.zhao@rock-chips.com>");
+MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver");
+MODULE_ALIAS("platform:rockchip-nand-controller");