When starting a reflink operation we have these calls to inode_dio_wait()
which used to be needed because direct IO writes that don't cross the
i_size boundary did not take the inode's VFS lock, so we could race with
them and end up with ordered extents in target range after calling
btrfs_wait_ordered_range().
However that is not the case anymore, because the inode's VFS lock was
changed from a mutex to a rw semaphore, by commit
9902af79c01a8e
("parallel lookups: actual switch to rwsem"), and several years later we
started to lock the inode's VFS lock in shared mode for direct IO writes
that don't cross the i_size boundary (commit
e9adabb9712ef9 ("btrfs: use
shared lock for direct writes within EOF")).
So remove those inode_dio_wait() calls.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
struct inode *inode_in = file_inode(file_in);
struct inode *inode_out = file_inode(file_out);
u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize;
- bool same_inode = inode_out == inode_in;
u64 wb_len;
int ret;
else
wb_len = ALIGN(*len, bs);
- /*
- * Since we don't lock ranges, wait for ongoing lockless dio writes (as
- * any in progress could create its ordered extents after we wait for
- * existing ordered extents below).
- */
- inode_dio_wait(inode_in);
- if (!same_inode)
- inode_dio_wait(inode_out);
-
/*
* Workaround to make sure NOCOW buffered write reach disk as NOCOW.
*