Merge tag 'kvmarm-5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm...
authorPaolo Bonzini <pbonzini@redhat.com>
Mon, 1 Jun 2020 08:26:27 +0000 (04:26 -0400)
committerPaolo Bonzini <pbonzini@redhat.com>
Mon, 1 Jun 2020 08:26:27 +0000 (04:26 -0400)
KVM/arm64 updates for Linux 5.8:

- Move the arch-specific code into arch/arm64/kvm
- Start the post-32bit cleanup
- Cherry-pick a few non-invasive pre-NV patches

1  2 
Documentation/virt/kvm/api.rst
arch/arm64/include/asm/kvm_host.h
arch/arm64/kvm/arch_timer.c
arch/arm64/kvm/arm.c
arch/arm64/kvm/guest.c
virt/kvm/eventfd.c
virt/kvm/kvm_main.c

Simple merge
Simple merge
index 0000000000000000000000000000000000000000,487eba9f87cd3a58a99d5d1934cb4e9721d62798..a1fe0ea3254e633ef7786776974bd1973e46c0cc
mode 000000,100644..100644
--- /dev/null
@@@ -1,0 -1,1170 +1,1171 @@@
 -      if (swait_active(kvm_arch_vcpu_wq(vcpu)))
+ // SPDX-License-Identifier: GPL-2.0-only
+ /*
+  * Copyright (C) 2012 ARM Ltd.
+  * Author: Marc Zyngier <marc.zyngier@arm.com>
+  */
+ #include <linux/cpu.h>
+ #include <linux/kvm.h>
+ #include <linux/kvm_host.h>
+ #include <linux/interrupt.h>
+ #include <linux/irq.h>
+ #include <linux/uaccess.h>
+ #include <clocksource/arm_arch_timer.h>
+ #include <asm/arch_timer.h>
+ #include <asm/kvm_emulate.h>
+ #include <asm/kvm_hyp.h>
+ #include <kvm/arm_vgic.h>
+ #include <kvm/arm_arch_timer.h>
+ #include "trace.h"
+ static struct timecounter *timecounter;
+ static unsigned int host_vtimer_irq;
+ static unsigned int host_ptimer_irq;
+ static u32 host_vtimer_irq_flags;
+ static u32 host_ptimer_irq_flags;
+ static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);
+ static const struct kvm_irq_level default_ptimer_irq = {
+       .irq    = 30,
+       .level  = 1,
+ };
+ static const struct kvm_irq_level default_vtimer_irq = {
+       .irq    = 27,
+       .level  = 1,
+ };
+ static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
+ static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
+                                struct arch_timer_context *timer_ctx);
+ static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
+ static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
+                               struct arch_timer_context *timer,
+                               enum kvm_arch_timer_regs treg,
+                               u64 val);
+ static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
+                             struct arch_timer_context *timer,
+                             enum kvm_arch_timer_regs treg);
+ u64 kvm_phys_timer_read(void)
+ {
+       return timecounter->cc->read(timecounter->cc);
+ }
+ static void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map)
+ {
+       if (has_vhe()) {
+               map->direct_vtimer = vcpu_vtimer(vcpu);
+               map->direct_ptimer = vcpu_ptimer(vcpu);
+               map->emul_ptimer = NULL;
+       } else {
+               map->direct_vtimer = vcpu_vtimer(vcpu);
+               map->direct_ptimer = NULL;
+               map->emul_ptimer = vcpu_ptimer(vcpu);
+       }
+       trace_kvm_get_timer_map(vcpu->vcpu_id, map);
+ }
+ static inline bool userspace_irqchip(struct kvm *kvm)
+ {
+       return static_branch_unlikely(&userspace_irqchip_in_use) &&
+               unlikely(!irqchip_in_kernel(kvm));
+ }
+ static void soft_timer_start(struct hrtimer *hrt, u64 ns)
+ {
+       hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
+                     HRTIMER_MODE_ABS_HARD);
+ }
+ static void soft_timer_cancel(struct hrtimer *hrt)
+ {
+       hrtimer_cancel(hrt);
+ }
+ static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
+ {
+       struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
+       struct arch_timer_context *ctx;
+       struct timer_map map;
+       /*
+        * We may see a timer interrupt after vcpu_put() has been called which
+        * sets the CPU's vcpu pointer to NULL, because even though the timer
+        * has been disabled in timer_save_state(), the hardware interrupt
+        * signal may not have been retired from the interrupt controller yet.
+        */
+       if (!vcpu)
+               return IRQ_HANDLED;
+       get_timer_map(vcpu, &map);
+       if (irq == host_vtimer_irq)
+               ctx = map.direct_vtimer;
+       else
+               ctx = map.direct_ptimer;
+       if (kvm_timer_should_fire(ctx))
+               kvm_timer_update_irq(vcpu, true, ctx);
+       if (userspace_irqchip(vcpu->kvm) &&
+           !static_branch_unlikely(&has_gic_active_state))
+               disable_percpu_irq(host_vtimer_irq);
+       return IRQ_HANDLED;
+ }
+ static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
+ {
+       u64 cval, now;
+       cval = timer_ctx->cnt_cval;
+       now = kvm_phys_timer_read() - timer_ctx->cntvoff;
+       if (now < cval) {
+               u64 ns;
+               ns = cyclecounter_cyc2ns(timecounter->cc,
+                                        cval - now,
+                                        timecounter->mask,
+                                        &timecounter->frac);
+               return ns;
+       }
+       return 0;
+ }
+ static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
+ {
+       WARN_ON(timer_ctx && timer_ctx->loaded);
+       return timer_ctx &&
+              !(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_IT_MASK) &&
+               (timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_ENABLE);
+ }
+ /*
+  * Returns the earliest expiration time in ns among guest timers.
+  * Note that it will return 0 if none of timers can fire.
+  */
+ static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
+ {
+       u64 min_delta = ULLONG_MAX;
+       int i;
+       for (i = 0; i < NR_KVM_TIMERS; i++) {
+               struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i];
+               WARN(ctx->loaded, "timer %d loaded\n", i);
+               if (kvm_timer_irq_can_fire(ctx))
+                       min_delta = min(min_delta, kvm_timer_compute_delta(ctx));
+       }
+       /* If none of timers can fire, then return 0 */
+       if (min_delta == ULLONG_MAX)
+               return 0;
+       return min_delta;
+ }
+ static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
+ {
+       struct arch_timer_cpu *timer;
+       struct kvm_vcpu *vcpu;
+       u64 ns;
+       timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
+       vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
+       /*
+        * Check that the timer has really expired from the guest's
+        * PoV (NTP on the host may have forced it to expire
+        * early). If we should have slept longer, restart it.
+        */
+       ns = kvm_timer_earliest_exp(vcpu);
+       if (unlikely(ns)) {
+               hrtimer_forward_now(hrt, ns_to_ktime(ns));
+               return HRTIMER_RESTART;
+       }
+       kvm_vcpu_wake_up(vcpu);
+       return HRTIMER_NORESTART;
+ }
+ static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt)
+ {
+       struct arch_timer_context *ctx;
+       struct kvm_vcpu *vcpu;
+       u64 ns;
+       ctx = container_of(hrt, struct arch_timer_context, hrtimer);
+       vcpu = ctx->vcpu;
+       trace_kvm_timer_hrtimer_expire(ctx);
+       /*
+        * Check that the timer has really expired from the guest's
+        * PoV (NTP on the host may have forced it to expire
+        * early). If not ready, schedule for a later time.
+        */
+       ns = kvm_timer_compute_delta(ctx);
+       if (unlikely(ns)) {
+               hrtimer_forward_now(hrt, ns_to_ktime(ns));
+               return HRTIMER_RESTART;
+       }
+       kvm_timer_update_irq(vcpu, true, ctx);
+       return HRTIMER_NORESTART;
+ }
+ static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
+ {
+       enum kvm_arch_timers index;
+       u64 cval, now;
+       if (!timer_ctx)
+               return false;
+       index = arch_timer_ctx_index(timer_ctx);
+       if (timer_ctx->loaded) {
+               u32 cnt_ctl = 0;
+               switch (index) {
+               case TIMER_VTIMER:
+                       cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
+                       break;
+               case TIMER_PTIMER:
+                       cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
+                       break;
+               case NR_KVM_TIMERS:
+                       /* GCC is braindead */
+                       cnt_ctl = 0;
+                       break;
+               }
+               return  (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
+                       (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
+                      !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
+       }
+       if (!kvm_timer_irq_can_fire(timer_ctx))
+               return false;
+       cval = timer_ctx->cnt_cval;
+       now = kvm_phys_timer_read() - timer_ctx->cntvoff;
+       return cval <= now;
+ }
+ bool kvm_timer_is_pending(struct kvm_vcpu *vcpu)
+ {
+       struct timer_map map;
+       get_timer_map(vcpu, &map);
+       return kvm_timer_should_fire(map.direct_vtimer) ||
+              kvm_timer_should_fire(map.direct_ptimer) ||
+              kvm_timer_should_fire(map.emul_ptimer);
+ }
+ /*
+  * Reflect the timer output level into the kvm_run structure
+  */
+ void kvm_timer_update_run(struct kvm_vcpu *vcpu)
+ {
+       struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
+       struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
+       struct kvm_sync_regs *regs = &vcpu->run->s.regs;
+       /* Populate the device bitmap with the timer states */
+       regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
+                                   KVM_ARM_DEV_EL1_PTIMER);
+       if (kvm_timer_should_fire(vtimer))
+               regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
+       if (kvm_timer_should_fire(ptimer))
+               regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
+ }
+ static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
+                                struct arch_timer_context *timer_ctx)
+ {
+       int ret;
+       timer_ctx->irq.level = new_level;
+       trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq,
+                                  timer_ctx->irq.level);
+       if (!userspace_irqchip(vcpu->kvm)) {
+               ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
+                                         timer_ctx->irq.irq,
+                                         timer_ctx->irq.level,
+                                         timer_ctx);
+               WARN_ON(ret);
+       }
+ }
+ /* Only called for a fully emulated timer */
+ static void timer_emulate(struct arch_timer_context *ctx)
+ {
+       bool should_fire = kvm_timer_should_fire(ctx);
+       trace_kvm_timer_emulate(ctx, should_fire);
+       if (should_fire != ctx->irq.level) {
+               kvm_timer_update_irq(ctx->vcpu, should_fire, ctx);
+               return;
+       }
+       /*
+        * If the timer can fire now, we don't need to have a soft timer
+        * scheduled for the future.  If the timer cannot fire at all,
+        * then we also don't need a soft timer.
+        */
+       if (!kvm_timer_irq_can_fire(ctx)) {
+               soft_timer_cancel(&ctx->hrtimer);
+               return;
+       }
+       soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx));
+ }
+ static void timer_save_state(struct arch_timer_context *ctx)
+ {
+       struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
+       enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
+       unsigned long flags;
+       if (!timer->enabled)
+               return;
+       local_irq_save(flags);
+       if (!ctx->loaded)
+               goto out;
+       switch (index) {
+       case TIMER_VTIMER:
+               ctx->cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
+               ctx->cnt_cval = read_sysreg_el0(SYS_CNTV_CVAL);
+               /* Disable the timer */
+               write_sysreg_el0(0, SYS_CNTV_CTL);
+               isb();
+               break;
+       case TIMER_PTIMER:
+               ctx->cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
+               ctx->cnt_cval = read_sysreg_el0(SYS_CNTP_CVAL);
+               /* Disable the timer */
+               write_sysreg_el0(0, SYS_CNTP_CTL);
+               isb();
+               break;
+       case NR_KVM_TIMERS:
+               BUG();
+       }
+       trace_kvm_timer_save_state(ctx);
+       ctx->loaded = false;
+ out:
+       local_irq_restore(flags);
+ }
+ /*
+  * Schedule the background timer before calling kvm_vcpu_block, so that this
+  * thread is removed from its waitqueue and made runnable when there's a timer
+  * interrupt to handle.
+  */
+ static void kvm_timer_blocking(struct kvm_vcpu *vcpu)
+ {
+       struct arch_timer_cpu *timer = vcpu_timer(vcpu);
+       struct timer_map map;
+       get_timer_map(vcpu, &map);
+       /*
+        * If no timers are capable of raising interrupts (disabled or
+        * masked), then there's no more work for us to do.
+        */
+       if (!kvm_timer_irq_can_fire(map.direct_vtimer) &&
+           !kvm_timer_irq_can_fire(map.direct_ptimer) &&
+           !kvm_timer_irq_can_fire(map.emul_ptimer))
+               return;
+       /*
+        * At least one guest time will expire. Schedule a background timer.
+        * Set the earliest expiration time among the guest timers.
+        */
+       soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
+ }
+ static void kvm_timer_unblocking(struct kvm_vcpu *vcpu)
+ {
+       struct arch_timer_cpu *timer = vcpu_timer(vcpu);
+       soft_timer_cancel(&timer->bg_timer);
+ }
+ static void timer_restore_state(struct arch_timer_context *ctx)
+ {
+       struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
+       enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
+       unsigned long flags;
+       if (!timer->enabled)
+               return;
+       local_irq_save(flags);
+       if (ctx->loaded)
+               goto out;
+       switch (index) {
+       case TIMER_VTIMER:
+               write_sysreg_el0(ctx->cnt_cval, SYS_CNTV_CVAL);
+               isb();
+               write_sysreg_el0(ctx->cnt_ctl, SYS_CNTV_CTL);
+               break;
+       case TIMER_PTIMER:
+               write_sysreg_el0(ctx->cnt_cval, SYS_CNTP_CVAL);
+               isb();
+               write_sysreg_el0(ctx->cnt_ctl, SYS_CNTP_CTL);
+               break;
+       case NR_KVM_TIMERS:
+               BUG();
+       }
+       trace_kvm_timer_restore_state(ctx);
+       ctx->loaded = true;
+ out:
+       local_irq_restore(flags);
+ }
+ static void set_cntvoff(u64 cntvoff)
+ {
+       kvm_call_hyp(__kvm_timer_set_cntvoff, cntvoff);
+ }
+ static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active)
+ {
+       int r;
+       r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active);
+       WARN_ON(r);
+ }
+ static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx)
+ {
+       struct kvm_vcpu *vcpu = ctx->vcpu;
+       bool phys_active = false;
+       /*
+        * Update the timer output so that it is likely to match the
+        * state we're about to restore. If the timer expires between
+        * this point and the register restoration, we'll take the
+        * interrupt anyway.
+        */
+       kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx);
+       if (irqchip_in_kernel(vcpu->kvm))
+               phys_active = kvm_vgic_map_is_active(vcpu, ctx->irq.irq);
+       phys_active |= ctx->irq.level;
+       set_timer_irq_phys_active(ctx, phys_active);
+ }
+ static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
+ {
+       struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
+       /*
+        * Update the timer output so that it is likely to match the
+        * state we're about to restore. If the timer expires between
+        * this point and the register restoration, we'll take the
+        * interrupt anyway.
+        */
+       kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer);
+       /*
+        * When using a userspace irqchip with the architected timers and a
+        * host interrupt controller that doesn't support an active state, we
+        * must still prevent continuously exiting from the guest, and
+        * therefore mask the physical interrupt by disabling it on the host
+        * interrupt controller when the virtual level is high, such that the
+        * guest can make forward progress.  Once we detect the output level
+        * being de-asserted, we unmask the interrupt again so that we exit
+        * from the guest when the timer fires.
+        */
+       if (vtimer->irq.level)
+               disable_percpu_irq(host_vtimer_irq);
+       else
+               enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
+ }
+ void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
+ {
+       struct arch_timer_cpu *timer = vcpu_timer(vcpu);
+       struct timer_map map;
+       if (unlikely(!timer->enabled))
+               return;
+       get_timer_map(vcpu, &map);
+       if (static_branch_likely(&has_gic_active_state)) {
+               kvm_timer_vcpu_load_gic(map.direct_vtimer);
+               if (map.direct_ptimer)
+                       kvm_timer_vcpu_load_gic(map.direct_ptimer);
+       } else {
+               kvm_timer_vcpu_load_nogic(vcpu);
+       }
+       set_cntvoff(map.direct_vtimer->cntvoff);
+       kvm_timer_unblocking(vcpu);
+       timer_restore_state(map.direct_vtimer);
+       if (map.direct_ptimer)
+               timer_restore_state(map.direct_ptimer);
+       if (map.emul_ptimer)
+               timer_emulate(map.emul_ptimer);
+ }
+ bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
+ {
+       struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
+       struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
+       struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
+       bool vlevel, plevel;
+       if (likely(irqchip_in_kernel(vcpu->kvm)))
+               return false;
+       vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
+       plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
+       return kvm_timer_should_fire(vtimer) != vlevel ||
+              kvm_timer_should_fire(ptimer) != plevel;
+ }
+ void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
+ {
+       struct arch_timer_cpu *timer = vcpu_timer(vcpu);
+       struct timer_map map;
++      struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
+       if (unlikely(!timer->enabled))
+               return;
+       get_timer_map(vcpu, &map);
+       timer_save_state(map.direct_vtimer);
+       if (map.direct_ptimer)
+               timer_save_state(map.direct_ptimer);
+       /*
+        * Cancel soft timer emulation, because the only case where we
+        * need it after a vcpu_put is in the context of a sleeping VCPU, and
+        * in that case we already factor in the deadline for the physical
+        * timer when scheduling the bg_timer.
+        *
+        * In any case, we re-schedule the hrtimer for the physical timer when
+        * coming back to the VCPU thread in kvm_timer_vcpu_load().
+        */
+       if (map.emul_ptimer)
+               soft_timer_cancel(&map.emul_ptimer->hrtimer);
++      if (rcuwait_active(wait))
+               kvm_timer_blocking(vcpu);
+       /*
+        * The kernel may decide to run userspace after calling vcpu_put, so
+        * we reset cntvoff to 0 to ensure a consistent read between user
+        * accesses to the virtual counter and kernel access to the physical
+        * counter of non-VHE case. For VHE, the virtual counter uses a fixed
+        * virtual offset of zero, so no need to zero CNTVOFF_EL2 register.
+        */
+       set_cntvoff(0);
+ }
+ /*
+  * With a userspace irqchip we have to check if the guest de-asserted the
+  * timer and if so, unmask the timer irq signal on the host interrupt
+  * controller to ensure that we see future timer signals.
+  */
+ static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
+ {
+       struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
+       if (!kvm_timer_should_fire(vtimer)) {
+               kvm_timer_update_irq(vcpu, false, vtimer);
+               if (static_branch_likely(&has_gic_active_state))
+                       set_timer_irq_phys_active(vtimer, false);
+               else
+                       enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
+       }
+ }
+ void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
+ {
+       struct arch_timer_cpu *timer = vcpu_timer(vcpu);
+       if (unlikely(!timer->enabled))
+               return;
+       if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
+               unmask_vtimer_irq_user(vcpu);
+ }
+ int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
+ {
+       struct arch_timer_cpu *timer = vcpu_timer(vcpu);
+       struct timer_map map;
+       get_timer_map(vcpu, &map);
+       /*
+        * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
+        * and to 0 for ARMv7.  We provide an implementation that always
+        * resets the timer to be disabled and unmasked and is compliant with
+        * the ARMv7 architecture.
+        */
+       vcpu_vtimer(vcpu)->cnt_ctl = 0;
+       vcpu_ptimer(vcpu)->cnt_ctl = 0;
+       if (timer->enabled) {
+               kvm_timer_update_irq(vcpu, false, vcpu_vtimer(vcpu));
+               kvm_timer_update_irq(vcpu, false, vcpu_ptimer(vcpu));
+               if (irqchip_in_kernel(vcpu->kvm)) {
+                       kvm_vgic_reset_mapped_irq(vcpu, map.direct_vtimer->irq.irq);
+                       if (map.direct_ptimer)
+                               kvm_vgic_reset_mapped_irq(vcpu, map.direct_ptimer->irq.irq);
+               }
+       }
+       if (map.emul_ptimer)
+               soft_timer_cancel(&map.emul_ptimer->hrtimer);
+       return 0;
+ }
+ /* Make the updates of cntvoff for all vtimer contexts atomic */
+ static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff)
+ {
+       int i;
+       struct kvm *kvm = vcpu->kvm;
+       struct kvm_vcpu *tmp;
+       mutex_lock(&kvm->lock);
+       kvm_for_each_vcpu(i, tmp, kvm)
+               vcpu_vtimer(tmp)->cntvoff = cntvoff;
+       /*
+        * When called from the vcpu create path, the CPU being created is not
+        * included in the loop above, so we just set it here as well.
+        */
+       vcpu_vtimer(vcpu)->cntvoff = cntvoff;
+       mutex_unlock(&kvm->lock);
+ }
+ void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
+ {
+       struct arch_timer_cpu *timer = vcpu_timer(vcpu);
+       struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
+       struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
+       /* Synchronize cntvoff across all vtimers of a VM. */
+       update_vtimer_cntvoff(vcpu, kvm_phys_timer_read());
+       ptimer->cntvoff = 0;
+       hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
+       timer->bg_timer.function = kvm_bg_timer_expire;
+       hrtimer_init(&vtimer->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
+       hrtimer_init(&ptimer->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
+       vtimer->hrtimer.function = kvm_hrtimer_expire;
+       ptimer->hrtimer.function = kvm_hrtimer_expire;
+       vtimer->irq.irq = default_vtimer_irq.irq;
+       ptimer->irq.irq = default_ptimer_irq.irq;
+       vtimer->host_timer_irq = host_vtimer_irq;
+       ptimer->host_timer_irq = host_ptimer_irq;
+       vtimer->host_timer_irq_flags = host_vtimer_irq_flags;
+       ptimer->host_timer_irq_flags = host_ptimer_irq_flags;
+       vtimer->vcpu = vcpu;
+       ptimer->vcpu = vcpu;
+ }
+ static void kvm_timer_init_interrupt(void *info)
+ {
+       enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
+       enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags);
+ }
+ int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
+ {
+       struct arch_timer_context *timer;
+       switch (regid) {
+       case KVM_REG_ARM_TIMER_CTL:
+               timer = vcpu_vtimer(vcpu);
+               kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
+               break;
+       case KVM_REG_ARM_TIMER_CNT:
+               timer = vcpu_vtimer(vcpu);
+               update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value);
+               break;
+       case KVM_REG_ARM_TIMER_CVAL:
+               timer = vcpu_vtimer(vcpu);
+               kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
+               break;
+       case KVM_REG_ARM_PTIMER_CTL:
+               timer = vcpu_ptimer(vcpu);
+               kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
+               break;
+       case KVM_REG_ARM_PTIMER_CVAL:
+               timer = vcpu_ptimer(vcpu);
+               kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
+               break;
+       default:
+               return -1;
+       }
+       return 0;
+ }
+ static u64 read_timer_ctl(struct arch_timer_context *timer)
+ {
+       /*
+        * Set ISTATUS bit if it's expired.
+        * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
+        * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
+        * regardless of ENABLE bit for our implementation convenience.
+        */
+       if (!kvm_timer_compute_delta(timer))
+               return timer->cnt_ctl | ARCH_TIMER_CTRL_IT_STAT;
+       else
+               return timer->cnt_ctl;
+ }
+ u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
+ {
+       switch (regid) {
+       case KVM_REG_ARM_TIMER_CTL:
+               return kvm_arm_timer_read(vcpu,
+                                         vcpu_vtimer(vcpu), TIMER_REG_CTL);
+       case KVM_REG_ARM_TIMER_CNT:
+               return kvm_arm_timer_read(vcpu,
+                                         vcpu_vtimer(vcpu), TIMER_REG_CNT);
+       case KVM_REG_ARM_TIMER_CVAL:
+               return kvm_arm_timer_read(vcpu,
+                                         vcpu_vtimer(vcpu), TIMER_REG_CVAL);
+       case KVM_REG_ARM_PTIMER_CTL:
+               return kvm_arm_timer_read(vcpu,
+                                         vcpu_ptimer(vcpu), TIMER_REG_CTL);
+       case KVM_REG_ARM_PTIMER_CNT:
+               return kvm_arm_timer_read(vcpu,
+                                         vcpu_ptimer(vcpu), TIMER_REG_CNT);
+       case KVM_REG_ARM_PTIMER_CVAL:
+               return kvm_arm_timer_read(vcpu,
+                                         vcpu_ptimer(vcpu), TIMER_REG_CVAL);
+       }
+       return (u64)-1;
+ }
+ static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
+                             struct arch_timer_context *timer,
+                             enum kvm_arch_timer_regs treg)
+ {
+       u64 val;
+       switch (treg) {
+       case TIMER_REG_TVAL:
+               val = timer->cnt_cval - kvm_phys_timer_read() + timer->cntvoff;
+               val &= lower_32_bits(val);
+               break;
+       case TIMER_REG_CTL:
+               val = read_timer_ctl(timer);
+               break;
+       case TIMER_REG_CVAL:
+               val = timer->cnt_cval;
+               break;
+       case TIMER_REG_CNT:
+               val = kvm_phys_timer_read() - timer->cntvoff;
+               break;
+       default:
+               BUG();
+       }
+       return val;
+ }
+ u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu,
+                             enum kvm_arch_timers tmr,
+                             enum kvm_arch_timer_regs treg)
+ {
+       u64 val;
+       preempt_disable();
+       kvm_timer_vcpu_put(vcpu);
+       val = kvm_arm_timer_read(vcpu, vcpu_get_timer(vcpu, tmr), treg);
+       kvm_timer_vcpu_load(vcpu);
+       preempt_enable();
+       return val;
+ }
+ static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
+                               struct arch_timer_context *timer,
+                               enum kvm_arch_timer_regs treg,
+                               u64 val)
+ {
+       switch (treg) {
+       case TIMER_REG_TVAL:
+               timer->cnt_cval = kvm_phys_timer_read() - timer->cntvoff + (s32)val;
+               break;
+       case TIMER_REG_CTL:
+               timer->cnt_ctl = val & ~ARCH_TIMER_CTRL_IT_STAT;
+               break;
+       case TIMER_REG_CVAL:
+               timer->cnt_cval = val;
+               break;
+       default:
+               BUG();
+       }
+ }
+ void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu,
+                               enum kvm_arch_timers tmr,
+                               enum kvm_arch_timer_regs treg,
+                               u64 val)
+ {
+       preempt_disable();
+       kvm_timer_vcpu_put(vcpu);
+       kvm_arm_timer_write(vcpu, vcpu_get_timer(vcpu, tmr), treg, val);
+       kvm_timer_vcpu_load(vcpu);
+       preempt_enable();
+ }
+ static int kvm_timer_starting_cpu(unsigned int cpu)
+ {
+       kvm_timer_init_interrupt(NULL);
+       return 0;
+ }
+ static int kvm_timer_dying_cpu(unsigned int cpu)
+ {
+       disable_percpu_irq(host_vtimer_irq);
+       return 0;
+ }
+ int kvm_timer_hyp_init(bool has_gic)
+ {
+       struct arch_timer_kvm_info *info;
+       int err;
+       info = arch_timer_get_kvm_info();
+       timecounter = &info->timecounter;
+       if (!timecounter->cc) {
+               kvm_err("kvm_arch_timer: uninitialized timecounter\n");
+               return -ENODEV;
+       }
+       /* First, do the virtual EL1 timer irq */
+       if (info->virtual_irq <= 0) {
+               kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
+                       info->virtual_irq);
+               return -ENODEV;
+       }
+       host_vtimer_irq = info->virtual_irq;
+       host_vtimer_irq_flags = irq_get_trigger_type(host_vtimer_irq);
+       if (host_vtimer_irq_flags != IRQF_TRIGGER_HIGH &&
+           host_vtimer_irq_flags != IRQF_TRIGGER_LOW) {
+               kvm_err("Invalid trigger for vtimer IRQ%d, assuming level low\n",
+                       host_vtimer_irq);
+               host_vtimer_irq_flags = IRQF_TRIGGER_LOW;
+       }
+       err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
+                                "kvm guest vtimer", kvm_get_running_vcpus());
+       if (err) {
+               kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n",
+                       host_vtimer_irq, err);
+               return err;
+       }
+       if (has_gic) {
+               err = irq_set_vcpu_affinity(host_vtimer_irq,
+                                           kvm_get_running_vcpus());
+               if (err) {
+                       kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
+                       goto out_free_irq;
+               }
+               static_branch_enable(&has_gic_active_state);
+       }
+       kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
+       /* Now let's do the physical EL1 timer irq */
+       if (info->physical_irq > 0) {
+               host_ptimer_irq = info->physical_irq;
+               host_ptimer_irq_flags = irq_get_trigger_type(host_ptimer_irq);
+               if (host_ptimer_irq_flags != IRQF_TRIGGER_HIGH &&
+                   host_ptimer_irq_flags != IRQF_TRIGGER_LOW) {
+                       kvm_err("Invalid trigger for ptimer IRQ%d, assuming level low\n",
+                               host_ptimer_irq);
+                       host_ptimer_irq_flags = IRQF_TRIGGER_LOW;
+               }
+               err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler,
+                                        "kvm guest ptimer", kvm_get_running_vcpus());
+               if (err) {
+                       kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n",
+                               host_ptimer_irq, err);
+                       return err;
+               }
+               if (has_gic) {
+                       err = irq_set_vcpu_affinity(host_ptimer_irq,
+                                                   kvm_get_running_vcpus());
+                       if (err) {
+                               kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
+                               goto out_free_irq;
+                       }
+               }
+               kvm_debug("physical timer IRQ%d\n", host_ptimer_irq);
+       } else if (has_vhe()) {
+               kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n",
+                       info->physical_irq);
+               err = -ENODEV;
+               goto out_free_irq;
+       }
+       cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
+                         "kvm/arm/timer:starting", kvm_timer_starting_cpu,
+                         kvm_timer_dying_cpu);
+       return 0;
+ out_free_irq:
+       free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
+       return err;
+ }
+ void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
+ {
+       struct arch_timer_cpu *timer = vcpu_timer(vcpu);
+       soft_timer_cancel(&timer->bg_timer);
+ }
+ static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
+ {
+       int vtimer_irq, ptimer_irq;
+       int i, ret;
+       vtimer_irq = vcpu_vtimer(vcpu)->irq.irq;
+       ret = kvm_vgic_set_owner(vcpu, vtimer_irq, vcpu_vtimer(vcpu));
+       if (ret)
+               return false;
+       ptimer_irq = vcpu_ptimer(vcpu)->irq.irq;
+       ret = kvm_vgic_set_owner(vcpu, ptimer_irq, vcpu_ptimer(vcpu));
+       if (ret)
+               return false;
+       kvm_for_each_vcpu(i, vcpu, vcpu->kvm) {
+               if (vcpu_vtimer(vcpu)->irq.irq != vtimer_irq ||
+                   vcpu_ptimer(vcpu)->irq.irq != ptimer_irq)
+                       return false;
+       }
+       return true;
+ }
+ bool kvm_arch_timer_get_input_level(int vintid)
+ {
+       struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
+       struct arch_timer_context *timer;
+       if (vintid == vcpu_vtimer(vcpu)->irq.irq)
+               timer = vcpu_vtimer(vcpu);
+       else if (vintid == vcpu_ptimer(vcpu)->irq.irq)
+               timer = vcpu_ptimer(vcpu);
+       else
+               BUG();
+       return kvm_timer_should_fire(timer);
+ }
+ int kvm_timer_enable(struct kvm_vcpu *vcpu)
+ {
+       struct arch_timer_cpu *timer = vcpu_timer(vcpu);
+       struct timer_map map;
+       int ret;
+       if (timer->enabled)
+               return 0;
+       /* Without a VGIC we do not map virtual IRQs to physical IRQs */
+       if (!irqchip_in_kernel(vcpu->kvm))
+               goto no_vgic;
+       if (!vgic_initialized(vcpu->kvm))
+               return -ENODEV;
+       if (!timer_irqs_are_valid(vcpu)) {
+               kvm_debug("incorrectly configured timer irqs\n");
+               return -EINVAL;
+       }
+       get_timer_map(vcpu, &map);
+       ret = kvm_vgic_map_phys_irq(vcpu,
+                                   map.direct_vtimer->host_timer_irq,
+                                   map.direct_vtimer->irq.irq,
+                                   kvm_arch_timer_get_input_level);
+       if (ret)
+               return ret;
+       if (map.direct_ptimer) {
+               ret = kvm_vgic_map_phys_irq(vcpu,
+                                           map.direct_ptimer->host_timer_irq,
+                                           map.direct_ptimer->irq.irq,
+                                           kvm_arch_timer_get_input_level);
+       }
+       if (ret)
+               return ret;
+ no_vgic:
+       timer->enabled = 1;
+       return 0;
+ }
+ /*
+  * On VHE system, we only need to configure the EL2 timer trap register once,
+  * not for every world switch.
+  * The host kernel runs at EL2 with HCR_EL2.TGE == 1,
+  * and this makes those bits have no effect for the host kernel execution.
+  */
+ void kvm_timer_init_vhe(void)
+ {
+       /* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */
+       u32 cnthctl_shift = 10;
+       u64 val;
+       /*
+        * VHE systems allow the guest direct access to the EL1 physical
+        * timer/counter.
+        */
+       val = read_sysreg(cnthctl_el2);
+       val |= (CNTHCTL_EL1PCEN << cnthctl_shift);
+       val |= (CNTHCTL_EL1PCTEN << cnthctl_shift);
+       write_sysreg(val, cnthctl_el2);
+ }
+ static void set_timer_irqs(struct kvm *kvm, int vtimer_irq, int ptimer_irq)
+ {
+       struct kvm_vcpu *vcpu;
+       int i;
+       kvm_for_each_vcpu(i, vcpu, kvm) {
+               vcpu_vtimer(vcpu)->irq.irq = vtimer_irq;
+               vcpu_ptimer(vcpu)->irq.irq = ptimer_irq;
+       }
+ }
+ int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
+ {
+       int __user *uaddr = (int __user *)(long)attr->addr;
+       struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
+       struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
+       int irq;
+       if (!irqchip_in_kernel(vcpu->kvm))
+               return -EINVAL;
+       if (get_user(irq, uaddr))
+               return -EFAULT;
+       if (!(irq_is_ppi(irq)))
+               return -EINVAL;
+       if (vcpu->arch.timer_cpu.enabled)
+               return -EBUSY;
+       switch (attr->attr) {
+       case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
+               set_timer_irqs(vcpu->kvm, irq, ptimer->irq.irq);
+               break;
+       case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
+               set_timer_irqs(vcpu->kvm, vtimer->irq.irq, irq);
+               break;
+       default:
+               return -ENXIO;
+       }
+       return 0;
+ }
+ int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
+ {
+       int __user *uaddr = (int __user *)(long)attr->addr;
+       struct arch_timer_context *timer;
+       int irq;
+       switch (attr->attr) {
+       case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
+               timer = vcpu_vtimer(vcpu);
+               break;
+       case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
+               timer = vcpu_ptimer(vcpu);
+               break;
+       default:
+               return -ENXIO;
+       }
+       irq = timer->irq.irq;
+       return put_user(irq, uaddr);
+ }
+ int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
+ {
+       switch (attr->attr) {
+       case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
+       case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
+               return 0;
+       }
+       return -ENXIO;
+ }
index 0000000000000000000000000000000000000000,b0b569f2cdd0a98a5aa21699684b83737761e031..b5282943b85490bb7fd76619cd31105d7562d273
mode 000000,100644..100644
--- /dev/null
@@@ -1,0 -1,1711 +1,1712 @@@
 -              swake_up_one(kvm_arch_vcpu_wq(vcpu));
+ // SPDX-License-Identifier: GPL-2.0-only
+ /*
+  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
+  */
+ #include <linux/bug.h>
+ #include <linux/cpu_pm.h>
+ #include <linux/errno.h>
+ #include <linux/err.h>
+ #include <linux/kvm_host.h>
+ #include <linux/list.h>
+ #include <linux/module.h>
+ #include <linux/vmalloc.h>
+ #include <linux/fs.h>
+ #include <linux/mman.h>
+ #include <linux/sched.h>
+ #include <linux/kvm.h>
+ #include <linux/kvm_irqfd.h>
+ #include <linux/irqbypass.h>
+ #include <linux/sched/stat.h>
+ #include <trace/events/kvm.h>
+ #define CREATE_TRACE_POINTS
+ #include "trace_arm.h"
+ #include <linux/uaccess.h>
+ #include <asm/ptrace.h>
+ #include <asm/mman.h>
+ #include <asm/tlbflush.h>
+ #include <asm/cacheflush.h>
+ #include <asm/cpufeature.h>
+ #include <asm/virt.h>
+ #include <asm/kvm_arm.h>
+ #include <asm/kvm_asm.h>
+ #include <asm/kvm_mmu.h>
+ #include <asm/kvm_emulate.h>
+ #include <asm/kvm_coproc.h>
+ #include <asm/sections.h>
+ #include <kvm/arm_hypercalls.h>
+ #include <kvm/arm_pmu.h>
+ #include <kvm/arm_psci.h>
+ #ifdef REQUIRES_VIRT
+ __asm__(".arch_extension      virt");
+ #endif
+ DEFINE_PER_CPU(kvm_host_data_t, kvm_host_data);
+ static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
+ /* The VMID used in the VTTBR */
+ static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
+ static u32 kvm_next_vmid;
+ static DEFINE_SPINLOCK(kvm_vmid_lock);
+ static bool vgic_present;
+ static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
+ DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
+ int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
+ {
+       return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
+ }
+ int kvm_arch_hardware_setup(void *opaque)
+ {
+       return 0;
+ }
+ int kvm_arch_check_processor_compat(void *opaque)
+ {
+       return 0;
+ }
+ int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
+                           struct kvm_enable_cap *cap)
+ {
+       int r;
+       if (cap->flags)
+               return -EINVAL;
+       switch (cap->cap) {
+       case KVM_CAP_ARM_NISV_TO_USER:
+               r = 0;
+               kvm->arch.return_nisv_io_abort_to_user = true;
+               break;
+       default:
+               r = -EINVAL;
+               break;
+       }
+       return r;
+ }
+ static int kvm_arm_default_max_vcpus(void)
+ {
+       return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
+ }
+ /**
+  * kvm_arch_init_vm - initializes a VM data structure
+  * @kvm:      pointer to the KVM struct
+  */
+ int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
+ {
+       int ret, cpu;
+       ret = kvm_arm_setup_stage2(kvm, type);
+       if (ret)
+               return ret;
+       kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
+       if (!kvm->arch.last_vcpu_ran)
+               return -ENOMEM;
+       for_each_possible_cpu(cpu)
+               *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
+       ret = kvm_alloc_stage2_pgd(kvm);
+       if (ret)
+               goto out_fail_alloc;
+       ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
+       if (ret)
+               goto out_free_stage2_pgd;
+       kvm_vgic_early_init(kvm);
+       /* Mark the initial VMID generation invalid */
+       kvm->arch.vmid.vmid_gen = 0;
+       /* The maximum number of VCPUs is limited by the host's GIC model */
+       kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
+       return ret;
+ out_free_stage2_pgd:
+       kvm_free_stage2_pgd(kvm);
+ out_fail_alloc:
+       free_percpu(kvm->arch.last_vcpu_ran);
+       kvm->arch.last_vcpu_ran = NULL;
+       return ret;
+ }
+ int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
+ {
+       return 0;
+ }
+ vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
+ {
+       return VM_FAULT_SIGBUS;
+ }
+ /**
+  * kvm_arch_destroy_vm - destroy the VM data structure
+  * @kvm:      pointer to the KVM struct
+  */
+ void kvm_arch_destroy_vm(struct kvm *kvm)
+ {
+       int i;
+       kvm_vgic_destroy(kvm);
+       free_percpu(kvm->arch.last_vcpu_ran);
+       kvm->arch.last_vcpu_ran = NULL;
+       for (i = 0; i < KVM_MAX_VCPUS; ++i) {
+               if (kvm->vcpus[i]) {
+                       kvm_vcpu_destroy(kvm->vcpus[i]);
+                       kvm->vcpus[i] = NULL;
+               }
+       }
+       atomic_set(&kvm->online_vcpus, 0);
+ }
+ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
+ {
+       int r;
+       switch (ext) {
+       case KVM_CAP_IRQCHIP:
+               r = vgic_present;
+               break;
+       case KVM_CAP_IOEVENTFD:
+       case KVM_CAP_DEVICE_CTRL:
+       case KVM_CAP_USER_MEMORY:
+       case KVM_CAP_SYNC_MMU:
+       case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
+       case KVM_CAP_ONE_REG:
+       case KVM_CAP_ARM_PSCI:
+       case KVM_CAP_ARM_PSCI_0_2:
+       case KVM_CAP_READONLY_MEM:
+       case KVM_CAP_MP_STATE:
+       case KVM_CAP_IMMEDIATE_EXIT:
+       case KVM_CAP_VCPU_EVENTS:
+       case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
+       case KVM_CAP_ARM_NISV_TO_USER:
+       case KVM_CAP_ARM_INJECT_EXT_DABT:
+               r = 1;
+               break;
+       case KVM_CAP_ARM_SET_DEVICE_ADDR:
+               r = 1;
+               break;
+       case KVM_CAP_NR_VCPUS:
+               r = num_online_cpus();
+               break;
+       case KVM_CAP_MAX_VCPUS:
+       case KVM_CAP_MAX_VCPU_ID:
+               if (kvm)
+                       r = kvm->arch.max_vcpus;
+               else
+                       r = kvm_arm_default_max_vcpus();
+               break;
+       case KVM_CAP_MSI_DEVID:
+               if (!kvm)
+                       r = -EINVAL;
+               else
+                       r = kvm->arch.vgic.msis_require_devid;
+               break;
+       case KVM_CAP_ARM_USER_IRQ:
+               /*
+                * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
+                * (bump this number if adding more devices)
+                */
+               r = 1;
+               break;
+       default:
+               r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
+               break;
+       }
+       return r;
+ }
+ long kvm_arch_dev_ioctl(struct file *filp,
+                       unsigned int ioctl, unsigned long arg)
+ {
+       return -EINVAL;
+ }
+ struct kvm *kvm_arch_alloc_vm(void)
+ {
+       if (!has_vhe())
+               return kzalloc(sizeof(struct kvm), GFP_KERNEL);
+       return vzalloc(sizeof(struct kvm));
+ }
+ void kvm_arch_free_vm(struct kvm *kvm)
+ {
+       if (!has_vhe())
+               kfree(kvm);
+       else
+               vfree(kvm);
+ }
+ int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
+ {
+       if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
+               return -EBUSY;
+       if (id >= kvm->arch.max_vcpus)
+               return -EINVAL;
+       return 0;
+ }
+ int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
+ {
+       int err;
+       /* Force users to call KVM_ARM_VCPU_INIT */
+       vcpu->arch.target = -1;
+       bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
+       /* Set up the timer */
+       kvm_timer_vcpu_init(vcpu);
+       kvm_pmu_vcpu_init(vcpu);
+       kvm_arm_reset_debug_ptr(vcpu);
+       kvm_arm_pvtime_vcpu_init(&vcpu->arch);
+       err = kvm_vgic_vcpu_init(vcpu);
+       if (err)
+               return err;
+       return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
+ }
+ void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
+ {
+ }
+ void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
+ {
+       if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
+               static_branch_dec(&userspace_irqchip_in_use);
+       kvm_mmu_free_memory_caches(vcpu);
+       kvm_timer_vcpu_terminate(vcpu);
+       kvm_pmu_vcpu_destroy(vcpu);
+       kvm_arm_vcpu_destroy(vcpu);
+ }
+ int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
+ {
+       return kvm_timer_is_pending(vcpu);
+ }
+ void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
+ {
+       /*
+        * If we're about to block (most likely because we've just hit a
+        * WFI), we need to sync back the state of the GIC CPU interface
+        * so that we have the latest PMR and group enables. This ensures
+        * that kvm_arch_vcpu_runnable has up-to-date data to decide
+        * whether we have pending interrupts.
+        *
+        * For the same reason, we want to tell GICv4 that we need
+        * doorbells to be signalled, should an interrupt become pending.
+        */
+       preempt_disable();
+       kvm_vgic_vmcr_sync(vcpu);
+       vgic_v4_put(vcpu, true);
+       preempt_enable();
+ }
+ void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
+ {
+       preempt_disable();
+       vgic_v4_load(vcpu);
+       preempt_enable();
+ }
+ void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
+ {
+       int *last_ran;
+       kvm_host_data_t *cpu_data;
+       last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
+       cpu_data = this_cpu_ptr(&kvm_host_data);
+       /*
+        * We might get preempted before the vCPU actually runs, but
+        * over-invalidation doesn't affect correctness.
+        */
+       if (*last_ran != vcpu->vcpu_id) {
+               kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
+               *last_ran = vcpu->vcpu_id;
+       }
+       vcpu->cpu = cpu;
+       vcpu->arch.host_cpu_context = &cpu_data->host_ctxt;
+       kvm_vgic_load(vcpu);
+       kvm_timer_vcpu_load(vcpu);
+       kvm_vcpu_load_sysregs(vcpu);
+       kvm_arch_vcpu_load_fp(vcpu);
+       kvm_vcpu_pmu_restore_guest(vcpu);
+       if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
+               kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
+       if (single_task_running())
+               vcpu_clear_wfx_traps(vcpu);
+       else
+               vcpu_set_wfx_traps(vcpu);
+       vcpu_ptrauth_setup_lazy(vcpu);
+ }
+ void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
+ {
+       kvm_arch_vcpu_put_fp(vcpu);
+       kvm_vcpu_put_sysregs(vcpu);
+       kvm_timer_vcpu_put(vcpu);
+       kvm_vgic_put(vcpu);
+       kvm_vcpu_pmu_restore_host(vcpu);
+       vcpu->cpu = -1;
+ }
+ static void vcpu_power_off(struct kvm_vcpu *vcpu)
+ {
+       vcpu->arch.power_off = true;
+       kvm_make_request(KVM_REQ_SLEEP, vcpu);
+       kvm_vcpu_kick(vcpu);
+ }
+ int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
+                                   struct kvm_mp_state *mp_state)
+ {
+       if (vcpu->arch.power_off)
+               mp_state->mp_state = KVM_MP_STATE_STOPPED;
+       else
+               mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
+       return 0;
+ }
+ int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
+                                   struct kvm_mp_state *mp_state)
+ {
+       int ret = 0;
+       switch (mp_state->mp_state) {
+       case KVM_MP_STATE_RUNNABLE:
+               vcpu->arch.power_off = false;
+               break;
+       case KVM_MP_STATE_STOPPED:
+               vcpu_power_off(vcpu);
+               break;
+       default:
+               ret = -EINVAL;
+       }
+       return ret;
+ }
+ /**
+  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
+  * @v:                The VCPU pointer
+  *
+  * If the guest CPU is not waiting for interrupts or an interrupt line is
+  * asserted, the CPU is by definition runnable.
+  */
+ int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
+ {
+       bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
+       return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
+               && !v->arch.power_off && !v->arch.pause);
+ }
+ bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
+ {
+       return vcpu_mode_priv(vcpu);
+ }
+ /* Just ensure a guest exit from a particular CPU */
+ static void exit_vm_noop(void *info)
+ {
+ }
+ void force_vm_exit(const cpumask_t *mask)
+ {
+       preempt_disable();
+       smp_call_function_many(mask, exit_vm_noop, NULL, true);
+       preempt_enable();
+ }
+ /**
+  * need_new_vmid_gen - check that the VMID is still valid
+  * @vmid: The VMID to check
+  *
+  * return true if there is a new generation of VMIDs being used
+  *
+  * The hardware supports a limited set of values with the value zero reserved
+  * for the host, so we check if an assigned value belongs to a previous
+  * generation, which requires us to assign a new value. If we're the first to
+  * use a VMID for the new generation, we must flush necessary caches and TLBs
+  * on all CPUs.
+  */
+ static bool need_new_vmid_gen(struct kvm_vmid *vmid)
+ {
+       u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
+       smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
+       return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
+ }
+ /**
+  * update_vmid - Update the vmid with a valid VMID for the current generation
+  * @kvm: The guest that struct vmid belongs to
+  * @vmid: The stage-2 VMID information struct
+  */
+ static void update_vmid(struct kvm_vmid *vmid)
+ {
+       if (!need_new_vmid_gen(vmid))
+               return;
+       spin_lock(&kvm_vmid_lock);
+       /*
+        * We need to re-check the vmid_gen here to ensure that if another vcpu
+        * already allocated a valid vmid for this vm, then this vcpu should
+        * use the same vmid.
+        */
+       if (!need_new_vmid_gen(vmid)) {
+               spin_unlock(&kvm_vmid_lock);
+               return;
+       }
+       /* First user of a new VMID generation? */
+       if (unlikely(kvm_next_vmid == 0)) {
+               atomic64_inc(&kvm_vmid_gen);
+               kvm_next_vmid = 1;
+               /*
+                * On SMP we know no other CPUs can use this CPU's or each
+                * other's VMID after force_vm_exit returns since the
+                * kvm_vmid_lock blocks them from reentry to the guest.
+                */
+               force_vm_exit(cpu_all_mask);
+               /*
+                * Now broadcast TLB + ICACHE invalidation over the inner
+                * shareable domain to make sure all data structures are
+                * clean.
+                */
+               kvm_call_hyp(__kvm_flush_vm_context);
+       }
+       vmid->vmid = kvm_next_vmid;
+       kvm_next_vmid++;
+       kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
+       smp_wmb();
+       WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
+       spin_unlock(&kvm_vmid_lock);
+ }
+ static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
+ {
+       struct kvm *kvm = vcpu->kvm;
+       int ret = 0;
+       if (likely(vcpu->arch.has_run_once))
+               return 0;
+       if (!kvm_arm_vcpu_is_finalized(vcpu))
+               return -EPERM;
+       vcpu->arch.has_run_once = true;
+       if (likely(irqchip_in_kernel(kvm))) {
+               /*
+                * Map the VGIC hardware resources before running a vcpu the
+                * first time on this VM.
+                */
+               if (unlikely(!vgic_ready(kvm))) {
+                       ret = kvm_vgic_map_resources(kvm);
+                       if (ret)
+                               return ret;
+               }
+       } else {
+               /*
+                * Tell the rest of the code that there are userspace irqchip
+                * VMs in the wild.
+                */
+               static_branch_inc(&userspace_irqchip_in_use);
+       }
+       ret = kvm_timer_enable(vcpu);
+       if (ret)
+               return ret;
+       ret = kvm_arm_pmu_v3_enable(vcpu);
+       return ret;
+ }
+ bool kvm_arch_intc_initialized(struct kvm *kvm)
+ {
+       return vgic_initialized(kvm);
+ }
+ void kvm_arm_halt_guest(struct kvm *kvm)
+ {
+       int i;
+       struct kvm_vcpu *vcpu;
+       kvm_for_each_vcpu(i, vcpu, kvm)
+               vcpu->arch.pause = true;
+       kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
+ }
+ void kvm_arm_resume_guest(struct kvm *kvm)
+ {
+       int i;
+       struct kvm_vcpu *vcpu;
+       kvm_for_each_vcpu(i, vcpu, kvm) {
+               vcpu->arch.pause = false;
 -      struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
++              rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
+       }
+ }
+ static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
+ {
 -      swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
 -                                     (!vcpu->arch.pause)));
++      struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
 - * @run:      The kvm_run structure pointer used for userspace state exchange
++      rcuwait_wait_event(wait,
++                         (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
++                         TASK_INTERRUPTIBLE);
+       if (vcpu->arch.power_off || vcpu->arch.pause) {
+               /* Awaken to handle a signal, request we sleep again later. */
+               kvm_make_request(KVM_REQ_SLEEP, vcpu);
+       }
+       /*
+        * Make sure we will observe a potential reset request if we've
+        * observed a change to the power state. Pairs with the smp_wmb() in
+        * kvm_psci_vcpu_on().
+        */
+       smp_rmb();
+ }
+ static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
+ {
+       return vcpu->arch.target >= 0;
+ }
+ static void check_vcpu_requests(struct kvm_vcpu *vcpu)
+ {
+       if (kvm_request_pending(vcpu)) {
+               if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
+                       vcpu_req_sleep(vcpu);
+               if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
+                       kvm_reset_vcpu(vcpu);
+               /*
+                * Clear IRQ_PENDING requests that were made to guarantee
+                * that a VCPU sees new virtual interrupts.
+                */
+               kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
+               if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
+                       kvm_update_stolen_time(vcpu);
+               if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
+                       /* The distributor enable bits were changed */
+                       preempt_disable();
+                       vgic_v4_put(vcpu, false);
+                       vgic_v4_load(vcpu);
+                       preempt_enable();
+               }
+       }
+ }
+ /**
+  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
+  * @vcpu:     The VCPU pointer
 -int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
+  *
+  * This function is called through the VCPU_RUN ioctl called from user space. It
+  * will execute VM code in a loop until the time slice for the process is used
+  * or some emulation is needed from user space in which case the function will
+  * return with return value 0 and with the kvm_run structure filled in with the
+  * required data for the requested emulation.
+  */
 -              ret = kvm_handle_mmio_return(vcpu, vcpu->run);
++int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
+ {
++      struct kvm_run *run = vcpu->run;
+       int ret;
+       if (unlikely(!kvm_vcpu_initialized(vcpu)))
+               return -ENOEXEC;
+       ret = kvm_vcpu_first_run_init(vcpu);
+       if (ret)
+               return ret;
+       if (run->exit_reason == KVM_EXIT_MMIO) {
++              ret = kvm_handle_mmio_return(vcpu, run);
+               if (ret)
+                       return ret;
+       }
+       if (run->immediate_exit)
+               return -EINTR;
+       vcpu_load(vcpu);
+       kvm_sigset_activate(vcpu);
+       ret = 1;
+       run->exit_reason = KVM_EXIT_UNKNOWN;
+       while (ret > 0) {
+               /*
+                * Check conditions before entering the guest
+                */
+               cond_resched();
+               update_vmid(&vcpu->kvm->arch.vmid);
+               check_vcpu_requests(vcpu);
+               /*
+                * Preparing the interrupts to be injected also
+                * involves poking the GIC, which must be done in a
+                * non-preemptible context.
+                */
+               preempt_disable();
+               kvm_pmu_flush_hwstate(vcpu);
+               local_irq_disable();
+               kvm_vgic_flush_hwstate(vcpu);
+               /*
+                * Exit if we have a signal pending so that we can deliver the
+                * signal to user space.
+                */
+               if (signal_pending(current)) {
+                       ret = -EINTR;
+                       run->exit_reason = KVM_EXIT_INTR;
+               }
+               /*
+                * If we're using a userspace irqchip, then check if we need
+                * to tell a userspace irqchip about timer or PMU level
+                * changes and if so, exit to userspace (the actual level
+                * state gets updated in kvm_timer_update_run and
+                * kvm_pmu_update_run below).
+                */
+               if (static_branch_unlikely(&userspace_irqchip_in_use)) {
+                       if (kvm_timer_should_notify_user(vcpu) ||
+                           kvm_pmu_should_notify_user(vcpu)) {
+                               ret = -EINTR;
+                               run->exit_reason = KVM_EXIT_INTR;
+                       }
+               }
+               /*
+                * Ensure we set mode to IN_GUEST_MODE after we disable
+                * interrupts and before the final VCPU requests check.
+                * See the comment in kvm_vcpu_exiting_guest_mode() and
+                * Documentation/virt/kvm/vcpu-requests.rst
+                */
+               smp_store_mb(vcpu->mode, IN_GUEST_MODE);
+               if (ret <= 0 || need_new_vmid_gen(&vcpu->kvm->arch.vmid) ||
+                   kvm_request_pending(vcpu)) {
+                       vcpu->mode = OUTSIDE_GUEST_MODE;
+                       isb(); /* Ensure work in x_flush_hwstate is committed */
+                       kvm_pmu_sync_hwstate(vcpu);
+                       if (static_branch_unlikely(&userspace_irqchip_in_use))
+                               kvm_timer_sync_hwstate(vcpu);
+                       kvm_vgic_sync_hwstate(vcpu);
+                       local_irq_enable();
+                       preempt_enable();
+                       continue;
+               }
+               kvm_arm_setup_debug(vcpu);
+               /**************************************************************
+                * Enter the guest
+                */
+               trace_kvm_entry(*vcpu_pc(vcpu));
+               guest_enter_irqoff();
+               if (has_vhe()) {
+                       ret = kvm_vcpu_run_vhe(vcpu);
+               } else {
+                       ret = kvm_call_hyp_ret(__kvm_vcpu_run_nvhe, vcpu);
+               }
+               vcpu->mode = OUTSIDE_GUEST_MODE;
+               vcpu->stat.exits++;
+               /*
+                * Back from guest
+                *************************************************************/
+               kvm_arm_clear_debug(vcpu);
+               /*
+                * We must sync the PMU state before the vgic state so
+                * that the vgic can properly sample the updated state of the
+                * interrupt line.
+                */
+               kvm_pmu_sync_hwstate(vcpu);
+               /*
+                * Sync the vgic state before syncing the timer state because
+                * the timer code needs to know if the virtual timer
+                * interrupts are active.
+                */
+               kvm_vgic_sync_hwstate(vcpu);
+               /*
+                * Sync the timer hardware state before enabling interrupts as
+                * we don't want vtimer interrupts to race with syncing the
+                * timer virtual interrupt state.
+                */
+               if (static_branch_unlikely(&userspace_irqchip_in_use))
+                       kvm_timer_sync_hwstate(vcpu);
+               kvm_arch_vcpu_ctxsync_fp(vcpu);
+               /*
+                * We may have taken a host interrupt in HYP mode (ie
+                * while executing the guest). This interrupt is still
+                * pending, as we haven't serviced it yet!
+                *
+                * We're now back in SVC mode, with interrupts
+                * disabled.  Enabling the interrupts now will have
+                * the effect of taking the interrupt again, in SVC
+                * mode this time.
+                */
+               local_irq_enable();
+               /*
+                * We do local_irq_enable() before calling guest_exit() so
+                * that if a timer interrupt hits while running the guest we
+                * account that tick as being spent in the guest.  We enable
+                * preemption after calling guest_exit() so that if we get
+                * preempted we make sure ticks after that is not counted as
+                * guest time.
+                */
+               guest_exit();
+               trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
+               /* Exit types that need handling before we can be preempted */
+               handle_exit_early(vcpu, run, ret);
+               preempt_enable();
+               ret = handle_exit(vcpu, run, ret);
+       }
+       /* Tell userspace about in-kernel device output levels */
+       if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
+               kvm_timer_update_run(vcpu);
+               kvm_pmu_update_run(vcpu);
+       }
+       kvm_sigset_deactivate(vcpu);
+       vcpu_put(vcpu);
+       return ret;
+ }
+ static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
+ {
+       int bit_index;
+       bool set;
+       unsigned long *hcr;
+       if (number == KVM_ARM_IRQ_CPU_IRQ)
+               bit_index = __ffs(HCR_VI);
+       else /* KVM_ARM_IRQ_CPU_FIQ */
+               bit_index = __ffs(HCR_VF);
+       hcr = vcpu_hcr(vcpu);
+       if (level)
+               set = test_and_set_bit(bit_index, hcr);
+       else
+               set = test_and_clear_bit(bit_index, hcr);
+       /*
+        * If we didn't change anything, no need to wake up or kick other CPUs
+        */
+       if (set == level)
+               return 0;
+       /*
+        * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
+        * trigger a world-switch round on the running physical CPU to set the
+        * virtual IRQ/FIQ fields in the HCR appropriately.
+        */
+       kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
+       kvm_vcpu_kick(vcpu);
+       return 0;
+ }
+ int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
+                         bool line_status)
+ {
+       u32 irq = irq_level->irq;
+       unsigned int irq_type, vcpu_idx, irq_num;
+       int nrcpus = atomic_read(&kvm->online_vcpus);
+       struct kvm_vcpu *vcpu = NULL;
+       bool level = irq_level->level;
+       irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
+       vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
+       vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
+       irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
+       trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
+       switch (irq_type) {
+       case KVM_ARM_IRQ_TYPE_CPU:
+               if (irqchip_in_kernel(kvm))
+                       return -ENXIO;
+               if (vcpu_idx >= nrcpus)
+                       return -EINVAL;
+               vcpu = kvm_get_vcpu(kvm, vcpu_idx);
+               if (!vcpu)
+                       return -EINVAL;
+               if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
+                       return -EINVAL;
+               return vcpu_interrupt_line(vcpu, irq_num, level);
+       case KVM_ARM_IRQ_TYPE_PPI:
+               if (!irqchip_in_kernel(kvm))
+                       return -ENXIO;
+               if (vcpu_idx >= nrcpus)
+                       return -EINVAL;
+               vcpu = kvm_get_vcpu(kvm, vcpu_idx);
+               if (!vcpu)
+                       return -EINVAL;
+               if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
+                       return -EINVAL;
+               return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
+       case KVM_ARM_IRQ_TYPE_SPI:
+               if (!irqchip_in_kernel(kvm))
+                       return -ENXIO;
+               if (irq_num < VGIC_NR_PRIVATE_IRQS)
+                       return -EINVAL;
+               return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
+       }
+       return -EINVAL;
+ }
+ static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
+                              const struct kvm_vcpu_init *init)
+ {
+       unsigned int i, ret;
+       int phys_target = kvm_target_cpu();
+       if (init->target != phys_target)
+               return -EINVAL;
+       /*
+        * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
+        * use the same target.
+        */
+       if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
+               return -EINVAL;
+       /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
+       for (i = 0; i < sizeof(init->features) * 8; i++) {
+               bool set = (init->features[i / 32] & (1 << (i % 32)));
+               if (set && i >= KVM_VCPU_MAX_FEATURES)
+                       return -ENOENT;
+               /*
+                * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
+                * use the same feature set.
+                */
+               if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
+                   test_bit(i, vcpu->arch.features) != set)
+                       return -EINVAL;
+               if (set)
+                       set_bit(i, vcpu->arch.features);
+       }
+       vcpu->arch.target = phys_target;
+       /* Now we know what it is, we can reset it. */
+       ret = kvm_reset_vcpu(vcpu);
+       if (ret) {
+               vcpu->arch.target = -1;
+               bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
+       }
+       return ret;
+ }
+ static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
+                                        struct kvm_vcpu_init *init)
+ {
+       int ret;
+       ret = kvm_vcpu_set_target(vcpu, init);
+       if (ret)
+               return ret;
+       /*
+        * Ensure a rebooted VM will fault in RAM pages and detect if the
+        * guest MMU is turned off and flush the caches as needed.
+        *
+        * S2FWB enforces all memory accesses to RAM being cacheable, we
+        * ensure that the cache is always coherent.
+        */
+       if (vcpu->arch.has_run_once && !cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
+               stage2_unmap_vm(vcpu->kvm);
+       vcpu_reset_hcr(vcpu);
+       /*
+        * Handle the "start in power-off" case.
+        */
+       if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
+               vcpu_power_off(vcpu);
+       else
+               vcpu->arch.power_off = false;
+       return 0;
+ }
+ static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
+                                struct kvm_device_attr *attr)
+ {
+       int ret = -ENXIO;
+       switch (attr->group) {
+       default:
+               ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
+               break;
+       }
+       return ret;
+ }
+ static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
+                                struct kvm_device_attr *attr)
+ {
+       int ret = -ENXIO;
+       switch (attr->group) {
+       default:
+               ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
+               break;
+       }
+       return ret;
+ }
+ static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
+                                struct kvm_device_attr *attr)
+ {
+       int ret = -ENXIO;
+       switch (attr->group) {
+       default:
+               ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
+               break;
+       }
+       return ret;
+ }
+ static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
+                                  struct kvm_vcpu_events *events)
+ {
+       memset(events, 0, sizeof(*events));
+       return __kvm_arm_vcpu_get_events(vcpu, events);
+ }
+ static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
+                                  struct kvm_vcpu_events *events)
+ {
+       int i;
+       /* check whether the reserved field is zero */
+       for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
+               if (events->reserved[i])
+                       return -EINVAL;
+       /* check whether the pad field is zero */
+       for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
+               if (events->exception.pad[i])
+                       return -EINVAL;
+       return __kvm_arm_vcpu_set_events(vcpu, events);
+ }
+ long kvm_arch_vcpu_ioctl(struct file *filp,
+                        unsigned int ioctl, unsigned long arg)
+ {
+       struct kvm_vcpu *vcpu = filp->private_data;
+       void __user *argp = (void __user *)arg;
+       struct kvm_device_attr attr;
+       long r;
+       switch (ioctl) {
+       case KVM_ARM_VCPU_INIT: {
+               struct kvm_vcpu_init init;
+               r = -EFAULT;
+               if (copy_from_user(&init, argp, sizeof(init)))
+                       break;
+               r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
+               break;
+       }
+       case KVM_SET_ONE_REG:
+       case KVM_GET_ONE_REG: {
+               struct kvm_one_reg reg;
+               r = -ENOEXEC;
+               if (unlikely(!kvm_vcpu_initialized(vcpu)))
+                       break;
+               r = -EFAULT;
+               if (copy_from_user(&reg, argp, sizeof(reg)))
+                       break;
+               if (ioctl == KVM_SET_ONE_REG)
+                       r = kvm_arm_set_reg(vcpu, &reg);
+               else
+                       r = kvm_arm_get_reg(vcpu, &reg);
+               break;
+       }
+       case KVM_GET_REG_LIST: {
+               struct kvm_reg_list __user *user_list = argp;
+               struct kvm_reg_list reg_list;
+               unsigned n;
+               r = -ENOEXEC;
+               if (unlikely(!kvm_vcpu_initialized(vcpu)))
+                       break;
+               r = -EPERM;
+               if (!kvm_arm_vcpu_is_finalized(vcpu))
+                       break;
+               r = -EFAULT;
+               if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
+                       break;
+               n = reg_list.n;
+               reg_list.n = kvm_arm_num_regs(vcpu);
+               if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
+                       break;
+               r = -E2BIG;
+               if (n < reg_list.n)
+                       break;
+               r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
+               break;
+       }
+       case KVM_SET_DEVICE_ATTR: {
+               r = -EFAULT;
+               if (copy_from_user(&attr, argp, sizeof(attr)))
+                       break;
+               r = kvm_arm_vcpu_set_attr(vcpu, &attr);
+               break;
+       }
+       case KVM_GET_DEVICE_ATTR: {
+               r = -EFAULT;
+               if (copy_from_user(&attr, argp, sizeof(attr)))
+                       break;
+               r = kvm_arm_vcpu_get_attr(vcpu, &attr);
+               break;
+       }
+       case KVM_HAS_DEVICE_ATTR: {
+               r = -EFAULT;
+               if (copy_from_user(&attr, argp, sizeof(attr)))
+                       break;
+               r = kvm_arm_vcpu_has_attr(vcpu, &attr);
+               break;
+       }
+       case KVM_GET_VCPU_EVENTS: {
+               struct kvm_vcpu_events events;
+               if (kvm_arm_vcpu_get_events(vcpu, &events))
+                       return -EINVAL;
+               if (copy_to_user(argp, &events, sizeof(events)))
+                       return -EFAULT;
+               return 0;
+       }
+       case KVM_SET_VCPU_EVENTS: {
+               struct kvm_vcpu_events events;
+               if (copy_from_user(&events, argp, sizeof(events)))
+                       return -EFAULT;
+               return kvm_arm_vcpu_set_events(vcpu, &events);
+       }
+       case KVM_ARM_VCPU_FINALIZE: {
+               int what;
+               if (!kvm_vcpu_initialized(vcpu))
+                       return -ENOEXEC;
+               if (get_user(what, (const int __user *)argp))
+                       return -EFAULT;
+               return kvm_arm_vcpu_finalize(vcpu, what);
+       }
+       default:
+               r = -EINVAL;
+       }
+       return r;
+ }
+ void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
+ {
+ }
+ void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
+                                       struct kvm_memory_slot *memslot)
+ {
+       kvm_flush_remote_tlbs(kvm);
+ }
+ static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
+                                       struct kvm_arm_device_addr *dev_addr)
+ {
+       unsigned long dev_id, type;
+       dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
+               KVM_ARM_DEVICE_ID_SHIFT;
+       type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
+               KVM_ARM_DEVICE_TYPE_SHIFT;
+       switch (dev_id) {
+       case KVM_ARM_DEVICE_VGIC_V2:
+               if (!vgic_present)
+                       return -ENXIO;
+               return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
+       default:
+               return -ENODEV;
+       }
+ }
+ long kvm_arch_vm_ioctl(struct file *filp,
+                      unsigned int ioctl, unsigned long arg)
+ {
+       struct kvm *kvm = filp->private_data;
+       void __user *argp = (void __user *)arg;
+       switch (ioctl) {
+       case KVM_CREATE_IRQCHIP: {
+               int ret;
+               if (!vgic_present)
+                       return -ENXIO;
+               mutex_lock(&kvm->lock);
+               ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
+               mutex_unlock(&kvm->lock);
+               return ret;
+       }
+       case KVM_ARM_SET_DEVICE_ADDR: {
+               struct kvm_arm_device_addr dev_addr;
+               if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
+                       return -EFAULT;
+               return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
+       }
+       case KVM_ARM_PREFERRED_TARGET: {
+               int err;
+               struct kvm_vcpu_init init;
+               err = kvm_vcpu_preferred_target(&init);
+               if (err)
+                       return err;
+               if (copy_to_user(argp, &init, sizeof(init)))
+                       return -EFAULT;
+               return 0;
+       }
+       default:
+               return -EINVAL;
+       }
+ }
+ static void cpu_init_hyp_mode(void)
+ {
+       phys_addr_t pgd_ptr;
+       unsigned long hyp_stack_ptr;
+       unsigned long vector_ptr;
+       unsigned long tpidr_el2;
+       /* Switch from the HYP stub to our own HYP init vector */
+       __hyp_set_vectors(kvm_get_idmap_vector());
+       /*
+        * Calculate the raw per-cpu offset without a translation from the
+        * kernel's mapping to the linear mapping, and store it in tpidr_el2
+        * so that we can use adr_l to access per-cpu variables in EL2.
+        */
+       tpidr_el2 = ((unsigned long)this_cpu_ptr(&kvm_host_data) -
+                    (unsigned long)kvm_ksym_ref(kvm_host_data));
+       pgd_ptr = kvm_mmu_get_httbr();
+       hyp_stack_ptr = __this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE;
+       vector_ptr = (unsigned long)kvm_get_hyp_vector();
+       /*
+        * Call initialization code, and switch to the full blown HYP code.
+        * If the cpucaps haven't been finalized yet, something has gone very
+        * wrong, and hyp will crash and burn when it uses any
+        * cpus_have_const_cap() wrapper.
+        */
+       BUG_ON(!system_capabilities_finalized());
+       __kvm_call_hyp((void *)pgd_ptr, hyp_stack_ptr, vector_ptr, tpidr_el2);
+       /*
+        * Disabling SSBD on a non-VHE system requires us to enable SSBS
+        * at EL2.
+        */
+       if (this_cpu_has_cap(ARM64_SSBS) &&
+           arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
+               kvm_call_hyp(__kvm_enable_ssbs);
+       }
+ }
+ static void cpu_hyp_reset(void)
+ {
+       if (!is_kernel_in_hyp_mode())
+               __hyp_reset_vectors();
+ }
+ static void cpu_hyp_reinit(void)
+ {
+       kvm_init_host_cpu_context(&this_cpu_ptr(&kvm_host_data)->host_ctxt);
+       cpu_hyp_reset();
+       if (is_kernel_in_hyp_mode())
+               kvm_timer_init_vhe();
+       else
+               cpu_init_hyp_mode();
+       kvm_arm_init_debug();
+       if (vgic_present)
+               kvm_vgic_init_cpu_hardware();
+ }
+ static void _kvm_arch_hardware_enable(void *discard)
+ {
+       if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
+               cpu_hyp_reinit();
+               __this_cpu_write(kvm_arm_hardware_enabled, 1);
+       }
+ }
+ int kvm_arch_hardware_enable(void)
+ {
+       _kvm_arch_hardware_enable(NULL);
+       return 0;
+ }
+ static void _kvm_arch_hardware_disable(void *discard)
+ {
+       if (__this_cpu_read(kvm_arm_hardware_enabled)) {
+               cpu_hyp_reset();
+               __this_cpu_write(kvm_arm_hardware_enabled, 0);
+       }
+ }
+ void kvm_arch_hardware_disable(void)
+ {
+       _kvm_arch_hardware_disable(NULL);
+ }
+ #ifdef CONFIG_CPU_PM
+ static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
+                                   unsigned long cmd,
+                                   void *v)
+ {
+       /*
+        * kvm_arm_hardware_enabled is left with its old value over
+        * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
+        * re-enable hyp.
+        */
+       switch (cmd) {
+       case CPU_PM_ENTER:
+               if (__this_cpu_read(kvm_arm_hardware_enabled))
+                       /*
+                        * don't update kvm_arm_hardware_enabled here
+                        * so that the hardware will be re-enabled
+                        * when we resume. See below.
+                        */
+                       cpu_hyp_reset();
+               return NOTIFY_OK;
+       case CPU_PM_ENTER_FAILED:
+       case CPU_PM_EXIT:
+               if (__this_cpu_read(kvm_arm_hardware_enabled))
+                       /* The hardware was enabled before suspend. */
+                       cpu_hyp_reinit();
+               return NOTIFY_OK;
+       default:
+               return NOTIFY_DONE;
+       }
+ }
+ static struct notifier_block hyp_init_cpu_pm_nb = {
+       .notifier_call = hyp_init_cpu_pm_notifier,
+ };
+ static void __init hyp_cpu_pm_init(void)
+ {
+       cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
+ }
+ static void __init hyp_cpu_pm_exit(void)
+ {
+       cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
+ }
+ #else
+ static inline void hyp_cpu_pm_init(void)
+ {
+ }
+ static inline void hyp_cpu_pm_exit(void)
+ {
+ }
+ #endif
+ static int init_common_resources(void)
+ {
+       kvm_set_ipa_limit();
+       return 0;
+ }
+ static int init_subsystems(void)
+ {
+       int err = 0;
+       /*
+        * Enable hardware so that subsystem initialisation can access EL2.
+        */
+       on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
+       /*
+        * Register CPU lower-power notifier
+        */
+       hyp_cpu_pm_init();
+       /*
+        * Init HYP view of VGIC
+        */
+       err = kvm_vgic_hyp_init();
+       switch (err) {
+       case 0:
+               vgic_present = true;
+               break;
+       case -ENODEV:
+       case -ENXIO:
+               vgic_present = false;
+               err = 0;
+               break;
+       default:
+               goto out;
+       }
+       /*
+        * Init HYP architected timer support
+        */
+       err = kvm_timer_hyp_init(vgic_present);
+       if (err)
+               goto out;
+       kvm_perf_init();
+       kvm_coproc_table_init();
+ out:
+       on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
+       return err;
+ }
+ static void teardown_hyp_mode(void)
+ {
+       int cpu;
+       free_hyp_pgds();
+       for_each_possible_cpu(cpu)
+               free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
+ }
+ /**
+  * Inits Hyp-mode on all online CPUs
+  */
+ static int init_hyp_mode(void)
+ {
+       int cpu;
+       int err = 0;
+       /*
+        * Allocate Hyp PGD and setup Hyp identity mapping
+        */
+       err = kvm_mmu_init();
+       if (err)
+               goto out_err;
+       /*
+        * Allocate stack pages for Hypervisor-mode
+        */
+       for_each_possible_cpu(cpu) {
+               unsigned long stack_page;
+               stack_page = __get_free_page(GFP_KERNEL);
+               if (!stack_page) {
+                       err = -ENOMEM;
+                       goto out_err;
+               }
+               per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
+       }
+       /*
+        * Map the Hyp-code called directly from the host
+        */
+       err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
+                                 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
+       if (err) {
+               kvm_err("Cannot map world-switch code\n");
+               goto out_err;
+       }
+       err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
+                                 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
+       if (err) {
+               kvm_err("Cannot map rodata section\n");
+               goto out_err;
+       }
+       err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
+                                 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
+       if (err) {
+               kvm_err("Cannot map bss section\n");
+               goto out_err;
+       }
+       err = kvm_map_vectors();
+       if (err) {
+               kvm_err("Cannot map vectors\n");
+               goto out_err;
+       }
+       /*
+        * Map the Hyp stack pages
+        */
+       for_each_possible_cpu(cpu) {
+               char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
+               err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
+                                         PAGE_HYP);
+               if (err) {
+                       kvm_err("Cannot map hyp stack\n");
+                       goto out_err;
+               }
+       }
+       for_each_possible_cpu(cpu) {
+               kvm_host_data_t *cpu_data;
+               cpu_data = per_cpu_ptr(&kvm_host_data, cpu);
+               err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP);
+               if (err) {
+                       kvm_err("Cannot map host CPU state: %d\n", err);
+                       goto out_err;
+               }
+       }
+       err = hyp_map_aux_data();
+       if (err)
+               kvm_err("Cannot map host auxiliary data: %d\n", err);
+       return 0;
+ out_err:
+       teardown_hyp_mode();
+       kvm_err("error initializing Hyp mode: %d\n", err);
+       return err;
+ }
+ static void check_kvm_target_cpu(void *ret)
+ {
+       *(int *)ret = kvm_target_cpu();
+ }
+ struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
+ {
+       struct kvm_vcpu *vcpu;
+       int i;
+       mpidr &= MPIDR_HWID_BITMASK;
+       kvm_for_each_vcpu(i, vcpu, kvm) {
+               if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
+                       return vcpu;
+       }
+       return NULL;
+ }
+ bool kvm_arch_has_irq_bypass(void)
+ {
+       return true;
+ }
+ int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
+                                     struct irq_bypass_producer *prod)
+ {
+       struct kvm_kernel_irqfd *irqfd =
+               container_of(cons, struct kvm_kernel_irqfd, consumer);
+       return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
+                                         &irqfd->irq_entry);
+ }
+ void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
+                                     struct irq_bypass_producer *prod)
+ {
+       struct kvm_kernel_irqfd *irqfd =
+               container_of(cons, struct kvm_kernel_irqfd, consumer);
+       kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
+                                    &irqfd->irq_entry);
+ }
+ void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
+ {
+       struct kvm_kernel_irqfd *irqfd =
+               container_of(cons, struct kvm_kernel_irqfd, consumer);
+       kvm_arm_halt_guest(irqfd->kvm);
+ }
+ void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
+ {
+       struct kvm_kernel_irqfd *irqfd =
+               container_of(cons, struct kvm_kernel_irqfd, consumer);
+       kvm_arm_resume_guest(irqfd->kvm);
+ }
+ /**
+  * Initialize Hyp-mode and memory mappings on all CPUs.
+  */
+ int kvm_arch_init(void *opaque)
+ {
+       int err;
+       int ret, cpu;
+       bool in_hyp_mode;
+       if (!is_hyp_mode_available()) {
+               kvm_info("HYP mode not available\n");
+               return -ENODEV;
+       }
+       in_hyp_mode = is_kernel_in_hyp_mode();
+       if (!in_hyp_mode && kvm_arch_requires_vhe()) {
+               kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
+               return -ENODEV;
+       }
+       for_each_online_cpu(cpu) {
+               smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
+               if (ret < 0) {
+                       kvm_err("Error, CPU %d not supported!\n", cpu);
+                       return -ENODEV;
+               }
+       }
+       err = init_common_resources();
+       if (err)
+               return err;
+       err = kvm_arm_init_sve();
+       if (err)
+               return err;
+       if (!in_hyp_mode) {
+               err = init_hyp_mode();
+               if (err)
+                       goto out_err;
+       }
+       err = init_subsystems();
+       if (err)
+               goto out_hyp;
+       if (in_hyp_mode)
+               kvm_info("VHE mode initialized successfully\n");
+       else
+               kvm_info("Hyp mode initialized successfully\n");
+       return 0;
+ out_hyp:
+       hyp_cpu_pm_exit();
+       if (!in_hyp_mode)
+               teardown_hyp_mode();
+ out_err:
+       return err;
+ }
+ /* NOP: Compiling as a module not supported */
+ void kvm_arch_exit(void)
+ {
+       kvm_perf_teardown();
+ }
+ static int arm_init(void)
+ {
+       int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
+       return rc;
+ }
+ module_init(arm_init);
Simple merge
Simple merge
Simple merge