c->interval_snsecs = (u64)c->interval_cycles * c->mult;
 }
 
+
+/**
+ * error_aproximation - calculates an error adjustment for a given error
+ *
+ * @error:     Error value (unsigned)
+ * @unit:      Adjustment unit
+ *
+ * For a given error value, this function takes the adjustment unit
+ * and uses binary approximation to return a power of two adjustment value.
+ *
+ * This function is only for use by the the make_ntp_adj() function
+ * and you must hold a write on the xtime_lock when calling.
+ */
+static inline int error_aproximation(u64 error, u64 unit)
+{
+       static int saved_adj = 0;
+       u64 adjusted_unit = unit << saved_adj;
+
+       if (error > (adjusted_unit * 2)) {
+               /* large error, so increment the adjustment factor */
+               saved_adj++;
+       } else if (error > adjusted_unit) {
+               /* just right, don't touch it */
+       } else if (saved_adj) {
+               /* small error, so drop the adjustment factor */
+               saved_adj--;
+               return 0;
+       }
+
+       return saved_adj;
+}
+
+
+/**
+ * make_ntp_adj - Adjusts the specified clocksource for a given error
+ *
+ * @clock:             Pointer to clock to be adjusted
+ * @cycles_delta:      Current unacounted cycle delta
+ * @error:             Pointer to current error value
+ *
+ * Returns clock shifted nanosecond adjustment to be applied against
+ * the accumulated time value (ie: xtime).
+ *
+ * If the error value is large enough, this function calulates the
+ * (power of two) adjustment value, and adjusts the clock's mult and
+ * interval_snsecs values accordingly.
+ *
+ * However, since there may be some unaccumulated cycles, to avoid
+ * time inconsistencies we must adjust the accumulation value
+ * accordingly.
+ *
+ * This is not very intuitive, so the following proof should help:
+ * The basic timeofday algorithm:  base + cycle * mult
+ * Thus:
+ *    new_base + cycle * new_mult = old_base + cycle * old_mult
+ *    new_base = old_base + cycle * old_mult - cycle * new_mult
+ *    new_base = old_base + cycle * (old_mult - new_mult)
+ *    new_base - old_base = cycle * (old_mult - new_mult)
+ *    base_delta = cycle * (old_mult - new_mult)
+ *    base_delta = cycle * (mult_delta)
+ *
+ * Where mult_delta is the adjustment value made to mult
+ *
+ */
+static inline s64 make_ntp_adj(struct clocksource *clock,
+                               cycles_t cycles_delta, s64* error)
+{
+       s64 ret = 0;
+       if (*error  > ((s64)clock->interval_cycles+1)/2) {
+               /* calculate adjustment value */
+               int adjustment = error_aproximation(*error,
+                                               clock->interval_cycles);
+               /* adjust clock */
+               clock->mult += 1 << adjustment;
+               clock->interval_snsecs += clock->interval_cycles << adjustment;
+
+               /* adjust the base and error for the adjustment */
+               ret =  -(cycles_delta << adjustment);
+               *error -= clock->interval_cycles << adjustment;
+               /* XXX adj error for cycle_delta offset? */
+       } else if ((-(*error))  > ((s64)clock->interval_cycles+1)/2) {
+               /* calculate adjustment value */
+               int adjustment = error_aproximation(-(*error),
+                                               clock->interval_cycles);
+               /* adjust clock */
+               clock->mult -= 1 << adjustment;
+               clock->interval_snsecs -= clock->interval_cycles << adjustment;
+
+               /* adjust the base and error for the adjustment */
+               ret =  cycles_delta << adjustment;
+               *error += clock->interval_cycles << adjustment;
+               /* XXX adj error for cycle_delta offset? */
+       }
+       return ret;
+}
+
+
 /* used to install a new clocksource */
 int register_clocksource(struct clocksource*);
 void reselect_clocksource(void);
 
 long time_precision = 1;               /* clock precision (us)         */
 long time_maxerror = NTP_PHASE_LIMIT;  /* maximum error (us)           */
 long time_esterror = NTP_PHASE_LIMIT;  /* estimated error (us)         */
-static long time_phase;                        /* phase offset (scaled us)     */
 long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC;
                                        /* frequency offset (scaled ppm)*/
 static long time_adj;                  /* tick adjust (scaled 1 / HZ)  */
 }
 
 /* in the NTP reference this is called "hardclock()" */
-static void update_wall_time_one_tick(void)
+static void update_ntp_one_tick(void)
 {
-       long time_adjust_step, delta_nsec;
+       long time_adjust_step;
 
        time_adjust_step = adjtime_adjustment();
        if (time_adjust_step)
                /* Reduce by this step the amount of time left  */
                time_adjust -= time_adjust_step;
-       delta_nsec = tick_nsec + time_adjust_step * 1000;
-       /*
-        * Advance the phase, once it gets to one microsecond, then
-        * advance the tick more.
-        */
-       time_phase += time_adj;
-       if ((time_phase >= FINENSEC) || (time_phase <= -FINENSEC)) {
-               long ltemp = shift_right(time_phase, (SHIFT_SCALE - 10));
-               time_phase -= ltemp << (SHIFT_SCALE - 10);
-               delta_nsec += ltemp;
-       }
-       xtime.tv_nsec += delta_nsec;
-       time_interpolator_update(delta_nsec);
 
        /* Changes by adjtime() do not take effect till next tick. */
        if (time_next_adjust != 0) {
  */
 static void update_wall_time(void)
 {
+       static s64 remainder_snsecs, error;
+       s64 snsecs_per_sec;
        cycle_t now, offset;
 
+       snsecs_per_sec = (s64)NSEC_PER_SEC << clock->shift;
+       remainder_snsecs += (s64)xtime.tv_nsec << clock->shift;
+
        now = read_clocksource(clock);
        offset = (now - last_clock_cycle)&clock->mask;
 
         * case of lost or late ticks, it will accumulate correctly.
         */
        while (offset > clock->interval_cycles) {
+               /* get the ntp interval in clock shifted nanoseconds */
+               s64 ntp_snsecs  = current_tick_length(clock->shift);
+
                /* accumulate one interval */
+               remainder_snsecs += clock->interval_snsecs;
                last_clock_cycle += clock->interval_cycles;
                offset -= clock->interval_cycles;
 
-               update_wall_time_one_tick();
-               if (xtime.tv_nsec >= 1000000000) {
-                       xtime.tv_nsec -= 1000000000;
+               /* interpolator bits */
+               time_interpolator_update(clock->interval_snsecs
+                                               >> clock->shift);
+               /* increment the NTP state machine */
+               update_ntp_one_tick();
+
+               /* accumulate error between NTP and clock interval */
+               error += (ntp_snsecs - (s64)clock->interval_snsecs);
+
+               /* correct the clock when NTP error is too big */
+               remainder_snsecs += make_ntp_adj(clock, offset, &error);
+
+               if (remainder_snsecs >= snsecs_per_sec) {
+                       remainder_snsecs -= snsecs_per_sec;
                        xtime.tv_sec++;
                        second_overflow();
                }
        }
+       /* store full nanoseconds into xtime */
+       xtime.tv_nsec = remainder_snsecs >> clock->shift;
+       remainder_snsecs -= (s64)xtime.tv_nsec << clock->shift;
 }
 
 /*