pciebus-howto
pci-iov-howto
msi-howto
+ sysfs-pci
acpi-info
pci-error-recovery
pcieaer-howto
--- /dev/null
+.. SPDX-License-Identifier: GPL-2.0
+
+============================================
+Accessing PCI device resources through sysfs
+============================================
+
+sysfs, usually mounted at /sys, provides access to PCI resources on platforms
+that support it. For example, a given bus might look like this::
+
+ /sys/devices/pci0000:17
+ |-- 0000:17:00.0
+ | |-- class
+ | |-- config
+ | |-- device
+ | |-- enable
+ | |-- irq
+ | |-- local_cpus
+ | |-- remove
+ | |-- resource
+ | |-- resource0
+ | |-- resource1
+ | |-- resource2
+ | |-- revision
+ | |-- rom
+ | |-- subsystem_device
+ | |-- subsystem_vendor
+ | `-- vendor
+ `-- ...
+
+The topmost element describes the PCI domain and bus number. In this case,
+the domain number is 0000 and the bus number is 17 (both values are in hex).
+This bus contains a single function device in slot 0. The domain and bus
+numbers are reproduced for convenience. Under the device directory are several
+files, each with their own function.
+
+ =================== =====================================================
+ file function
+ =================== =====================================================
+ class PCI class (ascii, ro)
+ config PCI config space (binary, rw)
+ device PCI device (ascii, ro)
+ enable Whether the device is enabled (ascii, rw)
+ irq IRQ number (ascii, ro)
+ local_cpus nearby CPU mask (cpumask, ro)
+ remove remove device from kernel's list (ascii, wo)
+ resource PCI resource host addresses (ascii, ro)
+ resource0..N PCI resource N, if present (binary, mmap, rw\ [1]_)
+ resource0_wc..N_wc PCI WC map resource N, if prefetchable (binary, mmap)
+ revision PCI revision (ascii, ro)
+ rom PCI ROM resource, if present (binary, ro)
+ subsystem_device PCI subsystem device (ascii, ro)
+ subsystem_vendor PCI subsystem vendor (ascii, ro)
+ vendor PCI vendor (ascii, ro)
+ =================== =====================================================
+
+::
+
+ ro - read only file
+ rw - file is readable and writable
+ wo - write only file
+ mmap - file is mmapable
+ ascii - file contains ascii text
+ binary - file contains binary data
+ cpumask - file contains a cpumask type
+
+.. [1] rw for IORESOURCE_IO (I/O port) regions only
+
+The read only files are informational, writes to them will be ignored, with
+the exception of the 'rom' file. Writable files can be used to perform
+actions on the device (e.g. changing config space, detaching a device).
+mmapable files are available via an mmap of the file at offset 0 and can be
+used to do actual device programming from userspace. Note that some platforms
+don't support mmapping of certain resources, so be sure to check the return
+value from any attempted mmap. The most notable of these are I/O port
+resources, which also provide read/write access.
+
+The 'enable' file provides a counter that indicates how many times the device
+has been enabled. If the 'enable' file currently returns '4', and a '1' is
+echoed into it, it will then return '5'. Echoing a '0' into it will decrease
+the count. Even when it returns to 0, though, some of the initialisation
+may not be reversed.
+
+The 'rom' file is special in that it provides read-only access to the device's
+ROM file, if available. It's disabled by default, however, so applications
+should write the string "1" to the file to enable it before attempting a read
+call, and disable it following the access by writing "0" to the file. Note
+that the device must be enabled for a rom read to return data successfully.
+In the event a driver is not bound to the device, it can be enabled using the
+'enable' file, documented above.
+
+The 'remove' file is used to remove the PCI device, by writing a non-zero
+integer to the file. This does not involve any kind of hot-plug functionality,
+e.g. powering off the device. The device is removed from the kernel's list of
+PCI devices, the sysfs directory for it is removed, and the device will be
+removed from any drivers attached to it. Removal of PCI root buses is
+disallowed.
+
+Accessing legacy resources through sysfs
+----------------------------------------
+
+Legacy I/O port and ISA memory resources are also provided in sysfs if the
+underlying platform supports them. They're located in the PCI class hierarchy,
+e.g.::
+
+ /sys/class/pci_bus/0000:17/
+ |-- bridge -> ../../../devices/pci0000:17
+ |-- cpuaffinity
+ |-- legacy_io
+ `-- legacy_mem
+
+The legacy_io file is a read/write file that can be used by applications to
+do legacy port I/O. The application should open the file, seek to the desired
+port (e.g. 0x3e8) and do a read or a write of 1, 2 or 4 bytes. The legacy_mem
+file should be mmapped with an offset corresponding to the memory offset
+desired, e.g. 0xa0000 for the VGA frame buffer. The application can then
+simply dereference the returned pointer (after checking for errors of course)
+to access legacy memory space.
+
+Supporting PCI access on new platforms
+--------------------------------------
+
+In order to support PCI resource mapping as described above, Linux platform
+code should ideally define ARCH_GENERIC_PCI_MMAP_RESOURCE and use the generic
+implementation of that functionality. To support the historical interface of
+mmap() through files in /proc/bus/pci, platforms may also set HAVE_PCI_MMAP.
+
+Alternatively, platforms which set HAVE_PCI_MMAP may provide their own
+implementation of pci_mmap_page_range() instead of defining
+ARCH_GENERIC_PCI_MMAP_RESOURCE.
+
+Platforms which support write-combining maps of PCI resources must define
+arch_can_pci_mmap_wc() which shall evaluate to non-zero at runtime when
+write-combining is permitted. Platforms which support maps of I/O resources
+define arch_can_pci_mmap_io() similarly.
+
+Legacy resources are protected by the HAVE_PCI_LEGACY define. Platforms
+wishing to support legacy functionality should define it and provide
+pci_legacy_read, pci_legacy_write and pci_mmap_legacy_page_range functions.
quota
seq_file
sharedsubtree
- sysfs-pci
- sysfs-tagging
automount-support
+++ /dev/null
-.. SPDX-License-Identifier: GPL-2.0
-
-============================================
-Accessing PCI device resources through sysfs
-============================================
-
-sysfs, usually mounted at /sys, provides access to PCI resources on platforms
-that support it. For example, a given bus might look like this::
-
- /sys/devices/pci0000:17
- |-- 0000:17:00.0
- | |-- class
- | |-- config
- | |-- device
- | |-- enable
- | |-- irq
- | |-- local_cpus
- | |-- remove
- | |-- resource
- | |-- resource0
- | |-- resource1
- | |-- resource2
- | |-- revision
- | |-- rom
- | |-- subsystem_device
- | |-- subsystem_vendor
- | `-- vendor
- `-- ...
-
-The topmost element describes the PCI domain and bus number. In this case,
-the domain number is 0000 and the bus number is 17 (both values are in hex).
-This bus contains a single function device in slot 0. The domain and bus
-numbers are reproduced for convenience. Under the device directory are several
-files, each with their own function.
-
- =================== =====================================================
- file function
- =================== =====================================================
- class PCI class (ascii, ro)
- config PCI config space (binary, rw)
- device PCI device (ascii, ro)
- enable Whether the device is enabled (ascii, rw)
- irq IRQ number (ascii, ro)
- local_cpus nearby CPU mask (cpumask, ro)
- remove remove device from kernel's list (ascii, wo)
- resource PCI resource host addresses (ascii, ro)
- resource0..N PCI resource N, if present (binary, mmap, rw\ [1]_)
- resource0_wc..N_wc PCI WC map resource N, if prefetchable (binary, mmap)
- revision PCI revision (ascii, ro)
- rom PCI ROM resource, if present (binary, ro)
- subsystem_device PCI subsystem device (ascii, ro)
- subsystem_vendor PCI subsystem vendor (ascii, ro)
- vendor PCI vendor (ascii, ro)
- =================== =====================================================
-
-::
-
- ro - read only file
- rw - file is readable and writable
- wo - write only file
- mmap - file is mmapable
- ascii - file contains ascii text
- binary - file contains binary data
- cpumask - file contains a cpumask type
-
-.. [1] rw for IORESOURCE_IO (I/O port) regions only
-
-The read only files are informational, writes to them will be ignored, with
-the exception of the 'rom' file. Writable files can be used to perform
-actions on the device (e.g. changing config space, detaching a device).
-mmapable files are available via an mmap of the file at offset 0 and can be
-used to do actual device programming from userspace. Note that some platforms
-don't support mmapping of certain resources, so be sure to check the return
-value from any attempted mmap. The most notable of these are I/O port
-resources, which also provide read/write access.
-
-The 'enable' file provides a counter that indicates how many times the device
-has been enabled. If the 'enable' file currently returns '4', and a '1' is
-echoed into it, it will then return '5'. Echoing a '0' into it will decrease
-the count. Even when it returns to 0, though, some of the initialisation
-may not be reversed.
-
-The 'rom' file is special in that it provides read-only access to the device's
-ROM file, if available. It's disabled by default, however, so applications
-should write the string "1" to the file to enable it before attempting a read
-call, and disable it following the access by writing "0" to the file. Note
-that the device must be enabled for a rom read to return data successfully.
-In the event a driver is not bound to the device, it can be enabled using the
-'enable' file, documented above.
-
-The 'remove' file is used to remove the PCI device, by writing a non-zero
-integer to the file. This does not involve any kind of hot-plug functionality,
-e.g. powering off the device. The device is removed from the kernel's list of
-PCI devices, the sysfs directory for it is removed, and the device will be
-removed from any drivers attached to it. Removal of PCI root buses is
-disallowed.
-
-Accessing legacy resources through sysfs
-----------------------------------------
-
-Legacy I/O port and ISA memory resources are also provided in sysfs if the
-underlying platform supports them. They're located in the PCI class hierarchy,
-e.g.::
-
- /sys/class/pci_bus/0000:17/
- |-- bridge -> ../../../devices/pci0000:17
- |-- cpuaffinity
- |-- legacy_io
- `-- legacy_mem
-
-The legacy_io file is a read/write file that can be used by applications to
-do legacy port I/O. The application should open the file, seek to the desired
-port (e.g. 0x3e8) and do a read or a write of 1, 2 or 4 bytes. The legacy_mem
-file should be mmapped with an offset corresponding to the memory offset
-desired, e.g. 0xa0000 for the VGA frame buffer. The application can then
-simply dereference the returned pointer (after checking for errors of course)
-to access legacy memory space.
-
-Supporting PCI access on new platforms
---------------------------------------
-
-In order to support PCI resource mapping as described above, Linux platform
-code should ideally define ARCH_GENERIC_PCI_MMAP_RESOURCE and use the generic
-implementation of that functionality. To support the historical interface of
-mmap() through files in /proc/bus/pci, platforms may also set HAVE_PCI_MMAP.
-
-Alternatively, platforms which set HAVE_PCI_MMAP may provide their own
-implementation of pci_mmap_page_range() instead of defining
-ARCH_GENERIC_PCI_MMAP_RESOURCE.
-
-Platforms which support write-combining maps of PCI resources must define
-arch_can_pci_mmap_wc() which shall evaluate to non-zero at runtime when
-write-combining is permitted. Platforms which support maps of I/O resources
-define arch_can_pci_mmap_io() similarly.
-
-Legacy resources are protected by the HAVE_PCI_LEGACY define. Platforms
-wishing to support legacy functionality should define it and provide
-pci_legacy_read, pci_legacy_write and pci_mmap_legacy_page_range functions.
+++ /dev/null
-.. SPDX-License-Identifier: GPL-2.0
-
-=============
-Sysfs tagging
-=============
-
-(Taken almost verbatim from Eric Biederman's netns tagging patch
-commit msg)
-
-The problem. Network devices show up in sysfs and with the network
-namespace active multiple devices with the same name can show up in
-the same directory, ouch!
-
-To avoid that problem and allow existing applications in network
-namespaces to see the same interface that is currently presented in
-sysfs, sysfs now has tagging directory support.
-
-By using the network namespace pointers as tags to separate out
-the sysfs directory entries we ensure that we don't have conflicts
-in the directories and applications only see a limited set of
-the network devices.
-
-Each sysfs directory entry may be tagged with a namespace via the
-``void *ns member`` of its ``kernfs_node``. If a directory entry is tagged,
-then ``kernfs_node->flags`` will have a flag between KOBJ_NS_TYPE_NONE
-and KOBJ_NS_TYPES, and ns will point to the namespace to which it
-belongs.
-
-Each sysfs superblock's kernfs_super_info contains an array
-``void *ns[KOBJ_NS_TYPES]``. When a task in a tagging namespace
-kobj_nstype first mounts sysfs, a new superblock is created. It
-will be differentiated from other sysfs mounts by having its
-``s_fs_info->ns[kobj_nstype]`` set to the new namespace. Note that
-through bind mounting and mounts propagation, a task can easily view
-the contents of other namespaces' sysfs mounts. Therefore, when a
-namespace exits, it will call kobj_ns_exit() to invalidate any
-kernfs_node->ns pointers pointing to it.
-
-Users of this interface:
-
-- define a type in the ``kobj_ns_type`` enumeration.
-- call kobj_ns_type_register() with its ``kobj_ns_type_operations`` which has
-
- - current_ns() which returns current's namespace
- - netlink_ns() which returns a socket's namespace
- - initial_ns() which returns the initial namesapce
-
-- call kobj_ns_exit() when an individual tag is no longer valid
seg6-sysctl
strparser
switchdev
+ sysfs-tagging
tc-actions-env-rules
tcp-thin
team
--- /dev/null
+.. SPDX-License-Identifier: GPL-2.0
+
+=============
+Sysfs tagging
+=============
+
+(Taken almost verbatim from Eric Biederman's netns tagging patch
+commit msg)
+
+The problem. Network devices show up in sysfs and with the network
+namespace active multiple devices with the same name can show up in
+the same directory, ouch!
+
+To avoid that problem and allow existing applications in network
+namespaces to see the same interface that is currently presented in
+sysfs, sysfs now has tagging directory support.
+
+By using the network namespace pointers as tags to separate out
+the sysfs directory entries we ensure that we don't have conflicts
+in the directories and applications only see a limited set of
+the network devices.
+
+Each sysfs directory entry may be tagged with a namespace via the
+``void *ns member`` of its ``kernfs_node``. If a directory entry is tagged,
+then ``kernfs_node->flags`` will have a flag between KOBJ_NS_TYPE_NONE
+and KOBJ_NS_TYPES, and ns will point to the namespace to which it
+belongs.
+
+Each sysfs superblock's kernfs_super_info contains an array
+``void *ns[KOBJ_NS_TYPES]``. When a task in a tagging namespace
+kobj_nstype first mounts sysfs, a new superblock is created. It
+will be differentiated from other sysfs mounts by having its
+``s_fs_info->ns[kobj_nstype]`` set to the new namespace. Note that
+through bind mounting and mounts propagation, a task can easily view
+the contents of other namespaces' sysfs mounts. Therefore, when a
+namespace exits, it will call kobj_ns_exit() to invalidate any
+kernfs_node->ns pointers pointing to it.
+
+Users of this interface:
+
+- define a type in the ``kobj_ns_type`` enumeration.
+- call kobj_ns_type_register() with its ``kobj_ns_type_operations`` which has
+
+ - current_ns() which returns current's namespace
+ - netlink_ns() which returns a socket's namespace
+ - initial_ns() which returns the initial namesapce
+
+- call kobj_ns_exit() when an individual tag is no longer valid