simeth= [IA-64]
simscsi=
- slram= [HW,MTD]
-
- slab_merge [MM]
- Enable merging of slabs with similar size when the
- kernel is built without CONFIG_SLAB_MERGE_DEFAULT.
-
- slab_nomerge [MM]
- Disable merging of slabs with similar size. May be
- necessary if there is some reason to distinguish
- allocs to different slabs, especially in hardened
- environments where the risk of heap overflows and
- layout control by attackers can usually be
- frustrated by disabling merging. This will reduce
- most of the exposure of a heap attack to a single
- cache (risks via metadata attacks are mostly
- unchanged). Debug options disable merging on their
- own.
- For more information see Documentation/mm/slub.rst.
-
- slab_max_order= [MM, SLAB]
- Determines the maximum allowed order for slabs.
- A high setting may cause OOMs due to memory
- fragmentation. Defaults to 1 for systems with
- more than 32MB of RAM, 0 otherwise.
-
- slub_debug[=options[,slabs][;[options[,slabs]]...] [MM, SLUB]
- Enabling slub_debug allows one to determine the
+ slab_debug[=options[,slabs][;[options[,slabs]]...] [MM]
+ Enabling slab_debug allows one to determine the
culprit if slab objects become corrupted. Enabling
- slub_debug can create guard zones around objects and
+ slab_debug can create guard zones around objects and
may poison objects when not in use. Also tracks the
last alloc / free. For more information see
Documentation/mm/slub.rst.
+ (slub_debug legacy name also accepted for now)
- slub_max_order= [MM, SLUB]
+ slab_max_order= [MM]
Determines the maximum allowed order for slabs.
A high setting may cause OOMs due to memory
fragmentation. For more information see
Documentation/mm/slub.rst.
+ (slub_max_order legacy name also accepted for now)
+
+ slab_merge [MM]
+ Enable merging of slabs with similar size when the
+ kernel is built without CONFIG_SLAB_MERGE_DEFAULT.
+ (slub_merge legacy name also accepted for now)
- slub_min_objects= [MM, SLUB]
+ slab_min_objects= [MM]
The minimum number of objects per slab. SLUB will
- increase the slab order up to slub_max_order to
+ increase the slab order up to slab_max_order to
generate a sufficiently large slab able to contain
the number of objects indicated. The higher the number
of objects the smaller the overhead of tracking slabs
and the less frequently locks need to be acquired.
For more information see Documentation/mm/slub.rst.
+ (slub_min_objects legacy name also accepted for now)
- slub_min_order= [MM, SLUB]
+ slab_min_order= [MM]
Determines the minimum page order for slabs. Must be
- lower than slub_max_order.
- For more information see Documentation/mm/slub.rst.
+ lower or equal to slab_max_order. For more information see
+ Documentation/mm/slub.rst.
+ (slub_min_order legacy name also accepted for now)
- slub_merge [MM, SLUB]
- Same with slab_merge.
+ slab_nomerge [MM]
+ Disable merging of slabs with similar size. May be
+ necessary if there is some reason to distinguish
+ allocs to different slabs, especially in hardened
+ environments where the risk of heap overflows and
+ layout control by attackers can usually be
+ frustrated by disabling merging. This will reduce
+ most of the exposure of a heap attack to a single
+ cache (risks via metadata attacks are mostly
+ unchanged). Debug options disable merging on their
+ own.
+ For more information see Documentation/mm/slub.rst.
+ (slub_nomerge legacy name also accepted for now)
- slub_nomerge [MM, SLUB]
- Same with slab_nomerge. This is supported for legacy.
- See slab_nomerge for more information.
+ slram= [HW,MTD]
smart2= [HW]
Format: <io1>[,<io2>[,...,<io8>]]
* correctly.
*
* This should get caught by either memory tagging, KASan, or by using
- * CONFIG_SLUB_DEBUG=y and slub_debug=ZF (or CONFIG_SLUB_DEBUG_ON=y).
+ * CONFIG_SLUB_DEBUG=y and slab_debug=ZF (or CONFIG_SLUB_DEBUG_ON=y).
*/
static void lkdtm_SLAB_LINEAR_OVERFLOW(void)
{
help
Boot with debugging on by default. SLUB boots by default with
the runtime debug capabilities switched off. Enabling this is
- equivalent to specifying the "slub_debug" parameter on boot.
+ equivalent to specifying the "slab_debug" parameter on boot.
There is no support for more fine grained debug control like
- possible with slub_debug=xxx. SLUB debugging may be switched
+ possible with slab_debug=xxx. SLUB debugging may be switched
off in a kernel built with CONFIG_SLUB_DEBUG_ON by specifying
- "slub_debug=-".
+ "slab_debug=-".
config PAGE_OWNER
bool "Track page owner"
#endif
/*
- * Returns true if any of the specified slub_debug flags is enabled for the
+ * Returns true if any of the specified slab_debug flags is enabled for the
* cache. Use only for flags parsed by setup_slub_debug() as it also enables
* the static key.
*/
#ifdef CONFIG_SLUB_DEBUG
/*
- * If no slub_debug was enabled globally, the static key is not yet
+ * If no slab_debug was enabled globally, the static key is not yet
* enabled by setup_slub_debug(). Enable it if the cache is being
* created with any of the debugging flags passed explicitly.
* It's also possible that this is the first cache created with
}
/*
- * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
+ * kmalloc_info[] is to make slab_debug=,kmalloc-xx option work at boot time.
* kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is
* kmalloc-2M.
*/
/*
* Debugging flags that require metadata to be stored in the slab. These get
- * disabled when slub_debug=O is used and a cache's min order increases with
+ * disabled when slab_debug=O is used and a cache's min order increases with
* metadata.
*/
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
}
/*
- * Parse a block of slub_debug options. Blocks are delimited by ';'
+ * Parse a block of slab_debug options. Blocks are delimited by ';'
*
* @str: start of block
* @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
break;
default:
if (init)
- pr_err("slub_debug option '%c' unknown. skipped\n", *str);
+ pr_err("slab_debug option '%c' unknown. skipped\n", *str);
}
}
check_slabs:
/*
* For backwards compatibility, a single list of flags with list of
* slabs means debugging is only changed for those slabs, so the global
- * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
+ * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
* on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
* long as there is no option specifying flags without a slab list.
*/
return 1;
}
-__setup("slub_debug", setup_slub_debug);
+__setup("slab_debug", setup_slub_debug);
+__setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
/*
* kmem_cache_flags - apply debugging options to the cache
*
* Debug option(s) are applied to @flags. In addition to the debug
* option(s), if a slab name (or multiple) is specified i.e.
- * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
+ * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
* then only the select slabs will receive the debug option(s).
*/
slab_flags_t kmem_cache_flags(unsigned int object_size,
oo_order(s->min));
if (oo_order(s->min) > get_order(s->object_size))
- pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
+ pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n",
s->name);
for_each_kmem_cache_node(s, node, n) {
zero_size = orig_size;
/*
- * When slub_debug is enabled, avoid memory initialization integrated
+ * When slab_debug is enabled, avoid memory initialization integrated
* into KASAN and instead zero out the memory via the memset below with
* the proper size. Otherwise, KASAN might overwrite SLUB redzones and
* cause false-positive reports. This does not lead to a performance
- * penalty on production builds, as slub_debug is not intended to be
+ * penalty on production builds, as slab_debug is not intended to be
* enabled there.
*/
if (__slub_debug_enabled())
* activity on the partial lists which requires taking the list_lock. This is
* less a concern for large slabs though which are rarely used.
*
- * slub_max_order specifies the order where we begin to stop considering the
- * number of objects in a slab as critical. If we reach slub_max_order then
+ * slab_max_order specifies the order where we begin to stop considering the
+ * number of objects in a slab as critical. If we reach slab_max_order then
* we try to keep the page order as low as possible. So we accept more waste
* of space in favor of a small page order.
*
* and backing off gradually.
*
* We start with accepting at most 1/16 waste and try to find the
- * smallest order from min_objects-derived/slub_min_order up to
- * slub_max_order that will satisfy the constraint. Note that increasing
+ * smallest order from min_objects-derived/slab_min_order up to
+ * slab_max_order that will satisfy the constraint. Note that increasing
* the order can only result in same or less fractional waste, not more.
*
* If that fails, we increase the acceptable fraction of waste and try
* again. The last iteration with fraction of 1/2 would effectively
* accept any waste and give us the order determined by min_objects, as
- * long as at least single object fits within slub_max_order.
+ * long as at least single object fits within slab_max_order.
*/
for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
order = calc_slab_order(size, min_order, slub_max_order,
}
/*
- * Doh this slab cannot be placed using slub_max_order.
+ * Doh this slab cannot be placed using slab_max_order.
*/
order = get_order(size);
if (order <= MAX_PAGE_ORDER)
return 1;
}
-__setup("slub_min_order=", setup_slub_min_order);
+__setup("slab_min_order=", setup_slub_min_order);
+__setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
+
static int __init setup_slub_max_order(char *str)
{
return 1;
}
-__setup("slub_max_order=", setup_slub_max_order);
+__setup("slab_max_order=", setup_slub_max_order);
+__setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
static int __init setup_slub_min_objects(char *str)
{
return 1;
}
-__setup("slub_min_objects=", setup_slub_min_objects);
+__setup("slab_min_objects=", setup_slub_min_objects);
+__setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
#ifdef CONFIG_HARDENED_USERCOPY
/*