# SPDX-License-Identifier: GPL-2.0-only
+
+include $(src)/common/mmu/Makefile
+habanalabs-y += $(HL_COMMON_MMU_FILES)
+
+include $(src)/common/pci/Makefile
+habanalabs-y += $(HL_COMMON_PCI_FILES)
+
HL_COMMON_FILES := common/habanalabs_drv.o common/device.o common/context.o \
common/asid.o common/habanalabs_ioctl.o \
common/command_buffer.o common/hw_queue.o common/irq.o \
common/sysfs.o common/hwmon.o common/memory.o \
- common/command_submission.o common/mmu.o common/mmu_v1.o \
- common/firmware_if.o common/pci.o
+ common/command_submission.o common/firmware_if.o
+++ /dev/null
-// SPDX-License-Identifier: GPL-2.0
-
-/*
- * Copyright 2016-2020 HabanaLabs, Ltd.
- * All Rights Reserved.
- */
-
-#include <linux/slab.h>
-
-#include "habanalabs.h"
-
-bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr)
-{
- struct asic_fixed_properties *prop = &hdev->asic_prop;
-
- return hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
- prop->dmmu.start_addr,
- prop->dmmu.end_addr);
-}
-
-/**
- * hl_mmu_init() - initialize the MMU module.
- * @hdev: habanalabs device structure.
- *
- * Return: 0 for success, non-zero for failure.
- */
-int hl_mmu_init(struct hl_device *hdev)
-{
- int rc = -EOPNOTSUPP;
-
- if (!hdev->mmu_enable)
- return 0;
-
- if (hdev->mmu_func[MMU_DR_PGT].init != NULL) {
- rc = hdev->mmu_func[MMU_DR_PGT].init(hdev);
- if (rc)
- return rc;
- }
-
- if (hdev->mmu_func[MMU_HR_PGT].init != NULL)
- rc = hdev->mmu_func[MMU_HR_PGT].init(hdev);
-
- return rc;
-}
-
-/**
- * hl_mmu_fini() - release the MMU module.
- * @hdev: habanalabs device structure.
- *
- * This function does the following:
- * - Disable MMU in H/W.
- * - Free the pgt_infos pool.
- *
- * All contexts should be freed before calling this function.
- */
-void hl_mmu_fini(struct hl_device *hdev)
-{
- if (!hdev->mmu_enable)
- return;
-
- if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
- hdev->mmu_func[MMU_DR_PGT].fini(hdev);
-
- if (hdev->mmu_func[MMU_HR_PGT].fini != NULL)
- hdev->mmu_func[MMU_HR_PGT].fini(hdev);
-}
-
-/**
- * hl_mmu_ctx_init() - initialize a context for using the MMU module.
- * @ctx: pointer to the context structure to initialize.
- *
- * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all
- * page tables hops related to this context.
- * Return: 0 on success, non-zero otherwise.
- */
-int hl_mmu_ctx_init(struct hl_ctx *ctx)
-{
- struct hl_device *hdev = ctx->hdev;
- int rc = -EOPNOTSUPP;
-
- if (!hdev->mmu_enable)
- return 0;
-
- mutex_init(&ctx->mmu_lock);
-
- if (hdev->mmu_func[MMU_DR_PGT].ctx_init != NULL) {
- rc = hdev->mmu_func[MMU_DR_PGT].ctx_init(ctx);
- if (rc)
- return rc;
- }
-
- if (hdev->mmu_func[MMU_HR_PGT].ctx_init != NULL)
- rc = hdev->mmu_func[MMU_HR_PGT].ctx_init(ctx);
-
- return rc;
-}
-
-/*
- * hl_mmu_ctx_fini - disable a ctx from using the mmu module
- *
- * @ctx: pointer to the context structure
- *
- * This function does the following:
- * - Free any pgts which were not freed yet
- * - Free the mutex
- * - Free DRAM default page mapping hops
- */
-void hl_mmu_ctx_fini(struct hl_ctx *ctx)
-{
- struct hl_device *hdev = ctx->hdev;
-
- if (!hdev->mmu_enable)
- return;
-
- if (hdev->mmu_func[MMU_DR_PGT].ctx_fini != NULL)
- hdev->mmu_func[MMU_DR_PGT].ctx_fini(ctx);
-
- if (hdev->mmu_func[MMU_HR_PGT].ctx_fini != NULL)
- hdev->mmu_func[MMU_HR_PGT].ctx_fini(ctx);
-
- mutex_destroy(&ctx->mmu_lock);
-}
-
-/*
- * hl_mmu_unmap_page - unmaps a virtual addr
- *
- * @ctx: pointer to the context structure
- * @virt_addr: virt addr to map from
- * @page_size: size of the page to unmap
- * @flush_pte: whether to do a PCI flush
- *
- * This function does the following:
- * - Check that the virt addr is mapped
- * - Unmap the virt addr and frees pgts if possible
- * - Returns 0 on success, -EINVAL if the given addr is not mapped
- *
- * Because this function changes the page tables in the device and because it
- * changes the MMU hash, it must be protected by a lock.
- * However, because it maps only a single page, the lock should be implemented
- * in a higher level in order to protect the entire mapping of the memory area
- *
- * For optimization reasons PCI flush may be requested once after unmapping of
- * large area.
- */
-int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size,
- bool flush_pte)
-{
- struct hl_device *hdev = ctx->hdev;
- struct asic_fixed_properties *prop = &hdev->asic_prop;
- struct hl_mmu_properties *mmu_prop;
- u64 real_virt_addr;
- u32 real_page_size, npages;
- int i, rc = 0, pgt_residency;
- bool is_dram_addr;
-
- if (!hdev->mmu_enable)
- return 0;
-
- is_dram_addr = hl_is_dram_va(hdev, virt_addr);
-
- if (is_dram_addr)
- mmu_prop = &prop->dmmu;
- else if ((page_size % prop->pmmu_huge.page_size) == 0)
- mmu_prop = &prop->pmmu_huge;
- else
- mmu_prop = &prop->pmmu;
-
- pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
- /*
- * The H/W handles mapping of specific page sizes. Hence if the page
- * size is bigger, we break it to sub-pages and unmap them separately.
- */
- if ((page_size % mmu_prop->page_size) == 0) {
- real_page_size = mmu_prop->page_size;
- } else {
- /*
- * MMU page size may differ from DRAM page size.
- * In such case work with the DRAM page size and let the MMU
- * scrambling routine to handle this mismatch when
- * calculating the address to remove from the MMU page table
- */
- if (is_dram_addr && ((page_size % prop->dram_page_size) == 0)) {
- real_page_size = prop->dram_page_size;
- } else {
- dev_err(hdev->dev,
- "page size of %u is not %uKB aligned, can't unmap\n",
- page_size, mmu_prop->page_size >> 10);
-
- return -EFAULT;
- }
- }
-
- npages = page_size / real_page_size;
- real_virt_addr = virt_addr;
-
- for (i = 0 ; i < npages ; i++) {
- rc = hdev->mmu_func[pgt_residency].unmap(ctx,
- real_virt_addr, is_dram_addr);
- if (rc)
- break;
-
- real_virt_addr += real_page_size;
- }
-
- if (flush_pte)
- hdev->mmu_func[pgt_residency].flush(ctx);
-
- return rc;
-}
-
-/*
- * hl_mmu_map_page - maps a virtual addr to physical addr
- *
- * @ctx: pointer to the context structure
- * @virt_addr: virt addr to map from
- * @phys_addr: phys addr to map to
- * @page_size: physical page size
- * @flush_pte: whether to do a PCI flush
- *
- * This function does the following:
- * - Check that the virt addr is not mapped
- * - Allocate pgts as necessary in order to map the virt addr to the phys
- * - Returns 0 on success, -EINVAL if addr is already mapped, or -ENOMEM.
- *
- * Because this function changes the page tables in the device and because it
- * changes the MMU hash, it must be protected by a lock.
- * However, because it maps only a single page, the lock should be implemented
- * in a higher level in order to protect the entire mapping of the memory area
- *
- * For optimization reasons PCI flush may be requested once after mapping of
- * large area.
- */
-int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
- u32 page_size, bool flush_pte)
-{
- struct hl_device *hdev = ctx->hdev;
- struct asic_fixed_properties *prop = &hdev->asic_prop;
- struct hl_mmu_properties *mmu_prop;
- u64 real_virt_addr, real_phys_addr;
- u32 real_page_size, npages;
- int i, rc, pgt_residency, mapped_cnt = 0;
- bool is_dram_addr;
-
-
- if (!hdev->mmu_enable)
- return 0;
-
- is_dram_addr = hl_is_dram_va(hdev, virt_addr);
-
- if (is_dram_addr)
- mmu_prop = &prop->dmmu;
- else if ((page_size % prop->pmmu_huge.page_size) == 0)
- mmu_prop = &prop->pmmu_huge;
- else
- mmu_prop = &prop->pmmu;
-
- pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
-
- /*
- * The H/W handles mapping of specific page sizes. Hence if the page
- * size is bigger, we break it to sub-pages and map them separately.
- */
- if ((page_size % mmu_prop->page_size) == 0) {
- real_page_size = mmu_prop->page_size;
- } else if (is_dram_addr && ((page_size % prop->dram_page_size) == 0) &&
- (prop->dram_page_size < mmu_prop->page_size)) {
- /*
- * MMU page size may differ from DRAM page size.
- * In such case work with the DRAM page size and let the MMU
- * scrambling routine handle this mismatch when calculating
- * the address to place in the MMU page table. (in that case
- * also make sure that the dram_page_size smaller than the
- * mmu page size)
- */
- real_page_size = prop->dram_page_size;
- } else {
- dev_err(hdev->dev,
- "page size of %u is not %uKB aligned, can't map\n",
- page_size, mmu_prop->page_size >> 10);
-
- return -EFAULT;
- }
-
- /*
- * Verify that the phys and virt addresses are aligned with the
- * MMU page size (in dram this means checking the address and MMU
- * after scrambling)
- */
- if ((is_dram_addr &&
- ((hdev->asic_funcs->scramble_vaddr(hdev, phys_addr) &
- (mmu_prop->page_size - 1)) ||
- (hdev->asic_funcs->scramble_vaddr(hdev, virt_addr) &
- (mmu_prop->page_size - 1)))) ||
- (!is_dram_addr && ((phys_addr & (real_page_size - 1)) ||
- (virt_addr & (real_page_size - 1)))))
- dev_crit(hdev->dev,
- "Mapping address 0x%llx with virtual address 0x%llx and page size of 0x%x is erroneous! Addresses must be divisible by page size",
- phys_addr, virt_addr, real_page_size);
-
- npages = page_size / real_page_size;
- real_virt_addr = virt_addr;
- real_phys_addr = phys_addr;
-
- for (i = 0 ; i < npages ; i++) {
- rc = hdev->mmu_func[pgt_residency].map(ctx,
- real_virt_addr, real_phys_addr,
- real_page_size, is_dram_addr);
- if (rc)
- goto err;
-
- real_virt_addr += real_page_size;
- real_phys_addr += real_page_size;
- mapped_cnt++;
- }
-
- if (flush_pte)
- hdev->mmu_func[pgt_residency].flush(ctx);
-
- return 0;
-
-err:
- real_virt_addr = virt_addr;
- for (i = 0 ; i < mapped_cnt ; i++) {
- if (hdev->mmu_func[pgt_residency].unmap(ctx,
- real_virt_addr, is_dram_addr))
- dev_warn_ratelimited(hdev->dev,
- "failed to unmap va: 0x%llx\n", real_virt_addr);
-
- real_virt_addr += real_page_size;
- }
-
- hdev->mmu_func[pgt_residency].flush(ctx);
-
- return rc;
-}
-
-/*
- * hl_mmu_map_contiguous - implements a wrapper for hl_mmu_map_page
- * for mapping contiguous physical memory
- *
- * @ctx: pointer to the context structure
- * @virt_addr: virt addr to map from
- * @phys_addr: phys addr to map to
- * @size: size to map
- *
- */
-int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
- u64 phys_addr, u32 size)
-{
- struct hl_device *hdev = ctx->hdev;
- struct asic_fixed_properties *prop = &hdev->asic_prop;
- u64 curr_va, curr_pa;
- u32 page_size;
- bool flush_pte;
- int rc = 0, off;
-
- if (hl_mem_area_inside_range(virt_addr, size,
- prop->dmmu.start_addr, prop->dmmu.end_addr))
- page_size = prop->dmmu.page_size;
- else if (hl_mem_area_inside_range(virt_addr, size,
- prop->pmmu.start_addr, prop->pmmu.end_addr))
- page_size = prop->pmmu.page_size;
- else if (hl_mem_area_inside_range(virt_addr, size,
- prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr))
- page_size = prop->pmmu_huge.page_size;
- else
- return -EINVAL;
-
- for (off = 0 ; off < size ; off += page_size) {
- curr_va = virt_addr + off;
- curr_pa = phys_addr + off;
- flush_pte = (off + page_size) >= size;
- rc = hl_mmu_map_page(ctx, curr_va, curr_pa, page_size,
- flush_pte);
- if (rc) {
- dev_err(hdev->dev,
- "Map failed for va 0x%llx to pa 0x%llx\n",
- curr_va, curr_pa);
- goto unmap;
- }
- }
-
- return rc;
-
-unmap:
- for (; off >= 0 ; off -= page_size) {
- curr_va = virt_addr + off;
- flush_pte = (off - (s32) page_size) < 0;
- if (hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte))
- dev_warn_ratelimited(hdev->dev,
- "failed to unmap va 0x%llx\n", curr_va);
- }
-
- return rc;
-}
-
-/*
- * hl_mmu_unmap_contiguous - implements a wrapper for hl_mmu_unmap_page
- * for unmapping contiguous physical memory
- *
- * @ctx: pointer to the context structure
- * @virt_addr: virt addr to unmap
- * @size: size to unmap
- *
- */
-int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size)
-{
- struct hl_device *hdev = ctx->hdev;
- struct asic_fixed_properties *prop = &hdev->asic_prop;
- u64 curr_va;
- u32 page_size;
- bool flush_pte;
- int rc = 0, off;
-
- if (hl_mem_area_inside_range(virt_addr, size,
- prop->dmmu.start_addr, prop->dmmu.end_addr))
- page_size = prop->dmmu.page_size;
- else if (hl_mem_area_inside_range(virt_addr, size,
- prop->pmmu.start_addr, prop->pmmu.end_addr))
- page_size = prop->pmmu.page_size;
- else if (hl_mem_area_inside_range(virt_addr, size,
- prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr))
- page_size = prop->pmmu_huge.page_size;
- else
- return -EINVAL;
-
- for (off = 0 ; off < size ; off += page_size) {
- curr_va = virt_addr + off;
- flush_pte = (off + page_size) >= size;
- rc = hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte);
- if (rc)
- dev_warn_ratelimited(hdev->dev,
- "Unmap failed for va 0x%llx\n", curr_va);
- }
-
- return rc;
-}
-
-/*
- * hl_mmu_swap_out - marks all mapping of the given ctx as swapped out
- *
- * @ctx: pointer to the context structure
- *
- */
-void hl_mmu_swap_out(struct hl_ctx *ctx)
-{
- struct hl_device *hdev = ctx->hdev;
-
- if (!hdev->mmu_enable)
- return;
-
- if (hdev->mmu_func[MMU_DR_PGT].swap_out != NULL)
- hdev->mmu_func[MMU_DR_PGT].swap_out(ctx);
-
- if (hdev->mmu_func[MMU_HR_PGT].swap_out != NULL)
- hdev->mmu_func[MMU_HR_PGT].swap_out(ctx);
-}
-
-/*
- * hl_mmu_swap_in - marks all mapping of the given ctx as swapped in
- *
- * @ctx: pointer to the context structure
- *
- */
-void hl_mmu_swap_in(struct hl_ctx *ctx)
-{
- struct hl_device *hdev = ctx->hdev;
-
- if (!hdev->mmu_enable)
- return;
-
- if (hdev->mmu_func[MMU_DR_PGT].swap_in != NULL)
- hdev->mmu_func[MMU_DR_PGT].swap_in(ctx);
-
- if (hdev->mmu_func[MMU_HR_PGT].swap_in != NULL)
- hdev->mmu_func[MMU_HR_PGT].swap_in(ctx);
-}
-
-int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr)
-{
- struct hl_mmu_hop_info hops;
- u64 tmp_addr;
- int rc;
-
- rc = hl_mmu_get_tlb_info(ctx, virt_addr, &hops);
- if (rc)
- return rc;
-
- /* last hop holds the phys address and flags */
- tmp_addr = hops.hop_info[hops.used_hops - 1].hop_pte_val;
- *phys_addr = (tmp_addr & HOP_PHYS_ADDR_MASK) | (virt_addr & FLAGS_MASK);
-
- return 0;
-}
-
-int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
- struct hl_mmu_hop_info *hops)
-{
- struct hl_device *hdev = ctx->hdev;
- struct asic_fixed_properties *prop = &hdev->asic_prop;
- struct hl_mmu_properties *mmu_prop;
- int rc;
- bool is_dram_addr;
-
- if (!hdev->mmu_enable)
- return -EOPNOTSUPP;
-
- hops->scrambled_vaddr = virt_addr; /* assume no scrambling */
-
- is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
- prop->dmmu.start_addr,
- prop->dmmu.end_addr);
-
- /* host-residency is the same in PMMU and HPMMU, use one of them */
- mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu;
-
- mutex_lock(&ctx->mmu_lock);
-
- if (mmu_prop->host_resident)
- rc = hdev->mmu_func[MMU_HR_PGT].get_tlb_info(ctx,
- virt_addr, hops);
- else
- rc = hdev->mmu_func[MMU_DR_PGT].get_tlb_info(ctx,
- virt_addr, hops);
-
- mutex_unlock(&ctx->mmu_lock);
-
- return rc;
-}
-
-int hl_mmu_if_set_funcs(struct hl_device *hdev)
-{
- if (!hdev->mmu_enable)
- return 0;
-
- switch (hdev->asic_type) {
- case ASIC_GOYA:
- case ASIC_GAUDI:
- hl_mmu_v1_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]);
- break;
- default:
- dev_err(hdev->dev, "Unrecognized ASIC type %d\n",
- hdev->asic_type);
- return -EOPNOTSUPP;
- }
-
- return 0;
-}
-
-/**
- * hl_mmu_scramble_vaddr() - The generic mmu virtual address scrambling routine.
- * @hdev: pointer to device data.
- * @virt_addr: The virtual address to scramble.
- *
- * Return: The scrambled virtual address.
- */
-u64 hl_mmu_scramble_vaddr(struct hl_device *hdev, u64 virt_addr)
-{
- return virt_addr;
-}
--- /dev/null
+# SPDX-License-Identifier: GPL-2.0-only
+HL_COMMON_MMU_FILES := common/mmu/mmu.o common/mmu/mmu_v1.o
--- /dev/null
+// SPDX-License-Identifier: GPL-2.0
+
+/*
+ * Copyright 2016-2020 HabanaLabs, Ltd.
+ * All Rights Reserved.
+ */
+
+#include <linux/slab.h>
+
+#include "../habanalabs.h"
+
+bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+
+ return hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
+ prop->dmmu.start_addr,
+ prop->dmmu.end_addr);
+}
+
+/**
+ * hl_mmu_init() - initialize the MMU module.
+ * @hdev: habanalabs device structure.
+ *
+ * Return: 0 for success, non-zero for failure.
+ */
+int hl_mmu_init(struct hl_device *hdev)
+{
+ int rc = -EOPNOTSUPP;
+
+ if (!hdev->mmu_enable)
+ return 0;
+
+ if (hdev->mmu_func[MMU_DR_PGT].init != NULL) {
+ rc = hdev->mmu_func[MMU_DR_PGT].init(hdev);
+ if (rc)
+ return rc;
+ }
+
+ if (hdev->mmu_func[MMU_HR_PGT].init != NULL)
+ rc = hdev->mmu_func[MMU_HR_PGT].init(hdev);
+
+ return rc;
+}
+
+/**
+ * hl_mmu_fini() - release the MMU module.
+ * @hdev: habanalabs device structure.
+ *
+ * This function does the following:
+ * - Disable MMU in H/W.
+ * - Free the pgt_infos pool.
+ *
+ * All contexts should be freed before calling this function.
+ */
+void hl_mmu_fini(struct hl_device *hdev)
+{
+ if (!hdev->mmu_enable)
+ return;
+
+ if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
+ hdev->mmu_func[MMU_DR_PGT].fini(hdev);
+
+ if (hdev->mmu_func[MMU_HR_PGT].fini != NULL)
+ hdev->mmu_func[MMU_HR_PGT].fini(hdev);
+}
+
+/**
+ * hl_mmu_ctx_init() - initialize a context for using the MMU module.
+ * @ctx: pointer to the context structure to initialize.
+ *
+ * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all
+ * page tables hops related to this context.
+ * Return: 0 on success, non-zero otherwise.
+ */
+int hl_mmu_ctx_init(struct hl_ctx *ctx)
+{
+ struct hl_device *hdev = ctx->hdev;
+ int rc = -EOPNOTSUPP;
+
+ if (!hdev->mmu_enable)
+ return 0;
+
+ mutex_init(&ctx->mmu_lock);
+
+ if (hdev->mmu_func[MMU_DR_PGT].ctx_init != NULL) {
+ rc = hdev->mmu_func[MMU_DR_PGT].ctx_init(ctx);
+ if (rc)
+ return rc;
+ }
+
+ if (hdev->mmu_func[MMU_HR_PGT].ctx_init != NULL)
+ rc = hdev->mmu_func[MMU_HR_PGT].ctx_init(ctx);
+
+ return rc;
+}
+
+/*
+ * hl_mmu_ctx_fini - disable a ctx from using the mmu module
+ *
+ * @ctx: pointer to the context structure
+ *
+ * This function does the following:
+ * - Free any pgts which were not freed yet
+ * - Free the mutex
+ * - Free DRAM default page mapping hops
+ */
+void hl_mmu_ctx_fini(struct hl_ctx *ctx)
+{
+ struct hl_device *hdev = ctx->hdev;
+
+ if (!hdev->mmu_enable)
+ return;
+
+ if (hdev->mmu_func[MMU_DR_PGT].ctx_fini != NULL)
+ hdev->mmu_func[MMU_DR_PGT].ctx_fini(ctx);
+
+ if (hdev->mmu_func[MMU_HR_PGT].ctx_fini != NULL)
+ hdev->mmu_func[MMU_HR_PGT].ctx_fini(ctx);
+
+ mutex_destroy(&ctx->mmu_lock);
+}
+
+/*
+ * hl_mmu_unmap_page - unmaps a virtual addr
+ *
+ * @ctx: pointer to the context structure
+ * @virt_addr: virt addr to map from
+ * @page_size: size of the page to unmap
+ * @flush_pte: whether to do a PCI flush
+ *
+ * This function does the following:
+ * - Check that the virt addr is mapped
+ * - Unmap the virt addr and frees pgts if possible
+ * - Returns 0 on success, -EINVAL if the given addr is not mapped
+ *
+ * Because this function changes the page tables in the device and because it
+ * changes the MMU hash, it must be protected by a lock.
+ * However, because it maps only a single page, the lock should be implemented
+ * in a higher level in order to protect the entire mapping of the memory area
+ *
+ * For optimization reasons PCI flush may be requested once after unmapping of
+ * large area.
+ */
+int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size,
+ bool flush_pte)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct hl_mmu_properties *mmu_prop;
+ u64 real_virt_addr;
+ u32 real_page_size, npages;
+ int i, rc = 0, pgt_residency;
+ bool is_dram_addr;
+
+ if (!hdev->mmu_enable)
+ return 0;
+
+ is_dram_addr = hl_is_dram_va(hdev, virt_addr);
+
+ if (is_dram_addr)
+ mmu_prop = &prop->dmmu;
+ else if ((page_size % prop->pmmu_huge.page_size) == 0)
+ mmu_prop = &prop->pmmu_huge;
+ else
+ mmu_prop = &prop->pmmu;
+
+ pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
+ /*
+ * The H/W handles mapping of specific page sizes. Hence if the page
+ * size is bigger, we break it to sub-pages and unmap them separately.
+ */
+ if ((page_size % mmu_prop->page_size) == 0) {
+ real_page_size = mmu_prop->page_size;
+ } else {
+ /*
+ * MMU page size may differ from DRAM page size.
+ * In such case work with the DRAM page size and let the MMU
+ * scrambling routine to handle this mismatch when
+ * calculating the address to remove from the MMU page table
+ */
+ if (is_dram_addr && ((page_size % prop->dram_page_size) == 0)) {
+ real_page_size = prop->dram_page_size;
+ } else {
+ dev_err(hdev->dev,
+ "page size of %u is not %uKB aligned, can't unmap\n",
+ page_size, mmu_prop->page_size >> 10);
+
+ return -EFAULT;
+ }
+ }
+
+ npages = page_size / real_page_size;
+ real_virt_addr = virt_addr;
+
+ for (i = 0 ; i < npages ; i++) {
+ rc = hdev->mmu_func[pgt_residency].unmap(ctx,
+ real_virt_addr, is_dram_addr);
+ if (rc)
+ break;
+
+ real_virt_addr += real_page_size;
+ }
+
+ if (flush_pte)
+ hdev->mmu_func[pgt_residency].flush(ctx);
+
+ return rc;
+}
+
+/*
+ * hl_mmu_map_page - maps a virtual addr to physical addr
+ *
+ * @ctx: pointer to the context structure
+ * @virt_addr: virt addr to map from
+ * @phys_addr: phys addr to map to
+ * @page_size: physical page size
+ * @flush_pte: whether to do a PCI flush
+ *
+ * This function does the following:
+ * - Check that the virt addr is not mapped
+ * - Allocate pgts as necessary in order to map the virt addr to the phys
+ * - Returns 0 on success, -EINVAL if addr is already mapped, or -ENOMEM.
+ *
+ * Because this function changes the page tables in the device and because it
+ * changes the MMU hash, it must be protected by a lock.
+ * However, because it maps only a single page, the lock should be implemented
+ * in a higher level in order to protect the entire mapping of the memory area
+ *
+ * For optimization reasons PCI flush may be requested once after mapping of
+ * large area.
+ */
+int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
+ u32 page_size, bool flush_pte)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct hl_mmu_properties *mmu_prop;
+ u64 real_virt_addr, real_phys_addr;
+ u32 real_page_size, npages;
+ int i, rc, pgt_residency, mapped_cnt = 0;
+ bool is_dram_addr;
+
+
+ if (!hdev->mmu_enable)
+ return 0;
+
+ is_dram_addr = hl_is_dram_va(hdev, virt_addr);
+
+ if (is_dram_addr)
+ mmu_prop = &prop->dmmu;
+ else if ((page_size % prop->pmmu_huge.page_size) == 0)
+ mmu_prop = &prop->pmmu_huge;
+ else
+ mmu_prop = &prop->pmmu;
+
+ pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
+
+ /*
+ * The H/W handles mapping of specific page sizes. Hence if the page
+ * size is bigger, we break it to sub-pages and map them separately.
+ */
+ if ((page_size % mmu_prop->page_size) == 0) {
+ real_page_size = mmu_prop->page_size;
+ } else if (is_dram_addr && ((page_size % prop->dram_page_size) == 0) &&
+ (prop->dram_page_size < mmu_prop->page_size)) {
+ /*
+ * MMU page size may differ from DRAM page size.
+ * In such case work with the DRAM page size and let the MMU
+ * scrambling routine handle this mismatch when calculating
+ * the address to place in the MMU page table. (in that case
+ * also make sure that the dram_page_size smaller than the
+ * mmu page size)
+ */
+ real_page_size = prop->dram_page_size;
+ } else {
+ dev_err(hdev->dev,
+ "page size of %u is not %uKB aligned, can't map\n",
+ page_size, mmu_prop->page_size >> 10);
+
+ return -EFAULT;
+ }
+
+ /*
+ * Verify that the phys and virt addresses are aligned with the
+ * MMU page size (in dram this means checking the address and MMU
+ * after scrambling)
+ */
+ if ((is_dram_addr &&
+ ((hdev->asic_funcs->scramble_vaddr(hdev, phys_addr) &
+ (mmu_prop->page_size - 1)) ||
+ (hdev->asic_funcs->scramble_vaddr(hdev, virt_addr) &
+ (mmu_prop->page_size - 1)))) ||
+ (!is_dram_addr && ((phys_addr & (real_page_size - 1)) ||
+ (virt_addr & (real_page_size - 1)))))
+ dev_crit(hdev->dev,
+ "Mapping address 0x%llx with virtual address 0x%llx and page size of 0x%x is erroneous! Addresses must be divisible by page size",
+ phys_addr, virt_addr, real_page_size);
+
+ npages = page_size / real_page_size;
+ real_virt_addr = virt_addr;
+ real_phys_addr = phys_addr;
+
+ for (i = 0 ; i < npages ; i++) {
+ rc = hdev->mmu_func[pgt_residency].map(ctx,
+ real_virt_addr, real_phys_addr,
+ real_page_size, is_dram_addr);
+ if (rc)
+ goto err;
+
+ real_virt_addr += real_page_size;
+ real_phys_addr += real_page_size;
+ mapped_cnt++;
+ }
+
+ if (flush_pte)
+ hdev->mmu_func[pgt_residency].flush(ctx);
+
+ return 0;
+
+err:
+ real_virt_addr = virt_addr;
+ for (i = 0 ; i < mapped_cnt ; i++) {
+ if (hdev->mmu_func[pgt_residency].unmap(ctx,
+ real_virt_addr, is_dram_addr))
+ dev_warn_ratelimited(hdev->dev,
+ "failed to unmap va: 0x%llx\n", real_virt_addr);
+
+ real_virt_addr += real_page_size;
+ }
+
+ hdev->mmu_func[pgt_residency].flush(ctx);
+
+ return rc;
+}
+
+/*
+ * hl_mmu_map_contiguous - implements a wrapper for hl_mmu_map_page
+ * for mapping contiguous physical memory
+ *
+ * @ctx: pointer to the context structure
+ * @virt_addr: virt addr to map from
+ * @phys_addr: phys addr to map to
+ * @size: size to map
+ *
+ */
+int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
+ u64 phys_addr, u32 size)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u64 curr_va, curr_pa;
+ u32 page_size;
+ bool flush_pte;
+ int rc = 0, off;
+
+ if (hl_mem_area_inside_range(virt_addr, size,
+ prop->dmmu.start_addr, prop->dmmu.end_addr))
+ page_size = prop->dmmu.page_size;
+ else if (hl_mem_area_inside_range(virt_addr, size,
+ prop->pmmu.start_addr, prop->pmmu.end_addr))
+ page_size = prop->pmmu.page_size;
+ else if (hl_mem_area_inside_range(virt_addr, size,
+ prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr))
+ page_size = prop->pmmu_huge.page_size;
+ else
+ return -EINVAL;
+
+ for (off = 0 ; off < size ; off += page_size) {
+ curr_va = virt_addr + off;
+ curr_pa = phys_addr + off;
+ flush_pte = (off + page_size) >= size;
+ rc = hl_mmu_map_page(ctx, curr_va, curr_pa, page_size,
+ flush_pte);
+ if (rc) {
+ dev_err(hdev->dev,
+ "Map failed for va 0x%llx to pa 0x%llx\n",
+ curr_va, curr_pa);
+ goto unmap;
+ }
+ }
+
+ return rc;
+
+unmap:
+ for (; off >= 0 ; off -= page_size) {
+ curr_va = virt_addr + off;
+ flush_pte = (off - (s32) page_size) < 0;
+ if (hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte))
+ dev_warn_ratelimited(hdev->dev,
+ "failed to unmap va 0x%llx\n", curr_va);
+ }
+
+ return rc;
+}
+
+/*
+ * hl_mmu_unmap_contiguous - implements a wrapper for hl_mmu_unmap_page
+ * for unmapping contiguous physical memory
+ *
+ * @ctx: pointer to the context structure
+ * @virt_addr: virt addr to unmap
+ * @size: size to unmap
+ *
+ */
+int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u64 curr_va;
+ u32 page_size;
+ bool flush_pte;
+ int rc = 0, off;
+
+ if (hl_mem_area_inside_range(virt_addr, size,
+ prop->dmmu.start_addr, prop->dmmu.end_addr))
+ page_size = prop->dmmu.page_size;
+ else if (hl_mem_area_inside_range(virt_addr, size,
+ prop->pmmu.start_addr, prop->pmmu.end_addr))
+ page_size = prop->pmmu.page_size;
+ else if (hl_mem_area_inside_range(virt_addr, size,
+ prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr))
+ page_size = prop->pmmu_huge.page_size;
+ else
+ return -EINVAL;
+
+ for (off = 0 ; off < size ; off += page_size) {
+ curr_va = virt_addr + off;
+ flush_pte = (off + page_size) >= size;
+ rc = hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte);
+ if (rc)
+ dev_warn_ratelimited(hdev->dev,
+ "Unmap failed for va 0x%llx\n", curr_va);
+ }
+
+ return rc;
+}
+
+/*
+ * hl_mmu_swap_out - marks all mapping of the given ctx as swapped out
+ *
+ * @ctx: pointer to the context structure
+ *
+ */
+void hl_mmu_swap_out(struct hl_ctx *ctx)
+{
+ struct hl_device *hdev = ctx->hdev;
+
+ if (!hdev->mmu_enable)
+ return;
+
+ if (hdev->mmu_func[MMU_DR_PGT].swap_out != NULL)
+ hdev->mmu_func[MMU_DR_PGT].swap_out(ctx);
+
+ if (hdev->mmu_func[MMU_HR_PGT].swap_out != NULL)
+ hdev->mmu_func[MMU_HR_PGT].swap_out(ctx);
+}
+
+/*
+ * hl_mmu_swap_in - marks all mapping of the given ctx as swapped in
+ *
+ * @ctx: pointer to the context structure
+ *
+ */
+void hl_mmu_swap_in(struct hl_ctx *ctx)
+{
+ struct hl_device *hdev = ctx->hdev;
+
+ if (!hdev->mmu_enable)
+ return;
+
+ if (hdev->mmu_func[MMU_DR_PGT].swap_in != NULL)
+ hdev->mmu_func[MMU_DR_PGT].swap_in(ctx);
+
+ if (hdev->mmu_func[MMU_HR_PGT].swap_in != NULL)
+ hdev->mmu_func[MMU_HR_PGT].swap_in(ctx);
+}
+
+int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr)
+{
+ struct hl_mmu_hop_info hops;
+ u64 tmp_addr;
+ int rc;
+
+ rc = hl_mmu_get_tlb_info(ctx, virt_addr, &hops);
+ if (rc)
+ return rc;
+
+ /* last hop holds the phys address and flags */
+ tmp_addr = hops.hop_info[hops.used_hops - 1].hop_pte_val;
+ *phys_addr = (tmp_addr & HOP_PHYS_ADDR_MASK) | (virt_addr & FLAGS_MASK);
+
+ return 0;
+}
+
+int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
+ struct hl_mmu_hop_info *hops)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct hl_mmu_properties *mmu_prop;
+ int rc;
+ bool is_dram_addr;
+
+ if (!hdev->mmu_enable)
+ return -EOPNOTSUPP;
+
+ hops->scrambled_vaddr = virt_addr; /* assume no scrambling */
+
+ is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
+ prop->dmmu.start_addr,
+ prop->dmmu.end_addr);
+
+ /* host-residency is the same in PMMU and HPMMU, use one of them */
+ mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu;
+
+ mutex_lock(&ctx->mmu_lock);
+
+ if (mmu_prop->host_resident)
+ rc = hdev->mmu_func[MMU_HR_PGT].get_tlb_info(ctx,
+ virt_addr, hops);
+ else
+ rc = hdev->mmu_func[MMU_DR_PGT].get_tlb_info(ctx,
+ virt_addr, hops);
+
+ mutex_unlock(&ctx->mmu_lock);
+
+ return rc;
+}
+
+int hl_mmu_if_set_funcs(struct hl_device *hdev)
+{
+ if (!hdev->mmu_enable)
+ return 0;
+
+ switch (hdev->asic_type) {
+ case ASIC_GOYA:
+ case ASIC_GAUDI:
+ hl_mmu_v1_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]);
+ break;
+ default:
+ dev_err(hdev->dev, "Unrecognized ASIC type %d\n",
+ hdev->asic_type);
+ return -EOPNOTSUPP;
+ }
+
+ return 0;
+}
+
+/**
+ * hl_mmu_scramble_vaddr() - The generic mmu virtual address scrambling routine.
+ * @hdev: pointer to device data.
+ * @virt_addr: The virtual address to scramble.
+ *
+ * Return: The scrambled virtual address.
+ */
+u64 hl_mmu_scramble_vaddr(struct hl_device *hdev, u64 virt_addr)
+{
+ return virt_addr;
+}
--- /dev/null
+// SPDX-License-Identifier: GPL-2.0
+
+/*
+ * Copyright 2016-2019 HabanaLabs, Ltd.
+ * All Rights Reserved.
+ */
+
+#include "../habanalabs.h"
+#include "../../include/hw_ip/mmu/mmu_general.h"
+
+#include <linux/slab.h>
+
+static inline u64 get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr);
+
+static struct pgt_info *get_pgt_info(struct hl_ctx *ctx, u64 hop_addr)
+{
+ struct pgt_info *pgt_info = NULL;
+
+ hash_for_each_possible(ctx->mmu_shadow_hash, pgt_info, node,
+ (unsigned long) hop_addr)
+ if (hop_addr == pgt_info->shadow_addr)
+ break;
+
+ return pgt_info;
+}
+
+static void _free_hop(struct hl_ctx *ctx, struct pgt_info *pgt_info)
+{
+ struct hl_device *hdev = ctx->hdev;
+
+ gen_pool_free(hdev->mmu_priv.dr.mmu_pgt_pool, pgt_info->phys_addr,
+ hdev->asic_prop.mmu_hop_table_size);
+ hash_del(&pgt_info->node);
+ kfree((u64 *) (uintptr_t) pgt_info->shadow_addr);
+ kfree(pgt_info);
+}
+
+static void free_hop(struct hl_ctx *ctx, u64 hop_addr)
+{
+ struct pgt_info *pgt_info = get_pgt_info(ctx, hop_addr);
+
+ _free_hop(ctx, pgt_info);
+}
+
+static u64 alloc_hop(struct hl_ctx *ctx)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct pgt_info *pgt_info;
+ u64 phys_addr, shadow_addr;
+
+ pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL);
+ if (!pgt_info)
+ return ULLONG_MAX;
+
+ phys_addr = (u64) gen_pool_alloc(hdev->mmu_priv.dr.mmu_pgt_pool,
+ prop->mmu_hop_table_size);
+ if (!phys_addr) {
+ dev_err(hdev->dev, "failed to allocate page\n");
+ goto pool_add_err;
+ }
+
+ shadow_addr = (u64) (uintptr_t) kzalloc(prop->mmu_hop_table_size,
+ GFP_KERNEL);
+ if (!shadow_addr)
+ goto shadow_err;
+
+ pgt_info->phys_addr = phys_addr;
+ pgt_info->shadow_addr = shadow_addr;
+ pgt_info->ctx = ctx;
+ pgt_info->num_of_ptes = 0;
+ hash_add(ctx->mmu_shadow_hash, &pgt_info->node, shadow_addr);
+
+ return shadow_addr;
+
+shadow_err:
+ gen_pool_free(hdev->mmu_priv.dr.mmu_pgt_pool, phys_addr,
+ prop->mmu_hop_table_size);
+pool_add_err:
+ kfree(pgt_info);
+
+ return ULLONG_MAX;
+}
+
+static inline u64 get_phys_hop0_addr(struct hl_ctx *ctx)
+{
+ return ctx->hdev->asic_prop.mmu_pgt_addr +
+ (ctx->asid * ctx->hdev->asic_prop.mmu_hop_table_size);
+}
+
+static inline u64 get_hop0_addr(struct hl_ctx *ctx)
+{
+ return (u64) (uintptr_t) ctx->hdev->mmu_priv.dr.mmu_shadow_hop0 +
+ (ctx->asid * ctx->hdev->asic_prop.mmu_hop_table_size);
+}
+
+static void flush(struct hl_ctx *ctx)
+{
+ /* flush all writes from all cores to reach PCI */
+ mb();
+ ctx->hdev->asic_funcs->read_pte(ctx->hdev, get_phys_hop0_addr(ctx));
+}
+
+/* transform the value to physical address when writing to H/W */
+static inline void write_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val)
+{
+ /*
+ * The value to write is actually the address of the next shadow hop +
+ * flags at the 12 LSBs.
+ * Hence in order to get the value to write to the physical PTE, we
+ * clear the 12 LSBs and translate the shadow hop to its associated
+ * physical hop, and add back the original 12 LSBs.
+ */
+ u64 phys_val = get_phys_addr(ctx, val & HOP_PHYS_ADDR_MASK) |
+ (val & FLAGS_MASK);
+
+ ctx->hdev->asic_funcs->write_pte(ctx->hdev,
+ get_phys_addr(ctx, shadow_pte_addr),
+ phys_val);
+
+ *(u64 *) (uintptr_t) shadow_pte_addr = val;
+}
+
+/* do not transform the value to physical address when writing to H/W */
+static inline void write_final_pte(struct hl_ctx *ctx, u64 shadow_pte_addr,
+ u64 val)
+{
+ ctx->hdev->asic_funcs->write_pte(ctx->hdev,
+ get_phys_addr(ctx, shadow_pte_addr),
+ val);
+ *(u64 *) (uintptr_t) shadow_pte_addr = val;
+}
+
+/* clear the last and present bits */
+static inline void clear_pte(struct hl_ctx *ctx, u64 pte_addr)
+{
+ /* no need to transform the value to physical address */
+ write_final_pte(ctx, pte_addr, 0);
+}
+
+static inline void get_pte(struct hl_ctx *ctx, u64 hop_addr)
+{
+ get_pgt_info(ctx, hop_addr)->num_of_ptes++;
+}
+
+/*
+ * put_pte - decrement the num of ptes and free the hop if possible
+ *
+ * @ctx: pointer to the context structure
+ * @hop_addr: addr of the hop
+ *
+ * This function returns the number of ptes left on this hop. If the number is
+ * 0, it means the pte was freed.
+ */
+static inline int put_pte(struct hl_ctx *ctx, u64 hop_addr)
+{
+ struct pgt_info *pgt_info = get_pgt_info(ctx, hop_addr);
+ int num_of_ptes_left;
+
+ pgt_info->num_of_ptes--;
+
+ /*
+ * Need to save the number of ptes left because free_hop might free
+ * the pgt_info
+ */
+ num_of_ptes_left = pgt_info->num_of_ptes;
+ if (!num_of_ptes_left)
+ _free_hop(ctx, pgt_info);
+
+ return num_of_ptes_left;
+}
+
+static inline u64 get_hopN_pte_addr(struct hl_ctx *ctx, u64 hop_addr,
+ u64 virt_addr, u64 mask, u64 shift)
+{
+ return hop_addr + ctx->hdev->asic_prop.mmu_pte_size *
+ ((virt_addr & mask) >> shift);
+}
+
+static inline u64 get_hop0_pte_addr(struct hl_ctx *ctx,
+ struct hl_mmu_properties *mmu_prop,
+ u64 hop_addr, u64 vaddr)
+{
+ return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop0_mask,
+ mmu_prop->hop0_shift);
+}
+
+static inline u64 get_hop1_pte_addr(struct hl_ctx *ctx,
+ struct hl_mmu_properties *mmu_prop,
+ u64 hop_addr, u64 vaddr)
+{
+ return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop1_mask,
+ mmu_prop->hop1_shift);
+}
+
+static inline u64 get_hop2_pte_addr(struct hl_ctx *ctx,
+ struct hl_mmu_properties *mmu_prop,
+ u64 hop_addr, u64 vaddr)
+{
+ return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop2_mask,
+ mmu_prop->hop2_shift);
+}
+
+static inline u64 get_hop3_pte_addr(struct hl_ctx *ctx,
+ struct hl_mmu_properties *mmu_prop,
+ u64 hop_addr, u64 vaddr)
+{
+ return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop3_mask,
+ mmu_prop->hop3_shift);
+}
+
+static inline u64 get_hop4_pte_addr(struct hl_ctx *ctx,
+ struct hl_mmu_properties *mmu_prop,
+ u64 hop_addr, u64 vaddr)
+{
+ return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop4_mask,
+ mmu_prop->hop4_shift);
+}
+
+static inline u64 get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte)
+{
+ if (curr_pte & PAGE_PRESENT_MASK)
+ return curr_pte & HOP_PHYS_ADDR_MASK;
+ else
+ return ULLONG_MAX;
+}
+
+static inline u64 get_alloc_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte,
+ bool *is_new_hop)
+{
+ u64 hop_addr = get_next_hop_addr(ctx, curr_pte);
+
+ if (hop_addr == ULLONG_MAX) {
+ hop_addr = alloc_hop(ctx);
+ *is_new_hop = (hop_addr != ULLONG_MAX);
+ }
+
+ return hop_addr;
+}
+
+/* translates shadow address inside hop to a physical address */
+static inline u64 get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr)
+{
+ u64 page_mask = (ctx->hdev->asic_prop.mmu_hop_table_size - 1);
+ u64 shadow_hop_addr = shadow_addr & ~page_mask;
+ u64 pte_offset = shadow_addr & page_mask;
+ u64 phys_hop_addr;
+
+ if (shadow_hop_addr != get_hop0_addr(ctx))
+ phys_hop_addr = get_pgt_info(ctx, shadow_hop_addr)->phys_addr;
+ else
+ phys_hop_addr = get_phys_hop0_addr(ctx);
+
+ return phys_hop_addr + pte_offset;
+}
+
+static int dram_default_mapping_init(struct hl_ctx *ctx)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u64 num_of_hop3, total_hops, hop0_addr, hop1_addr, hop2_addr,
+ hop2_pte_addr, hop3_pte_addr, pte_val;
+ int rc, i, j, hop3_allocated = 0;
+
+ if ((!prop->dram_supports_virtual_memory) ||
+ (!hdev->dram_default_page_mapping) ||
+ (ctx->asid == HL_KERNEL_ASID_ID))
+ return 0;
+
+ num_of_hop3 = prop->dram_size_for_default_page_mapping;
+ do_div(num_of_hop3, prop->dram_page_size);
+ do_div(num_of_hop3, PTE_ENTRIES_IN_HOP);
+
+ /* add hop1 and hop2 */
+ total_hops = num_of_hop3 + 2;
+
+ ctx->dram_default_hops = kzalloc(HL_PTE_SIZE * total_hops, GFP_KERNEL);
+ if (!ctx->dram_default_hops)
+ return -ENOMEM;
+
+ hop0_addr = get_hop0_addr(ctx);
+
+ hop1_addr = alloc_hop(ctx);
+ if (hop1_addr == ULLONG_MAX) {
+ dev_err(hdev->dev, "failed to alloc hop 1\n");
+ rc = -ENOMEM;
+ goto hop1_err;
+ }
+
+ ctx->dram_default_hops[total_hops - 1] = hop1_addr;
+
+ hop2_addr = alloc_hop(ctx);
+ if (hop2_addr == ULLONG_MAX) {
+ dev_err(hdev->dev, "failed to alloc hop 2\n");
+ rc = -ENOMEM;
+ goto hop2_err;
+ }
+
+ ctx->dram_default_hops[total_hops - 2] = hop2_addr;
+
+ for (i = 0 ; i < num_of_hop3 ; i++) {
+ ctx->dram_default_hops[i] = alloc_hop(ctx);
+ if (ctx->dram_default_hops[i] == ULLONG_MAX) {
+ dev_err(hdev->dev, "failed to alloc hop 3, i: %d\n", i);
+ rc = -ENOMEM;
+ goto hop3_err;
+ }
+ hop3_allocated++;
+ }
+
+ /* need only pte 0 in hops 0 and 1 */
+ pte_val = (hop1_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK;
+ write_pte(ctx, hop0_addr, pte_val);
+
+ pte_val = (hop2_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK;
+ write_pte(ctx, hop1_addr, pte_val);
+ get_pte(ctx, hop1_addr);
+
+ hop2_pte_addr = hop2_addr;
+ for (i = 0 ; i < num_of_hop3 ; i++) {
+ pte_val = (ctx->dram_default_hops[i] & HOP_PHYS_ADDR_MASK) |
+ PAGE_PRESENT_MASK;
+ write_pte(ctx, hop2_pte_addr, pte_val);
+ get_pte(ctx, hop2_addr);
+ hop2_pte_addr += HL_PTE_SIZE;
+ }
+
+ pte_val = (prop->mmu_dram_default_page_addr & HOP_PHYS_ADDR_MASK) |
+ LAST_MASK | PAGE_PRESENT_MASK;
+
+ for (i = 0 ; i < num_of_hop3 ; i++) {
+ hop3_pte_addr = ctx->dram_default_hops[i];
+ for (j = 0 ; j < PTE_ENTRIES_IN_HOP ; j++) {
+ write_final_pte(ctx, hop3_pte_addr, pte_val);
+ get_pte(ctx, ctx->dram_default_hops[i]);
+ hop3_pte_addr += HL_PTE_SIZE;
+ }
+ }
+
+ flush(ctx);
+
+ return 0;
+
+hop3_err:
+ for (i = 0 ; i < hop3_allocated ; i++)
+ free_hop(ctx, ctx->dram_default_hops[i]);
+
+ free_hop(ctx, hop2_addr);
+hop2_err:
+ free_hop(ctx, hop1_addr);
+hop1_err:
+ kfree(ctx->dram_default_hops);
+
+ return rc;
+}
+
+static void dram_default_mapping_fini(struct hl_ctx *ctx)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u64 num_of_hop3, total_hops, hop0_addr, hop1_addr, hop2_addr,
+ hop2_pte_addr, hop3_pte_addr;
+ int i, j;
+
+ if ((!prop->dram_supports_virtual_memory) ||
+ (!hdev->dram_default_page_mapping) ||
+ (ctx->asid == HL_KERNEL_ASID_ID))
+ return;
+
+ num_of_hop3 = prop->dram_size_for_default_page_mapping;
+ do_div(num_of_hop3, prop->dram_page_size);
+ do_div(num_of_hop3, PTE_ENTRIES_IN_HOP);
+
+ hop0_addr = get_hop0_addr(ctx);
+ /* add hop1 and hop2 */
+ total_hops = num_of_hop3 + 2;
+ hop1_addr = ctx->dram_default_hops[total_hops - 1];
+ hop2_addr = ctx->dram_default_hops[total_hops - 2];
+
+ for (i = 0 ; i < num_of_hop3 ; i++) {
+ hop3_pte_addr = ctx->dram_default_hops[i];
+ for (j = 0 ; j < PTE_ENTRIES_IN_HOP ; j++) {
+ clear_pte(ctx, hop3_pte_addr);
+ put_pte(ctx, ctx->dram_default_hops[i]);
+ hop3_pte_addr += HL_PTE_SIZE;
+ }
+ }
+
+ hop2_pte_addr = hop2_addr;
+ hop2_pte_addr = hop2_addr;
+ for (i = 0 ; i < num_of_hop3 ; i++) {
+ clear_pte(ctx, hop2_pte_addr);
+ put_pte(ctx, hop2_addr);
+ hop2_pte_addr += HL_PTE_SIZE;
+ }
+
+ clear_pte(ctx, hop1_addr);
+ put_pte(ctx, hop1_addr);
+ clear_pte(ctx, hop0_addr);
+
+ kfree(ctx->dram_default_hops);
+
+ flush(ctx);
+}
+
+/**
+ * hl_mmu_v1_init() - initialize the MMU module.
+ * @hdev: habanalabs device structure.
+ *
+ * This function does the following:
+ * - Create a pool of pages for pgt_infos.
+ * - Create a shadow table for pgt
+ *
+ * Return: 0 for success, non-zero for failure.
+ */
+static int hl_mmu_v1_init(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ int rc;
+
+ hdev->mmu_priv.dr.mmu_pgt_pool =
+ gen_pool_create(__ffs(prop->mmu_hop_table_size), -1);
+
+ if (!hdev->mmu_priv.dr.mmu_pgt_pool) {
+ dev_err(hdev->dev, "Failed to create page gen pool\n");
+ return -ENOMEM;
+ }
+
+ rc = gen_pool_add(hdev->mmu_priv.dr.mmu_pgt_pool, prop->mmu_pgt_addr +
+ prop->mmu_hop0_tables_total_size,
+ prop->mmu_pgt_size - prop->mmu_hop0_tables_total_size,
+ -1);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to add memory to page gen pool\n");
+ goto err_pool_add;
+ }
+
+ hdev->mmu_priv.dr.mmu_shadow_hop0 = kvmalloc_array(prop->max_asid,
+ prop->mmu_hop_table_size,
+ GFP_KERNEL | __GFP_ZERO);
+ if (ZERO_OR_NULL_PTR(hdev->mmu_priv.dr.mmu_shadow_hop0)) {
+ rc = -ENOMEM;
+ goto err_pool_add;
+ }
+
+ /* MMU H/W init will be done in device hw_init() */
+
+ return 0;
+
+err_pool_add:
+ gen_pool_destroy(hdev->mmu_priv.dr.mmu_pgt_pool);
+
+ return rc;
+}
+
+/**
+ * hl_mmu_fini() - release the MMU module.
+ * @hdev: habanalabs device structure.
+ *
+ * This function does the following:
+ * - Disable MMU in H/W.
+ * - Free the pgt_infos pool.
+ *
+ * All contexts should be freed before calling this function.
+ */
+static void hl_mmu_v1_fini(struct hl_device *hdev)
+{
+ /* MMU H/W fini was already done in device hw_fini() */
+
+ if (!ZERO_OR_NULL_PTR(hdev->mmu_priv.hr.mmu_shadow_hop0)) {
+ kvfree(hdev->mmu_priv.dr.mmu_shadow_hop0);
+ gen_pool_destroy(hdev->mmu_priv.dr.mmu_pgt_pool);
+ }
+
+ /* Make sure that if we arrive here again without init was called we
+ * won't cause kernel panic. This can happen for example if we fail
+ * during hard reset code at certain points
+ */
+ hdev->mmu_priv.dr.mmu_shadow_hop0 = NULL;
+}
+
+/**
+ * hl_mmu_ctx_init() - initialize a context for using the MMU module.
+ * @ctx: pointer to the context structure to initialize.
+ *
+ * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all
+ * page tables hops related to this context.
+ * Return: 0 on success, non-zero otherwise.
+ */
+static int hl_mmu_v1_ctx_init(struct hl_ctx *ctx)
+{
+ hash_init(ctx->mmu_shadow_hash);
+ return dram_default_mapping_init(ctx);
+}
+
+/*
+ * hl_mmu_ctx_fini - disable a ctx from using the mmu module
+ *
+ * @ctx: pointer to the context structure
+ *
+ * This function does the following:
+ * - Free any pgts which were not freed yet
+ * - Free the mutex
+ * - Free DRAM default page mapping hops
+ */
+static void hl_mmu_v1_ctx_fini(struct hl_ctx *ctx)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct pgt_info *pgt_info;
+ struct hlist_node *tmp;
+ int i;
+
+ dram_default_mapping_fini(ctx);
+
+ if (!hash_empty(ctx->mmu_shadow_hash))
+ dev_err(hdev->dev, "ctx %d is freed while it has pgts in use\n",
+ ctx->asid);
+
+ hash_for_each_safe(ctx->mmu_shadow_hash, i, tmp, pgt_info, node) {
+ dev_err_ratelimited(hdev->dev,
+ "pgt_info of addr 0x%llx of asid %d was not destroyed, num_ptes: %d\n",
+ pgt_info->phys_addr, ctx->asid, pgt_info->num_of_ptes);
+ _free_hop(ctx, pgt_info);
+ }
+}
+
+static int _hl_mmu_v1_unmap(struct hl_ctx *ctx,
+ u64 virt_addr, bool is_dram_addr)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct hl_mmu_properties *mmu_prop;
+ u64 hop0_addr = 0, hop0_pte_addr = 0,
+ hop1_addr = 0, hop1_pte_addr = 0,
+ hop2_addr = 0, hop2_pte_addr = 0,
+ hop3_addr = 0, hop3_pte_addr = 0,
+ hop4_addr = 0, hop4_pte_addr = 0,
+ curr_pte;
+ bool is_huge, clear_hop3 = true;
+
+ /* shifts and masks are the same in PMMU and HPMMU, use one of them */
+ mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu;
+
+ hop0_addr = get_hop0_addr(ctx);
+ hop0_pte_addr = get_hop0_pte_addr(ctx, mmu_prop, hop0_addr, virt_addr);
+
+ curr_pte = *(u64 *) (uintptr_t) hop0_pte_addr;
+
+ hop1_addr = get_next_hop_addr(ctx, curr_pte);
+
+ if (hop1_addr == ULLONG_MAX)
+ goto not_mapped;
+
+ hop1_pte_addr = get_hop1_pte_addr(ctx, mmu_prop, hop1_addr, virt_addr);
+
+ curr_pte = *(u64 *) (uintptr_t) hop1_pte_addr;
+
+ hop2_addr = get_next_hop_addr(ctx, curr_pte);
+
+ if (hop2_addr == ULLONG_MAX)
+ goto not_mapped;
+
+ hop2_pte_addr = get_hop2_pte_addr(ctx, mmu_prop, hop2_addr, virt_addr);
+
+ curr_pte = *(u64 *) (uintptr_t) hop2_pte_addr;
+
+ hop3_addr = get_next_hop_addr(ctx, curr_pte);
+
+ if (hop3_addr == ULLONG_MAX)
+ goto not_mapped;
+
+ hop3_pte_addr = get_hop3_pte_addr(ctx, mmu_prop, hop3_addr, virt_addr);
+
+ curr_pte = *(u64 *) (uintptr_t) hop3_pte_addr;
+
+ is_huge = curr_pte & LAST_MASK;
+
+ if (is_dram_addr && !is_huge) {
+ dev_err(hdev->dev,
+ "DRAM unmapping should use huge pages only\n");
+ return -EFAULT;
+ }
+
+ if (!is_huge) {
+ hop4_addr = get_next_hop_addr(ctx, curr_pte);
+
+ if (hop4_addr == ULLONG_MAX)
+ goto not_mapped;
+
+ hop4_pte_addr = get_hop4_pte_addr(ctx, mmu_prop, hop4_addr,
+ virt_addr);
+
+ curr_pte = *(u64 *) (uintptr_t) hop4_pte_addr;
+
+ clear_hop3 = false;
+ }
+
+ if (hdev->dram_default_page_mapping && is_dram_addr) {
+ u64 default_pte = (prop->mmu_dram_default_page_addr &
+ HOP_PHYS_ADDR_MASK) | LAST_MASK |
+ PAGE_PRESENT_MASK;
+ if (curr_pte == default_pte) {
+ dev_err(hdev->dev,
+ "DRAM: hop3 PTE points to zero page, can't unmap, va: 0x%llx\n",
+ virt_addr);
+ goto not_mapped;
+ }
+
+ if (!(curr_pte & PAGE_PRESENT_MASK)) {
+ dev_err(hdev->dev,
+ "DRAM: hop3 PTE is cleared! can't unmap, va: 0x%llx\n",
+ virt_addr);
+ goto not_mapped;
+ }
+
+ write_final_pte(ctx, hop3_pte_addr, default_pte);
+ put_pte(ctx, hop3_addr);
+ } else {
+ if (!(curr_pte & PAGE_PRESENT_MASK))
+ goto not_mapped;
+
+ if (hop4_addr)
+ clear_pte(ctx, hop4_pte_addr);
+ else
+ clear_pte(ctx, hop3_pte_addr);
+
+ if (hop4_addr && !put_pte(ctx, hop4_addr))
+ clear_hop3 = true;
+
+ if (!clear_hop3)
+ goto mapped;
+
+ clear_pte(ctx, hop3_pte_addr);
+
+ if (put_pte(ctx, hop3_addr))
+ goto mapped;
+
+ clear_pte(ctx, hop2_pte_addr);
+
+ if (put_pte(ctx, hop2_addr))
+ goto mapped;
+
+ clear_pte(ctx, hop1_pte_addr);
+
+ if (put_pte(ctx, hop1_addr))
+ goto mapped;
+
+ clear_pte(ctx, hop0_pte_addr);
+ }
+
+mapped:
+ return 0;
+
+not_mapped:
+ dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n",
+ virt_addr);
+
+ return -EINVAL;
+}
+
+static int _hl_mmu_v1_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
+ u32 page_size, bool is_dram_addr)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct hl_mmu_properties *mmu_prop;
+ u64 hop0_addr = 0, hop0_pte_addr = 0,
+ hop1_addr = 0, hop1_pte_addr = 0,
+ hop2_addr = 0, hop2_pte_addr = 0,
+ hop3_addr = 0, hop3_pte_addr = 0,
+ hop4_addr = 0, hop4_pte_addr = 0,
+ curr_pte = 0;
+ bool hop1_new = false, hop2_new = false, hop3_new = false,
+ hop4_new = false, is_huge;
+ int rc = -ENOMEM;
+
+ /*
+ * This mapping function can map a page or a huge page. For huge page
+ * there are only 3 hops rather than 4. Currently the DRAM allocation
+ * uses huge pages only but user memory could have been allocated with
+ * one of the two page sizes. Since this is a common code for all the
+ * three cases, we need this hugs page check.
+ */
+ if (is_dram_addr) {
+ mmu_prop = &prop->dmmu;
+ is_huge = true;
+ } else if (page_size == prop->pmmu_huge.page_size) {
+ mmu_prop = &prop->pmmu_huge;
+ is_huge = true;
+ } else {
+ mmu_prop = &prop->pmmu;
+ is_huge = false;
+ }
+
+ hop0_addr = get_hop0_addr(ctx);
+ hop0_pte_addr = get_hop0_pte_addr(ctx, mmu_prop, hop0_addr, virt_addr);
+ curr_pte = *(u64 *) (uintptr_t) hop0_pte_addr;
+
+ hop1_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop1_new);
+ if (hop1_addr == ULLONG_MAX)
+ goto err;
+
+ hop1_pte_addr = get_hop1_pte_addr(ctx, mmu_prop, hop1_addr, virt_addr);
+ curr_pte = *(u64 *) (uintptr_t) hop1_pte_addr;
+
+ hop2_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop2_new);
+ if (hop2_addr == ULLONG_MAX)
+ goto err;
+
+ hop2_pte_addr = get_hop2_pte_addr(ctx, mmu_prop, hop2_addr, virt_addr);
+ curr_pte = *(u64 *) (uintptr_t) hop2_pte_addr;
+
+ hop3_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop3_new);
+ if (hop3_addr == ULLONG_MAX)
+ goto err;
+
+ hop3_pte_addr = get_hop3_pte_addr(ctx, mmu_prop, hop3_addr, virt_addr);
+ curr_pte = *(u64 *) (uintptr_t) hop3_pte_addr;
+
+ if (!is_huge) {
+ hop4_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop4_new);
+ if (hop4_addr == ULLONG_MAX)
+ goto err;
+
+ hop4_pte_addr = get_hop4_pte_addr(ctx, mmu_prop, hop4_addr,
+ virt_addr);
+ curr_pte = *(u64 *) (uintptr_t) hop4_pte_addr;
+ }
+
+ if (hdev->dram_default_page_mapping && is_dram_addr) {
+ u64 default_pte = (prop->mmu_dram_default_page_addr &
+ HOP_PHYS_ADDR_MASK) | LAST_MASK |
+ PAGE_PRESENT_MASK;
+
+ if (curr_pte != default_pte) {
+ dev_err(hdev->dev,
+ "DRAM: mapping already exists for virt_addr 0x%llx\n",
+ virt_addr);
+ rc = -EINVAL;
+ goto err;
+ }
+
+ if (hop1_new || hop2_new || hop3_new || hop4_new) {
+ dev_err(hdev->dev,
+ "DRAM mapping should not allocate more hops\n");
+ rc = -EFAULT;
+ goto err;
+ }
+ } else if (curr_pte & PAGE_PRESENT_MASK) {
+ dev_err(hdev->dev,
+ "mapping already exists for virt_addr 0x%llx\n",
+ virt_addr);
+
+ dev_dbg(hdev->dev, "hop0 pte: 0x%llx (0x%llx)\n",
+ *(u64 *) (uintptr_t) hop0_pte_addr, hop0_pte_addr);
+ dev_dbg(hdev->dev, "hop1 pte: 0x%llx (0x%llx)\n",
+ *(u64 *) (uintptr_t) hop1_pte_addr, hop1_pte_addr);
+ dev_dbg(hdev->dev, "hop2 pte: 0x%llx (0x%llx)\n",
+ *(u64 *) (uintptr_t) hop2_pte_addr, hop2_pte_addr);
+ dev_dbg(hdev->dev, "hop3 pte: 0x%llx (0x%llx)\n",
+ *(u64 *) (uintptr_t) hop3_pte_addr, hop3_pte_addr);
+
+ if (!is_huge)
+ dev_dbg(hdev->dev, "hop4 pte: 0x%llx (0x%llx)\n",
+ *(u64 *) (uintptr_t) hop4_pte_addr,
+ hop4_pte_addr);
+
+ rc = -EINVAL;
+ goto err;
+ }
+
+ curr_pte = (phys_addr & HOP_PHYS_ADDR_MASK) | LAST_MASK
+ | PAGE_PRESENT_MASK;
+
+ if (is_huge)
+ write_final_pte(ctx, hop3_pte_addr, curr_pte);
+ else
+ write_final_pte(ctx, hop4_pte_addr, curr_pte);
+
+ if (hop1_new) {
+ curr_pte =
+ (hop1_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK;
+ write_pte(ctx, hop0_pte_addr, curr_pte);
+ }
+ if (hop2_new) {
+ curr_pte =
+ (hop2_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK;
+ write_pte(ctx, hop1_pte_addr, curr_pte);
+ get_pte(ctx, hop1_addr);
+ }
+ if (hop3_new) {
+ curr_pte =
+ (hop3_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK;
+ write_pte(ctx, hop2_pte_addr, curr_pte);
+ get_pte(ctx, hop2_addr);
+ }
+
+ if (!is_huge) {
+ if (hop4_new) {
+ curr_pte = (hop4_addr & HOP_PHYS_ADDR_MASK) |
+ PAGE_PRESENT_MASK;
+ write_pte(ctx, hop3_pte_addr, curr_pte);
+ get_pte(ctx, hop3_addr);
+ }
+
+ get_pte(ctx, hop4_addr);
+ } else {
+ get_pte(ctx, hop3_addr);
+ }
+
+ return 0;
+
+err:
+ if (hop4_new)
+ free_hop(ctx, hop4_addr);
+ if (hop3_new)
+ free_hop(ctx, hop3_addr);
+ if (hop2_new)
+ free_hop(ctx, hop2_addr);
+ if (hop1_new)
+ free_hop(ctx, hop1_addr);
+
+ return rc;
+}
+
+/*
+ * hl_mmu_v1_swap_out - marks all mapping of the given ctx as swapped out
+ *
+ * @ctx: pointer to the context structure
+ *
+ */
+static void hl_mmu_v1_swap_out(struct hl_ctx *ctx)
+{
+
+}
+
+/*
+ * hl_mmu_v1_swap_in - marks all mapping of the given ctx as swapped in
+ *
+ * @ctx: pointer to the context structure
+ *
+ */
+static void hl_mmu_v1_swap_in(struct hl_ctx *ctx)
+{
+
+}
+
+static inline u64 get_hop_pte_addr(struct hl_ctx *ctx,
+ struct hl_mmu_properties *mmu_prop,
+ int hop_num, u64 hop_addr, u64 virt_addr)
+{
+ switch (hop_num) {
+ case 0:
+ return get_hop0_pte_addr(ctx, mmu_prop, hop_addr, virt_addr);
+ case 1:
+ return get_hop1_pte_addr(ctx, mmu_prop, hop_addr, virt_addr);
+ case 2:
+ return get_hop2_pte_addr(ctx, mmu_prop, hop_addr, virt_addr);
+ case 3:
+ return get_hop3_pte_addr(ctx, mmu_prop, hop_addr, virt_addr);
+ case 4:
+ return get_hop4_pte_addr(ctx, mmu_prop, hop_addr, virt_addr);
+ default:
+ break;
+ }
+ return U64_MAX;
+}
+
+static int hl_mmu_v1_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
+ struct hl_mmu_hop_info *hops)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct hl_mmu_properties *mmu_prop;
+ bool is_dram_addr, is_pmmu_addr, is_pmmu_h_addr, is_huge;
+ int i, used_hops;
+
+ is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
+ prop->dmmu.start_addr,
+ prop->dmmu.end_addr);
+ is_pmmu_addr = hl_mem_area_inside_range(virt_addr, prop->pmmu.page_size,
+ prop->pmmu.start_addr,
+ prop->pmmu.end_addr);
+ is_pmmu_h_addr = hl_mem_area_inside_range(virt_addr,
+ prop->pmmu_huge.page_size,
+ prop->pmmu_huge.start_addr,
+ prop->pmmu_huge.end_addr);
+ if (is_dram_addr) {
+ mmu_prop = &prop->dmmu;
+ is_huge = true;
+ } else if (is_pmmu_addr) {
+ mmu_prop = &prop->pmmu;
+ is_huge = false;
+ } else if (is_pmmu_h_addr) {
+ mmu_prop = &prop->pmmu_huge;
+ is_huge = true;
+ } else {
+ return -EINVAL;
+ }
+
+ used_hops = mmu_prop->num_hops;
+
+ /* huge pages use lesser hops */
+ if (is_huge)
+ used_hops--;
+
+ hops->hop_info[0].hop_addr = get_phys_hop0_addr(ctx);
+ hops->hop_info[0].hop_pte_addr =
+ get_hop_pte_addr(ctx, mmu_prop, 0,
+ hops->hop_info[0].hop_addr, virt_addr);
+ hops->hop_info[0].hop_pte_val =
+ hdev->asic_funcs->read_pte(hdev,
+ hops->hop_info[0].hop_pte_addr);
+
+ for (i = 1 ; i < used_hops ; i++) {
+ hops->hop_info[i].hop_addr =
+ get_next_hop_addr(ctx,
+ hops->hop_info[i - 1].hop_pte_val);
+ if (hops->hop_info[i].hop_addr == ULLONG_MAX)
+ return -EFAULT;
+
+ hops->hop_info[i].hop_pte_addr =
+ get_hop_pte_addr(ctx, mmu_prop, i,
+ hops->hop_info[i].hop_addr,
+ virt_addr);
+ hops->hop_info[i].hop_pte_val =
+ hdev->asic_funcs->read_pte(hdev,
+ hops->hop_info[i].hop_pte_addr);
+
+ if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK))
+ return -EFAULT;
+
+ if (hops->hop_info[i].hop_pte_val & LAST_MASK)
+ break;
+ }
+
+ /* if passed over all hops then no last hop was found */
+ if (i == mmu_prop->num_hops)
+ return -EFAULT;
+
+ if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK))
+ return -EFAULT;
+
+ hops->used_hops = i + 1;
+
+ return 0;
+}
+
+/*
+ * hl_mmu_v1_prepare - prepare mmu for working with mmu v1
+ *
+ * @hdev: pointer to the device structure
+ */
+void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu)
+{
+ mmu->init = hl_mmu_v1_init;
+ mmu->fini = hl_mmu_v1_fini;
+ mmu->ctx_init = hl_mmu_v1_ctx_init;
+ mmu->ctx_fini = hl_mmu_v1_ctx_fini;
+ mmu->map = _hl_mmu_v1_map;
+ mmu->unmap = _hl_mmu_v1_unmap;
+ mmu->flush = flush;
+ mmu->swap_out = hl_mmu_v1_swap_out;
+ mmu->swap_in = hl_mmu_v1_swap_in;
+ mmu->get_tlb_info = hl_mmu_v1_get_tlb_info;
+}
+++ /dev/null
-// SPDX-License-Identifier: GPL-2.0
-
-/*
- * Copyright 2016-2019 HabanaLabs, Ltd.
- * All Rights Reserved.
- */
-
-#include "habanalabs.h"
-#include "../include/hw_ip/mmu/mmu_general.h"
-
-#include <linux/slab.h>
-
-static inline u64 get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr);
-
-static struct pgt_info *get_pgt_info(struct hl_ctx *ctx, u64 hop_addr)
-{
- struct pgt_info *pgt_info = NULL;
-
- hash_for_each_possible(ctx->mmu_shadow_hash, pgt_info, node,
- (unsigned long) hop_addr)
- if (hop_addr == pgt_info->shadow_addr)
- break;
-
- return pgt_info;
-}
-
-static void _free_hop(struct hl_ctx *ctx, struct pgt_info *pgt_info)
-{
- struct hl_device *hdev = ctx->hdev;
-
- gen_pool_free(hdev->mmu_priv.dr.mmu_pgt_pool, pgt_info->phys_addr,
- hdev->asic_prop.mmu_hop_table_size);
- hash_del(&pgt_info->node);
- kfree((u64 *) (uintptr_t) pgt_info->shadow_addr);
- kfree(pgt_info);
-}
-
-static void free_hop(struct hl_ctx *ctx, u64 hop_addr)
-{
- struct pgt_info *pgt_info = get_pgt_info(ctx, hop_addr);
-
- _free_hop(ctx, pgt_info);
-}
-
-static u64 alloc_hop(struct hl_ctx *ctx)
-{
- struct hl_device *hdev = ctx->hdev;
- struct asic_fixed_properties *prop = &hdev->asic_prop;
- struct pgt_info *pgt_info;
- u64 phys_addr, shadow_addr;
-
- pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL);
- if (!pgt_info)
- return ULLONG_MAX;
-
- phys_addr = (u64) gen_pool_alloc(hdev->mmu_priv.dr.mmu_pgt_pool,
- prop->mmu_hop_table_size);
- if (!phys_addr) {
- dev_err(hdev->dev, "failed to allocate page\n");
- goto pool_add_err;
- }
-
- shadow_addr = (u64) (uintptr_t) kzalloc(prop->mmu_hop_table_size,
- GFP_KERNEL);
- if (!shadow_addr)
- goto shadow_err;
-
- pgt_info->phys_addr = phys_addr;
- pgt_info->shadow_addr = shadow_addr;
- pgt_info->ctx = ctx;
- pgt_info->num_of_ptes = 0;
- hash_add(ctx->mmu_shadow_hash, &pgt_info->node, shadow_addr);
-
- return shadow_addr;
-
-shadow_err:
- gen_pool_free(hdev->mmu_priv.dr.mmu_pgt_pool, phys_addr,
- prop->mmu_hop_table_size);
-pool_add_err:
- kfree(pgt_info);
-
- return ULLONG_MAX;
-}
-
-static inline u64 get_phys_hop0_addr(struct hl_ctx *ctx)
-{
- return ctx->hdev->asic_prop.mmu_pgt_addr +
- (ctx->asid * ctx->hdev->asic_prop.mmu_hop_table_size);
-}
-
-static inline u64 get_hop0_addr(struct hl_ctx *ctx)
-{
- return (u64) (uintptr_t) ctx->hdev->mmu_priv.dr.mmu_shadow_hop0 +
- (ctx->asid * ctx->hdev->asic_prop.mmu_hop_table_size);
-}
-
-static void flush(struct hl_ctx *ctx)
-{
- /* flush all writes from all cores to reach PCI */
- mb();
- ctx->hdev->asic_funcs->read_pte(ctx->hdev, get_phys_hop0_addr(ctx));
-}
-
-/* transform the value to physical address when writing to H/W */
-static inline void write_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val)
-{
- /*
- * The value to write is actually the address of the next shadow hop +
- * flags at the 12 LSBs.
- * Hence in order to get the value to write to the physical PTE, we
- * clear the 12 LSBs and translate the shadow hop to its associated
- * physical hop, and add back the original 12 LSBs.
- */
- u64 phys_val = get_phys_addr(ctx, val & HOP_PHYS_ADDR_MASK) |
- (val & FLAGS_MASK);
-
- ctx->hdev->asic_funcs->write_pte(ctx->hdev,
- get_phys_addr(ctx, shadow_pte_addr),
- phys_val);
-
- *(u64 *) (uintptr_t) shadow_pte_addr = val;
-}
-
-/* do not transform the value to physical address when writing to H/W */
-static inline void write_final_pte(struct hl_ctx *ctx, u64 shadow_pte_addr,
- u64 val)
-{
- ctx->hdev->asic_funcs->write_pte(ctx->hdev,
- get_phys_addr(ctx, shadow_pte_addr),
- val);
- *(u64 *) (uintptr_t) shadow_pte_addr = val;
-}
-
-/* clear the last and present bits */
-static inline void clear_pte(struct hl_ctx *ctx, u64 pte_addr)
-{
- /* no need to transform the value to physical address */
- write_final_pte(ctx, pte_addr, 0);
-}
-
-static inline void get_pte(struct hl_ctx *ctx, u64 hop_addr)
-{
- get_pgt_info(ctx, hop_addr)->num_of_ptes++;
-}
-
-/*
- * put_pte - decrement the num of ptes and free the hop if possible
- *
- * @ctx: pointer to the context structure
- * @hop_addr: addr of the hop
- *
- * This function returns the number of ptes left on this hop. If the number is
- * 0, it means the pte was freed.
- */
-static inline int put_pte(struct hl_ctx *ctx, u64 hop_addr)
-{
- struct pgt_info *pgt_info = get_pgt_info(ctx, hop_addr);
- int num_of_ptes_left;
-
- pgt_info->num_of_ptes--;
-
- /*
- * Need to save the number of ptes left because free_hop might free
- * the pgt_info
- */
- num_of_ptes_left = pgt_info->num_of_ptes;
- if (!num_of_ptes_left)
- _free_hop(ctx, pgt_info);
-
- return num_of_ptes_left;
-}
-
-static inline u64 get_hopN_pte_addr(struct hl_ctx *ctx, u64 hop_addr,
- u64 virt_addr, u64 mask, u64 shift)
-{
- return hop_addr + ctx->hdev->asic_prop.mmu_pte_size *
- ((virt_addr & mask) >> shift);
-}
-
-static inline u64 get_hop0_pte_addr(struct hl_ctx *ctx,
- struct hl_mmu_properties *mmu_prop,
- u64 hop_addr, u64 vaddr)
-{
- return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop0_mask,
- mmu_prop->hop0_shift);
-}
-
-static inline u64 get_hop1_pte_addr(struct hl_ctx *ctx,
- struct hl_mmu_properties *mmu_prop,
- u64 hop_addr, u64 vaddr)
-{
- return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop1_mask,
- mmu_prop->hop1_shift);
-}
-
-static inline u64 get_hop2_pte_addr(struct hl_ctx *ctx,
- struct hl_mmu_properties *mmu_prop,
- u64 hop_addr, u64 vaddr)
-{
- return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop2_mask,
- mmu_prop->hop2_shift);
-}
-
-static inline u64 get_hop3_pte_addr(struct hl_ctx *ctx,
- struct hl_mmu_properties *mmu_prop,
- u64 hop_addr, u64 vaddr)
-{
- return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop3_mask,
- mmu_prop->hop3_shift);
-}
-
-static inline u64 get_hop4_pte_addr(struct hl_ctx *ctx,
- struct hl_mmu_properties *mmu_prop,
- u64 hop_addr, u64 vaddr)
-{
- return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop4_mask,
- mmu_prop->hop4_shift);
-}
-
-static inline u64 get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte)
-{
- if (curr_pte & PAGE_PRESENT_MASK)
- return curr_pte & HOP_PHYS_ADDR_MASK;
- else
- return ULLONG_MAX;
-}
-
-static inline u64 get_alloc_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte,
- bool *is_new_hop)
-{
- u64 hop_addr = get_next_hop_addr(ctx, curr_pte);
-
- if (hop_addr == ULLONG_MAX) {
- hop_addr = alloc_hop(ctx);
- *is_new_hop = (hop_addr != ULLONG_MAX);
- }
-
- return hop_addr;
-}
-
-/* translates shadow address inside hop to a physical address */
-static inline u64 get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr)
-{
- u64 page_mask = (ctx->hdev->asic_prop.mmu_hop_table_size - 1);
- u64 shadow_hop_addr = shadow_addr & ~page_mask;
- u64 pte_offset = shadow_addr & page_mask;
- u64 phys_hop_addr;
-
- if (shadow_hop_addr != get_hop0_addr(ctx))
- phys_hop_addr = get_pgt_info(ctx, shadow_hop_addr)->phys_addr;
- else
- phys_hop_addr = get_phys_hop0_addr(ctx);
-
- return phys_hop_addr + pte_offset;
-}
-
-static int dram_default_mapping_init(struct hl_ctx *ctx)
-{
- struct hl_device *hdev = ctx->hdev;
- struct asic_fixed_properties *prop = &hdev->asic_prop;
- u64 num_of_hop3, total_hops, hop0_addr, hop1_addr, hop2_addr,
- hop2_pte_addr, hop3_pte_addr, pte_val;
- int rc, i, j, hop3_allocated = 0;
-
- if ((!prop->dram_supports_virtual_memory) ||
- (!hdev->dram_default_page_mapping) ||
- (ctx->asid == HL_KERNEL_ASID_ID))
- return 0;
-
- num_of_hop3 = prop->dram_size_for_default_page_mapping;
- do_div(num_of_hop3, prop->dram_page_size);
- do_div(num_of_hop3, PTE_ENTRIES_IN_HOP);
-
- /* add hop1 and hop2 */
- total_hops = num_of_hop3 + 2;
-
- ctx->dram_default_hops = kzalloc(HL_PTE_SIZE * total_hops, GFP_KERNEL);
- if (!ctx->dram_default_hops)
- return -ENOMEM;
-
- hop0_addr = get_hop0_addr(ctx);
-
- hop1_addr = alloc_hop(ctx);
- if (hop1_addr == ULLONG_MAX) {
- dev_err(hdev->dev, "failed to alloc hop 1\n");
- rc = -ENOMEM;
- goto hop1_err;
- }
-
- ctx->dram_default_hops[total_hops - 1] = hop1_addr;
-
- hop2_addr = alloc_hop(ctx);
- if (hop2_addr == ULLONG_MAX) {
- dev_err(hdev->dev, "failed to alloc hop 2\n");
- rc = -ENOMEM;
- goto hop2_err;
- }
-
- ctx->dram_default_hops[total_hops - 2] = hop2_addr;
-
- for (i = 0 ; i < num_of_hop3 ; i++) {
- ctx->dram_default_hops[i] = alloc_hop(ctx);
- if (ctx->dram_default_hops[i] == ULLONG_MAX) {
- dev_err(hdev->dev, "failed to alloc hop 3, i: %d\n", i);
- rc = -ENOMEM;
- goto hop3_err;
- }
- hop3_allocated++;
- }
-
- /* need only pte 0 in hops 0 and 1 */
- pte_val = (hop1_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK;
- write_pte(ctx, hop0_addr, pte_val);
-
- pte_val = (hop2_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK;
- write_pte(ctx, hop1_addr, pte_val);
- get_pte(ctx, hop1_addr);
-
- hop2_pte_addr = hop2_addr;
- for (i = 0 ; i < num_of_hop3 ; i++) {
- pte_val = (ctx->dram_default_hops[i] & HOP_PHYS_ADDR_MASK) |
- PAGE_PRESENT_MASK;
- write_pte(ctx, hop2_pte_addr, pte_val);
- get_pte(ctx, hop2_addr);
- hop2_pte_addr += HL_PTE_SIZE;
- }
-
- pte_val = (prop->mmu_dram_default_page_addr & HOP_PHYS_ADDR_MASK) |
- LAST_MASK | PAGE_PRESENT_MASK;
-
- for (i = 0 ; i < num_of_hop3 ; i++) {
- hop3_pte_addr = ctx->dram_default_hops[i];
- for (j = 0 ; j < PTE_ENTRIES_IN_HOP ; j++) {
- write_final_pte(ctx, hop3_pte_addr, pte_val);
- get_pte(ctx, ctx->dram_default_hops[i]);
- hop3_pte_addr += HL_PTE_SIZE;
- }
- }
-
- flush(ctx);
-
- return 0;
-
-hop3_err:
- for (i = 0 ; i < hop3_allocated ; i++)
- free_hop(ctx, ctx->dram_default_hops[i]);
-
- free_hop(ctx, hop2_addr);
-hop2_err:
- free_hop(ctx, hop1_addr);
-hop1_err:
- kfree(ctx->dram_default_hops);
-
- return rc;
-}
-
-static void dram_default_mapping_fini(struct hl_ctx *ctx)
-{
- struct hl_device *hdev = ctx->hdev;
- struct asic_fixed_properties *prop = &hdev->asic_prop;
- u64 num_of_hop3, total_hops, hop0_addr, hop1_addr, hop2_addr,
- hop2_pte_addr, hop3_pte_addr;
- int i, j;
-
- if ((!prop->dram_supports_virtual_memory) ||
- (!hdev->dram_default_page_mapping) ||
- (ctx->asid == HL_KERNEL_ASID_ID))
- return;
-
- num_of_hop3 = prop->dram_size_for_default_page_mapping;
- do_div(num_of_hop3, prop->dram_page_size);
- do_div(num_of_hop3, PTE_ENTRIES_IN_HOP);
-
- hop0_addr = get_hop0_addr(ctx);
- /* add hop1 and hop2 */
- total_hops = num_of_hop3 + 2;
- hop1_addr = ctx->dram_default_hops[total_hops - 1];
- hop2_addr = ctx->dram_default_hops[total_hops - 2];
-
- for (i = 0 ; i < num_of_hop3 ; i++) {
- hop3_pte_addr = ctx->dram_default_hops[i];
- for (j = 0 ; j < PTE_ENTRIES_IN_HOP ; j++) {
- clear_pte(ctx, hop3_pte_addr);
- put_pte(ctx, ctx->dram_default_hops[i]);
- hop3_pte_addr += HL_PTE_SIZE;
- }
- }
-
- hop2_pte_addr = hop2_addr;
- hop2_pte_addr = hop2_addr;
- for (i = 0 ; i < num_of_hop3 ; i++) {
- clear_pte(ctx, hop2_pte_addr);
- put_pte(ctx, hop2_addr);
- hop2_pte_addr += HL_PTE_SIZE;
- }
-
- clear_pte(ctx, hop1_addr);
- put_pte(ctx, hop1_addr);
- clear_pte(ctx, hop0_addr);
-
- kfree(ctx->dram_default_hops);
-
- flush(ctx);
-}
-
-/**
- * hl_mmu_v1_init() - initialize the MMU module.
- * @hdev: habanalabs device structure.
- *
- * This function does the following:
- * - Create a pool of pages for pgt_infos.
- * - Create a shadow table for pgt
- *
- * Return: 0 for success, non-zero for failure.
- */
-static int hl_mmu_v1_init(struct hl_device *hdev)
-{
- struct asic_fixed_properties *prop = &hdev->asic_prop;
- int rc;
-
- hdev->mmu_priv.dr.mmu_pgt_pool =
- gen_pool_create(__ffs(prop->mmu_hop_table_size), -1);
-
- if (!hdev->mmu_priv.dr.mmu_pgt_pool) {
- dev_err(hdev->dev, "Failed to create page gen pool\n");
- return -ENOMEM;
- }
-
- rc = gen_pool_add(hdev->mmu_priv.dr.mmu_pgt_pool, prop->mmu_pgt_addr +
- prop->mmu_hop0_tables_total_size,
- prop->mmu_pgt_size - prop->mmu_hop0_tables_total_size,
- -1);
- if (rc) {
- dev_err(hdev->dev, "Failed to add memory to page gen pool\n");
- goto err_pool_add;
- }
-
- hdev->mmu_priv.dr.mmu_shadow_hop0 = kvmalloc_array(prop->max_asid,
- prop->mmu_hop_table_size,
- GFP_KERNEL | __GFP_ZERO);
- if (ZERO_OR_NULL_PTR(hdev->mmu_priv.dr.mmu_shadow_hop0)) {
- rc = -ENOMEM;
- goto err_pool_add;
- }
-
- /* MMU H/W init will be done in device hw_init() */
-
- return 0;
-
-err_pool_add:
- gen_pool_destroy(hdev->mmu_priv.dr.mmu_pgt_pool);
-
- return rc;
-}
-
-/**
- * hl_mmu_fini() - release the MMU module.
- * @hdev: habanalabs device structure.
- *
- * This function does the following:
- * - Disable MMU in H/W.
- * - Free the pgt_infos pool.
- *
- * All contexts should be freed before calling this function.
- */
-static void hl_mmu_v1_fini(struct hl_device *hdev)
-{
- /* MMU H/W fini was already done in device hw_fini() */
-
- if (!ZERO_OR_NULL_PTR(hdev->mmu_priv.hr.mmu_shadow_hop0)) {
- kvfree(hdev->mmu_priv.dr.mmu_shadow_hop0);
- gen_pool_destroy(hdev->mmu_priv.dr.mmu_pgt_pool);
- }
-
- /* Make sure that if we arrive here again without init was called we
- * won't cause kernel panic. This can happen for example if we fail
- * during hard reset code at certain points
- */
- hdev->mmu_priv.dr.mmu_shadow_hop0 = NULL;
-}
-
-/**
- * hl_mmu_ctx_init() - initialize a context for using the MMU module.
- * @ctx: pointer to the context structure to initialize.
- *
- * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all
- * page tables hops related to this context.
- * Return: 0 on success, non-zero otherwise.
- */
-static int hl_mmu_v1_ctx_init(struct hl_ctx *ctx)
-{
- hash_init(ctx->mmu_shadow_hash);
- return dram_default_mapping_init(ctx);
-}
-
-/*
- * hl_mmu_ctx_fini - disable a ctx from using the mmu module
- *
- * @ctx: pointer to the context structure
- *
- * This function does the following:
- * - Free any pgts which were not freed yet
- * - Free the mutex
- * - Free DRAM default page mapping hops
- */
-static void hl_mmu_v1_ctx_fini(struct hl_ctx *ctx)
-{
- struct hl_device *hdev = ctx->hdev;
- struct pgt_info *pgt_info;
- struct hlist_node *tmp;
- int i;
-
- dram_default_mapping_fini(ctx);
-
- if (!hash_empty(ctx->mmu_shadow_hash))
- dev_err(hdev->dev, "ctx %d is freed while it has pgts in use\n",
- ctx->asid);
-
- hash_for_each_safe(ctx->mmu_shadow_hash, i, tmp, pgt_info, node) {
- dev_err_ratelimited(hdev->dev,
- "pgt_info of addr 0x%llx of asid %d was not destroyed, num_ptes: %d\n",
- pgt_info->phys_addr, ctx->asid, pgt_info->num_of_ptes);
- _free_hop(ctx, pgt_info);
- }
-}
-
-static int _hl_mmu_v1_unmap(struct hl_ctx *ctx,
- u64 virt_addr, bool is_dram_addr)
-{
- struct hl_device *hdev = ctx->hdev;
- struct asic_fixed_properties *prop = &hdev->asic_prop;
- struct hl_mmu_properties *mmu_prop;
- u64 hop0_addr = 0, hop0_pte_addr = 0,
- hop1_addr = 0, hop1_pte_addr = 0,
- hop2_addr = 0, hop2_pte_addr = 0,
- hop3_addr = 0, hop3_pte_addr = 0,
- hop4_addr = 0, hop4_pte_addr = 0,
- curr_pte;
- bool is_huge, clear_hop3 = true;
-
- /* shifts and masks are the same in PMMU and HPMMU, use one of them */
- mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu;
-
- hop0_addr = get_hop0_addr(ctx);
- hop0_pte_addr = get_hop0_pte_addr(ctx, mmu_prop, hop0_addr, virt_addr);
-
- curr_pte = *(u64 *) (uintptr_t) hop0_pte_addr;
-
- hop1_addr = get_next_hop_addr(ctx, curr_pte);
-
- if (hop1_addr == ULLONG_MAX)
- goto not_mapped;
-
- hop1_pte_addr = get_hop1_pte_addr(ctx, mmu_prop, hop1_addr, virt_addr);
-
- curr_pte = *(u64 *) (uintptr_t) hop1_pte_addr;
-
- hop2_addr = get_next_hop_addr(ctx, curr_pte);
-
- if (hop2_addr == ULLONG_MAX)
- goto not_mapped;
-
- hop2_pte_addr = get_hop2_pte_addr(ctx, mmu_prop, hop2_addr, virt_addr);
-
- curr_pte = *(u64 *) (uintptr_t) hop2_pte_addr;
-
- hop3_addr = get_next_hop_addr(ctx, curr_pte);
-
- if (hop3_addr == ULLONG_MAX)
- goto not_mapped;
-
- hop3_pte_addr = get_hop3_pte_addr(ctx, mmu_prop, hop3_addr, virt_addr);
-
- curr_pte = *(u64 *) (uintptr_t) hop3_pte_addr;
-
- is_huge = curr_pte & LAST_MASK;
-
- if (is_dram_addr && !is_huge) {
- dev_err(hdev->dev,
- "DRAM unmapping should use huge pages only\n");
- return -EFAULT;
- }
-
- if (!is_huge) {
- hop4_addr = get_next_hop_addr(ctx, curr_pte);
-
- if (hop4_addr == ULLONG_MAX)
- goto not_mapped;
-
- hop4_pte_addr = get_hop4_pte_addr(ctx, mmu_prop, hop4_addr,
- virt_addr);
-
- curr_pte = *(u64 *) (uintptr_t) hop4_pte_addr;
-
- clear_hop3 = false;
- }
-
- if (hdev->dram_default_page_mapping && is_dram_addr) {
- u64 default_pte = (prop->mmu_dram_default_page_addr &
- HOP_PHYS_ADDR_MASK) | LAST_MASK |
- PAGE_PRESENT_MASK;
- if (curr_pte == default_pte) {
- dev_err(hdev->dev,
- "DRAM: hop3 PTE points to zero page, can't unmap, va: 0x%llx\n",
- virt_addr);
- goto not_mapped;
- }
-
- if (!(curr_pte & PAGE_PRESENT_MASK)) {
- dev_err(hdev->dev,
- "DRAM: hop3 PTE is cleared! can't unmap, va: 0x%llx\n",
- virt_addr);
- goto not_mapped;
- }
-
- write_final_pte(ctx, hop3_pte_addr, default_pte);
- put_pte(ctx, hop3_addr);
- } else {
- if (!(curr_pte & PAGE_PRESENT_MASK))
- goto not_mapped;
-
- if (hop4_addr)
- clear_pte(ctx, hop4_pte_addr);
- else
- clear_pte(ctx, hop3_pte_addr);
-
- if (hop4_addr && !put_pte(ctx, hop4_addr))
- clear_hop3 = true;
-
- if (!clear_hop3)
- goto mapped;
-
- clear_pte(ctx, hop3_pte_addr);
-
- if (put_pte(ctx, hop3_addr))
- goto mapped;
-
- clear_pte(ctx, hop2_pte_addr);
-
- if (put_pte(ctx, hop2_addr))
- goto mapped;
-
- clear_pte(ctx, hop1_pte_addr);
-
- if (put_pte(ctx, hop1_addr))
- goto mapped;
-
- clear_pte(ctx, hop0_pte_addr);
- }
-
-mapped:
- return 0;
-
-not_mapped:
- dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n",
- virt_addr);
-
- return -EINVAL;
-}
-
-static int _hl_mmu_v1_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
- u32 page_size, bool is_dram_addr)
-{
- struct hl_device *hdev = ctx->hdev;
- struct asic_fixed_properties *prop = &hdev->asic_prop;
- struct hl_mmu_properties *mmu_prop;
- u64 hop0_addr = 0, hop0_pte_addr = 0,
- hop1_addr = 0, hop1_pte_addr = 0,
- hop2_addr = 0, hop2_pte_addr = 0,
- hop3_addr = 0, hop3_pte_addr = 0,
- hop4_addr = 0, hop4_pte_addr = 0,
- curr_pte = 0;
- bool hop1_new = false, hop2_new = false, hop3_new = false,
- hop4_new = false, is_huge;
- int rc = -ENOMEM;
-
- /*
- * This mapping function can map a page or a huge page. For huge page
- * there are only 3 hops rather than 4. Currently the DRAM allocation
- * uses huge pages only but user memory could have been allocated with
- * one of the two page sizes. Since this is a common code for all the
- * three cases, we need this hugs page check.
- */
- if (is_dram_addr) {
- mmu_prop = &prop->dmmu;
- is_huge = true;
- } else if (page_size == prop->pmmu_huge.page_size) {
- mmu_prop = &prop->pmmu_huge;
- is_huge = true;
- } else {
- mmu_prop = &prop->pmmu;
- is_huge = false;
- }
-
- hop0_addr = get_hop0_addr(ctx);
- hop0_pte_addr = get_hop0_pte_addr(ctx, mmu_prop, hop0_addr, virt_addr);
- curr_pte = *(u64 *) (uintptr_t) hop0_pte_addr;
-
- hop1_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop1_new);
- if (hop1_addr == ULLONG_MAX)
- goto err;
-
- hop1_pte_addr = get_hop1_pte_addr(ctx, mmu_prop, hop1_addr, virt_addr);
- curr_pte = *(u64 *) (uintptr_t) hop1_pte_addr;
-
- hop2_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop2_new);
- if (hop2_addr == ULLONG_MAX)
- goto err;
-
- hop2_pte_addr = get_hop2_pte_addr(ctx, mmu_prop, hop2_addr, virt_addr);
- curr_pte = *(u64 *) (uintptr_t) hop2_pte_addr;
-
- hop3_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop3_new);
- if (hop3_addr == ULLONG_MAX)
- goto err;
-
- hop3_pte_addr = get_hop3_pte_addr(ctx, mmu_prop, hop3_addr, virt_addr);
- curr_pte = *(u64 *) (uintptr_t) hop3_pte_addr;
-
- if (!is_huge) {
- hop4_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop4_new);
- if (hop4_addr == ULLONG_MAX)
- goto err;
-
- hop4_pte_addr = get_hop4_pte_addr(ctx, mmu_prop, hop4_addr,
- virt_addr);
- curr_pte = *(u64 *) (uintptr_t) hop4_pte_addr;
- }
-
- if (hdev->dram_default_page_mapping && is_dram_addr) {
- u64 default_pte = (prop->mmu_dram_default_page_addr &
- HOP_PHYS_ADDR_MASK) | LAST_MASK |
- PAGE_PRESENT_MASK;
-
- if (curr_pte != default_pte) {
- dev_err(hdev->dev,
- "DRAM: mapping already exists for virt_addr 0x%llx\n",
- virt_addr);
- rc = -EINVAL;
- goto err;
- }
-
- if (hop1_new || hop2_new || hop3_new || hop4_new) {
- dev_err(hdev->dev,
- "DRAM mapping should not allocate more hops\n");
- rc = -EFAULT;
- goto err;
- }
- } else if (curr_pte & PAGE_PRESENT_MASK) {
- dev_err(hdev->dev,
- "mapping already exists for virt_addr 0x%llx\n",
- virt_addr);
-
- dev_dbg(hdev->dev, "hop0 pte: 0x%llx (0x%llx)\n",
- *(u64 *) (uintptr_t) hop0_pte_addr, hop0_pte_addr);
- dev_dbg(hdev->dev, "hop1 pte: 0x%llx (0x%llx)\n",
- *(u64 *) (uintptr_t) hop1_pte_addr, hop1_pte_addr);
- dev_dbg(hdev->dev, "hop2 pte: 0x%llx (0x%llx)\n",
- *(u64 *) (uintptr_t) hop2_pte_addr, hop2_pte_addr);
- dev_dbg(hdev->dev, "hop3 pte: 0x%llx (0x%llx)\n",
- *(u64 *) (uintptr_t) hop3_pte_addr, hop3_pte_addr);
-
- if (!is_huge)
- dev_dbg(hdev->dev, "hop4 pte: 0x%llx (0x%llx)\n",
- *(u64 *) (uintptr_t) hop4_pte_addr,
- hop4_pte_addr);
-
- rc = -EINVAL;
- goto err;
- }
-
- curr_pte = (phys_addr & HOP_PHYS_ADDR_MASK) | LAST_MASK
- | PAGE_PRESENT_MASK;
-
- if (is_huge)
- write_final_pte(ctx, hop3_pte_addr, curr_pte);
- else
- write_final_pte(ctx, hop4_pte_addr, curr_pte);
-
- if (hop1_new) {
- curr_pte =
- (hop1_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK;
- write_pte(ctx, hop0_pte_addr, curr_pte);
- }
- if (hop2_new) {
- curr_pte =
- (hop2_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK;
- write_pte(ctx, hop1_pte_addr, curr_pte);
- get_pte(ctx, hop1_addr);
- }
- if (hop3_new) {
- curr_pte =
- (hop3_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK;
- write_pte(ctx, hop2_pte_addr, curr_pte);
- get_pte(ctx, hop2_addr);
- }
-
- if (!is_huge) {
- if (hop4_new) {
- curr_pte = (hop4_addr & HOP_PHYS_ADDR_MASK) |
- PAGE_PRESENT_MASK;
- write_pte(ctx, hop3_pte_addr, curr_pte);
- get_pte(ctx, hop3_addr);
- }
-
- get_pte(ctx, hop4_addr);
- } else {
- get_pte(ctx, hop3_addr);
- }
-
- return 0;
-
-err:
- if (hop4_new)
- free_hop(ctx, hop4_addr);
- if (hop3_new)
- free_hop(ctx, hop3_addr);
- if (hop2_new)
- free_hop(ctx, hop2_addr);
- if (hop1_new)
- free_hop(ctx, hop1_addr);
-
- return rc;
-}
-
-/*
- * hl_mmu_v1_swap_out - marks all mapping of the given ctx as swapped out
- *
- * @ctx: pointer to the context structure
- *
- */
-static void hl_mmu_v1_swap_out(struct hl_ctx *ctx)
-{
-
-}
-
-/*
- * hl_mmu_v1_swap_in - marks all mapping of the given ctx as swapped in
- *
- * @ctx: pointer to the context structure
- *
- */
-static void hl_mmu_v1_swap_in(struct hl_ctx *ctx)
-{
-
-}
-
-static inline u64 get_hop_pte_addr(struct hl_ctx *ctx,
- struct hl_mmu_properties *mmu_prop,
- int hop_num, u64 hop_addr, u64 virt_addr)
-{
- switch (hop_num) {
- case 0:
- return get_hop0_pte_addr(ctx, mmu_prop, hop_addr, virt_addr);
- case 1:
- return get_hop1_pte_addr(ctx, mmu_prop, hop_addr, virt_addr);
- case 2:
- return get_hop2_pte_addr(ctx, mmu_prop, hop_addr, virt_addr);
- case 3:
- return get_hop3_pte_addr(ctx, mmu_prop, hop_addr, virt_addr);
- case 4:
- return get_hop4_pte_addr(ctx, mmu_prop, hop_addr, virt_addr);
- default:
- break;
- }
- return U64_MAX;
-}
-
-static int hl_mmu_v1_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
- struct hl_mmu_hop_info *hops)
-{
- struct hl_device *hdev = ctx->hdev;
- struct asic_fixed_properties *prop = &hdev->asic_prop;
- struct hl_mmu_properties *mmu_prop;
- bool is_dram_addr, is_pmmu_addr, is_pmmu_h_addr, is_huge;
- int i, used_hops;
-
- is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
- prop->dmmu.start_addr,
- prop->dmmu.end_addr);
- is_pmmu_addr = hl_mem_area_inside_range(virt_addr, prop->pmmu.page_size,
- prop->pmmu.start_addr,
- prop->pmmu.end_addr);
- is_pmmu_h_addr = hl_mem_area_inside_range(virt_addr,
- prop->pmmu_huge.page_size,
- prop->pmmu_huge.start_addr,
- prop->pmmu_huge.end_addr);
- if (is_dram_addr) {
- mmu_prop = &prop->dmmu;
- is_huge = true;
- } else if (is_pmmu_addr) {
- mmu_prop = &prop->pmmu;
- is_huge = false;
- } else if (is_pmmu_h_addr) {
- mmu_prop = &prop->pmmu_huge;
- is_huge = true;
- } else {
- return -EINVAL;
- }
-
- used_hops = mmu_prop->num_hops;
-
- /* huge pages use lesser hops */
- if (is_huge)
- used_hops--;
-
- hops->hop_info[0].hop_addr = get_phys_hop0_addr(ctx);
- hops->hop_info[0].hop_pte_addr =
- get_hop_pte_addr(ctx, mmu_prop, 0,
- hops->hop_info[0].hop_addr, virt_addr);
- hops->hop_info[0].hop_pte_val =
- hdev->asic_funcs->read_pte(hdev,
- hops->hop_info[0].hop_pte_addr);
-
- for (i = 1 ; i < used_hops ; i++) {
- hops->hop_info[i].hop_addr =
- get_next_hop_addr(ctx,
- hops->hop_info[i - 1].hop_pte_val);
- if (hops->hop_info[i].hop_addr == ULLONG_MAX)
- return -EFAULT;
-
- hops->hop_info[i].hop_pte_addr =
- get_hop_pte_addr(ctx, mmu_prop, i,
- hops->hop_info[i].hop_addr,
- virt_addr);
- hops->hop_info[i].hop_pte_val =
- hdev->asic_funcs->read_pte(hdev,
- hops->hop_info[i].hop_pte_addr);
-
- if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK))
- return -EFAULT;
-
- if (hops->hop_info[i].hop_pte_val & LAST_MASK)
- break;
- }
-
- /* if passed over all hops then no last hop was found */
- if (i == mmu_prop->num_hops)
- return -EFAULT;
-
- if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK))
- return -EFAULT;
-
- hops->used_hops = i + 1;
-
- return 0;
-}
-
-/*
- * hl_mmu_v1_prepare - prepare mmu for working with mmu v1
- *
- * @hdev: pointer to the device structure
- */
-void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu)
-{
- mmu->init = hl_mmu_v1_init;
- mmu->fini = hl_mmu_v1_fini;
- mmu->ctx_init = hl_mmu_v1_ctx_init;
- mmu->ctx_fini = hl_mmu_v1_ctx_fini;
- mmu->map = _hl_mmu_v1_map;
- mmu->unmap = _hl_mmu_v1_unmap;
- mmu->flush = flush;
- mmu->swap_out = hl_mmu_v1_swap_out;
- mmu->swap_in = hl_mmu_v1_swap_in;
- mmu->get_tlb_info = hl_mmu_v1_get_tlb_info;
-}
+++ /dev/null
-// SPDX-License-Identifier: GPL-2.0
-
-/*
- * Copyright 2016-2019 HabanaLabs, Ltd.
- * All Rights Reserved.
- */
-
-#include "habanalabs.h"
-#include "../include/hw_ip/pci/pci_general.h"
-
-#include <linux/pci.h>
-
-#define HL_PLDM_PCI_ELBI_TIMEOUT_MSEC (HL_PCI_ELBI_TIMEOUT_MSEC * 10)
-
-#define IATU_REGION_CTRL_REGION_EN_MASK BIT(31)
-#define IATU_REGION_CTRL_MATCH_MODE_MASK BIT(30)
-#define IATU_REGION_CTRL_NUM_MATCH_EN_MASK BIT(19)
-#define IATU_REGION_CTRL_BAR_NUM_MASK GENMASK(10, 8)
-
-/**
- * hl_pci_bars_map() - Map PCI BARs.
- * @hdev: Pointer to hl_device structure.
- * @name: Array of BAR names.
- * @is_wc: Array with flag per BAR whether a write-combined mapping is needed.
- *
- * Request PCI regions and map them to kernel virtual addresses.
- *
- * Return: 0 on success, non-zero for failure.
- */
-int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3],
- bool is_wc[3])
-{
- struct pci_dev *pdev = hdev->pdev;
- int rc, i, bar;
-
- rc = pci_request_regions(pdev, HL_NAME);
- if (rc) {
- dev_err(hdev->dev, "Cannot obtain PCI resources\n");
- return rc;
- }
-
- for (i = 0 ; i < 3 ; i++) {
- bar = i * 2; /* 64-bit BARs */
- hdev->pcie_bar[bar] = is_wc[i] ?
- pci_ioremap_wc_bar(pdev, bar) :
- pci_ioremap_bar(pdev, bar);
- if (!hdev->pcie_bar[bar]) {
- dev_err(hdev->dev, "pci_ioremap%s_bar failed for %s\n",
- is_wc[i] ? "_wc" : "", name[i]);
- rc = -ENODEV;
- goto err;
- }
- }
-
- return 0;
-
-err:
- for (i = 2 ; i >= 0 ; i--) {
- bar = i * 2; /* 64-bit BARs */
- if (hdev->pcie_bar[bar])
- iounmap(hdev->pcie_bar[bar]);
- }
-
- pci_release_regions(pdev);
-
- return rc;
-}
-
-/**
- * hl_pci_bars_unmap() - Unmap PCI BARS.
- * @hdev: Pointer to hl_device structure.
- *
- * Release all PCI BARs and unmap their virtual addresses.
- */
-static void hl_pci_bars_unmap(struct hl_device *hdev)
-{
- struct pci_dev *pdev = hdev->pdev;
- int i, bar;
-
- for (i = 2 ; i >= 0 ; i--) {
- bar = i * 2; /* 64-bit BARs */
- iounmap(hdev->pcie_bar[bar]);
- }
-
- pci_release_regions(pdev);
-}
-
-/**
- * hl_pci_elbi_write() - Write through the ELBI interface.
- * @hdev: Pointer to hl_device structure.
- * @addr: Address to write to
- * @data: Data to write
- *
- * Return: 0 on success, negative value for failure.
- */
-static int hl_pci_elbi_write(struct hl_device *hdev, u64 addr, u32 data)
-{
- struct pci_dev *pdev = hdev->pdev;
- ktime_t timeout;
- u64 msec;
- u32 val;
-
- if (hdev->pldm)
- msec = HL_PLDM_PCI_ELBI_TIMEOUT_MSEC;
- else
- msec = HL_PCI_ELBI_TIMEOUT_MSEC;
-
- /* Clear previous status */
- pci_write_config_dword(pdev, mmPCI_CONFIG_ELBI_STS, 0);
-
- pci_write_config_dword(pdev, mmPCI_CONFIG_ELBI_ADDR, (u32) addr);
- pci_write_config_dword(pdev, mmPCI_CONFIG_ELBI_DATA, data);
- pci_write_config_dword(pdev, mmPCI_CONFIG_ELBI_CTRL,
- PCI_CONFIG_ELBI_CTRL_WRITE);
-
- timeout = ktime_add_ms(ktime_get(), msec);
- for (;;) {
- pci_read_config_dword(pdev, mmPCI_CONFIG_ELBI_STS, &val);
- if (val & PCI_CONFIG_ELBI_STS_MASK)
- break;
- if (ktime_compare(ktime_get(), timeout) > 0) {
- pci_read_config_dword(pdev, mmPCI_CONFIG_ELBI_STS,
- &val);
- break;
- }
-
- usleep_range(300, 500);
- }
-
- if ((val & PCI_CONFIG_ELBI_STS_MASK) == PCI_CONFIG_ELBI_STS_DONE)
- return 0;
-
- if (val & PCI_CONFIG_ELBI_STS_ERR)
- return -EIO;
-
- if (!(val & PCI_CONFIG_ELBI_STS_MASK)) {
- dev_err(hdev->dev, "ELBI write didn't finish in time\n");
- return -EIO;
- }
-
- dev_err(hdev->dev, "ELBI write has undefined bits in status\n");
- return -EIO;
-}
-
-/**
- * hl_pci_iatu_write() - iatu write routine.
- * @hdev: Pointer to hl_device structure.
- * @addr: Address to write to
- * @data: Data to write
- *
- * Return: 0 on success, negative value for failure.
- */
-int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data)
-{
- struct asic_fixed_properties *prop = &hdev->asic_prop;
- u32 dbi_offset;
- int rc;
-
- dbi_offset = addr & 0xFFF;
-
- /* Ignore result of writing to pcie_aux_dbi_reg_addr as it could fail
- * in case the firmware security is enabled
- */
- hl_pci_elbi_write(hdev, prop->pcie_aux_dbi_reg_addr, 0x00300000);
-
- rc = hl_pci_elbi_write(hdev, prop->pcie_dbi_base_address + dbi_offset,
- data);
-
- if (rc)
- return -EIO;
-
- return 0;
-}
-
-/**
- * hl_pci_reset_link_through_bridge() - Reset PCI link.
- * @hdev: Pointer to hl_device structure.
- */
-static void hl_pci_reset_link_through_bridge(struct hl_device *hdev)
-{
- struct pci_dev *pdev = hdev->pdev;
- struct pci_dev *parent_port;
- u16 val;
-
- parent_port = pdev->bus->self;
- pci_read_config_word(parent_port, PCI_BRIDGE_CONTROL, &val);
- val |= PCI_BRIDGE_CTL_BUS_RESET;
- pci_write_config_word(parent_port, PCI_BRIDGE_CONTROL, val);
- ssleep(1);
-
- val &= ~(PCI_BRIDGE_CTL_BUS_RESET);
- pci_write_config_word(parent_port, PCI_BRIDGE_CONTROL, val);
- ssleep(3);
-}
-
-/**
- * hl_pci_set_inbound_region() - Configure inbound region
- * @hdev: Pointer to hl_device structure.
- * @region: Inbound region number.
- * @pci_region: Inbound region parameters.
- *
- * Configure the iATU inbound region.
- *
- * Return: 0 on success, negative value for failure.
- */
-int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region,
- struct hl_inbound_pci_region *pci_region)
-{
- struct asic_fixed_properties *prop = &hdev->asic_prop;
- u64 bar_phys_base, region_base, region_end_address;
- u32 offset, ctrl_reg_val;
- int rc = 0;
-
- /* region offset */
- offset = (0x200 * region) + 0x100;
-
- if (pci_region->mode == PCI_ADDRESS_MATCH_MODE) {
- bar_phys_base = hdev->pcie_bar_phys[pci_region->bar];
- region_base = bar_phys_base + pci_region->offset_in_bar;
- region_end_address = region_base + pci_region->size - 1;
-
- rc |= hl_pci_iatu_write(hdev, offset + 0x8,
- lower_32_bits(region_base));
- rc |= hl_pci_iatu_write(hdev, offset + 0xC,
- upper_32_bits(region_base));
- rc |= hl_pci_iatu_write(hdev, offset + 0x10,
- lower_32_bits(region_end_address));
- }
-
- /* Point to the specified address */
- rc |= hl_pci_iatu_write(hdev, offset + 0x14,
- lower_32_bits(pci_region->addr));
- rc |= hl_pci_iatu_write(hdev, offset + 0x18,
- upper_32_bits(pci_region->addr));
- rc |= hl_pci_iatu_write(hdev, offset + 0x0, 0);
-
- /* Enable + bar/address match + match enable + bar number */
- ctrl_reg_val = FIELD_PREP(IATU_REGION_CTRL_REGION_EN_MASK, 1);
- ctrl_reg_val |= FIELD_PREP(IATU_REGION_CTRL_MATCH_MODE_MASK,
- pci_region->mode);
- ctrl_reg_val |= FIELD_PREP(IATU_REGION_CTRL_NUM_MATCH_EN_MASK, 1);
-
- if (pci_region->mode == PCI_BAR_MATCH_MODE)
- ctrl_reg_val |= FIELD_PREP(IATU_REGION_CTRL_BAR_NUM_MASK,
- pci_region->bar);
-
- rc |= hl_pci_iatu_write(hdev, offset + 0x4, ctrl_reg_val);
-
- /* Return the DBI window to the default location
- * Ignore result of writing to pcie_aux_dbi_reg_addr as it could fail
- * in case the firmware security is enabled
- */
- hl_pci_elbi_write(hdev, prop->pcie_aux_dbi_reg_addr, 0);
-
- if (rc)
- dev_err(hdev->dev, "failed to map bar %u to 0x%08llx\n",
- pci_region->bar, pci_region->addr);
-
- return rc;
-}
-
-/**
- * hl_pci_set_outbound_region() - Configure outbound region 0
- * @hdev: Pointer to hl_device structure.
- * @pci_region: Outbound region parameters.
- *
- * Configure the iATU outbound region 0.
- *
- * Return: 0 on success, negative value for failure.
- */
-int hl_pci_set_outbound_region(struct hl_device *hdev,
- struct hl_outbound_pci_region *pci_region)
-{
- struct asic_fixed_properties *prop = &hdev->asic_prop;
- u64 outbound_region_end_address;
- int rc = 0;
-
- /* Outbound Region 0 */
- outbound_region_end_address =
- pci_region->addr + pci_region->size - 1;
- rc |= hl_pci_iatu_write(hdev, 0x008,
- lower_32_bits(pci_region->addr));
- rc |= hl_pci_iatu_write(hdev, 0x00C,
- upper_32_bits(pci_region->addr));
- rc |= hl_pci_iatu_write(hdev, 0x010,
- lower_32_bits(outbound_region_end_address));
- rc |= hl_pci_iatu_write(hdev, 0x014, 0);
-
- if ((hdev->power9_64bit_dma_enable) && (hdev->dma_mask == 64))
- rc |= hl_pci_iatu_write(hdev, 0x018, 0x08000000);
- else
- rc |= hl_pci_iatu_write(hdev, 0x018, 0);
-
- rc |= hl_pci_iatu_write(hdev, 0x020,
- upper_32_bits(outbound_region_end_address));
- /* Increase region size */
- rc |= hl_pci_iatu_write(hdev, 0x000, 0x00002000);
- /* Enable */
- rc |= hl_pci_iatu_write(hdev, 0x004, 0x80000000);
-
- /* Return the DBI window to the default location
- * Ignore result of writing to pcie_aux_dbi_reg_addr as it could fail
- * in case the firmware security is enabled
- */
- hl_pci_elbi_write(hdev, prop->pcie_aux_dbi_reg_addr, 0);
-
- return rc;
-}
-
-/**
- * hl_pci_set_dma_mask() - Set DMA masks for the device.
- * @hdev: Pointer to hl_device structure.
- *
- * This function sets the DMA masks (regular and consistent) for a specified
- * value. If it doesn't succeed, it tries to set it to a fall-back value
- *
- * Return: 0 on success, non-zero for failure.
- */
-static int hl_pci_set_dma_mask(struct hl_device *hdev)
-{
- struct pci_dev *pdev = hdev->pdev;
- int rc;
-
- /* set DMA mask */
- rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(hdev->dma_mask));
- if (rc) {
- dev_err(hdev->dev,
- "Failed to set pci dma mask to %d bits, error %d\n",
- hdev->dma_mask, rc);
- return rc;
- }
-
- rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(hdev->dma_mask));
- if (rc) {
- dev_err(hdev->dev,
- "Failed to set pci consistent dma mask to %d bits, error %d\n",
- hdev->dma_mask, rc);
- return rc;
- }
-
- return 0;
-}
-
-/**
- * hl_pci_init() - PCI initialization code.
- * @hdev: Pointer to hl_device structure.
- *
- * Set DMA masks, initialize the PCI controller and map the PCI BARs.
- *
- * Return: 0 on success, non-zero for failure.
- */
-int hl_pci_init(struct hl_device *hdev)
-{
- struct pci_dev *pdev = hdev->pdev;
- int rc;
-
- if (hdev->reset_pcilink)
- hl_pci_reset_link_through_bridge(hdev);
-
- rc = pci_enable_device_mem(pdev);
- if (rc) {
- dev_err(hdev->dev, "can't enable PCI device\n");
- return rc;
- }
-
- pci_set_master(pdev);
-
- rc = hdev->asic_funcs->pci_bars_map(hdev);
- if (rc) {
- dev_err(hdev->dev, "Failed to initialize PCI BARs\n");
- goto disable_device;
- }
-
- rc = hdev->asic_funcs->init_iatu(hdev);
- if (rc) {
- dev_err(hdev->dev, "Failed to initialize iATU\n");
- goto unmap_pci_bars;
- }
-
- rc = hl_pci_set_dma_mask(hdev);
- if (rc)
- goto unmap_pci_bars;
-
- return 0;
-
-unmap_pci_bars:
- hl_pci_bars_unmap(hdev);
-disable_device:
- pci_clear_master(pdev);
- pci_disable_device(pdev);
-
- return rc;
-}
-
-/**
- * hl_fw_fini() - PCI finalization code.
- * @hdev: Pointer to hl_device structure
- *
- * Unmap PCI bars and disable PCI device.
- */
-void hl_pci_fini(struct hl_device *hdev)
-{
- hl_pci_bars_unmap(hdev);
-
- pci_clear_master(hdev->pdev);
- pci_disable_device(hdev->pdev);
-}
--- /dev/null
+# SPDX-License-Identifier: GPL-2.0-only
+HL_COMMON_PCI_FILES := common/pci/pci.o
--- /dev/null
+// SPDX-License-Identifier: GPL-2.0
+
+/*
+ * Copyright 2016-2019 HabanaLabs, Ltd.
+ * All Rights Reserved.
+ */
+
+#include "../habanalabs.h"
+#include "../../include/hw_ip/pci/pci_general.h"
+
+#include <linux/pci.h>
+
+#define HL_PLDM_PCI_ELBI_TIMEOUT_MSEC (HL_PCI_ELBI_TIMEOUT_MSEC * 10)
+
+#define IATU_REGION_CTRL_REGION_EN_MASK BIT(31)
+#define IATU_REGION_CTRL_MATCH_MODE_MASK BIT(30)
+#define IATU_REGION_CTRL_NUM_MATCH_EN_MASK BIT(19)
+#define IATU_REGION_CTRL_BAR_NUM_MASK GENMASK(10, 8)
+
+/**
+ * hl_pci_bars_map() - Map PCI BARs.
+ * @hdev: Pointer to hl_device structure.
+ * @name: Array of BAR names.
+ * @is_wc: Array with flag per BAR whether a write-combined mapping is needed.
+ *
+ * Request PCI regions and map them to kernel virtual addresses.
+ *
+ * Return: 0 on success, non-zero for failure.
+ */
+int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3],
+ bool is_wc[3])
+{
+ struct pci_dev *pdev = hdev->pdev;
+ int rc, i, bar;
+
+ rc = pci_request_regions(pdev, HL_NAME);
+ if (rc) {
+ dev_err(hdev->dev, "Cannot obtain PCI resources\n");
+ return rc;
+ }
+
+ for (i = 0 ; i < 3 ; i++) {
+ bar = i * 2; /* 64-bit BARs */
+ hdev->pcie_bar[bar] = is_wc[i] ?
+ pci_ioremap_wc_bar(pdev, bar) :
+ pci_ioremap_bar(pdev, bar);
+ if (!hdev->pcie_bar[bar]) {
+ dev_err(hdev->dev, "pci_ioremap%s_bar failed for %s\n",
+ is_wc[i] ? "_wc" : "", name[i]);
+ rc = -ENODEV;
+ goto err;
+ }
+ }
+
+ return 0;
+
+err:
+ for (i = 2 ; i >= 0 ; i--) {
+ bar = i * 2; /* 64-bit BARs */
+ if (hdev->pcie_bar[bar])
+ iounmap(hdev->pcie_bar[bar]);
+ }
+
+ pci_release_regions(pdev);
+
+ return rc;
+}
+
+/**
+ * hl_pci_bars_unmap() - Unmap PCI BARS.
+ * @hdev: Pointer to hl_device structure.
+ *
+ * Release all PCI BARs and unmap their virtual addresses.
+ */
+static void hl_pci_bars_unmap(struct hl_device *hdev)
+{
+ struct pci_dev *pdev = hdev->pdev;
+ int i, bar;
+
+ for (i = 2 ; i >= 0 ; i--) {
+ bar = i * 2; /* 64-bit BARs */
+ iounmap(hdev->pcie_bar[bar]);
+ }
+
+ pci_release_regions(pdev);
+}
+
+/**
+ * hl_pci_elbi_write() - Write through the ELBI interface.
+ * @hdev: Pointer to hl_device structure.
+ * @addr: Address to write to
+ * @data: Data to write
+ *
+ * Return: 0 on success, negative value for failure.
+ */
+static int hl_pci_elbi_write(struct hl_device *hdev, u64 addr, u32 data)
+{
+ struct pci_dev *pdev = hdev->pdev;
+ ktime_t timeout;
+ u64 msec;
+ u32 val;
+
+ if (hdev->pldm)
+ msec = HL_PLDM_PCI_ELBI_TIMEOUT_MSEC;
+ else
+ msec = HL_PCI_ELBI_TIMEOUT_MSEC;
+
+ /* Clear previous status */
+ pci_write_config_dword(pdev, mmPCI_CONFIG_ELBI_STS, 0);
+
+ pci_write_config_dword(pdev, mmPCI_CONFIG_ELBI_ADDR, (u32) addr);
+ pci_write_config_dword(pdev, mmPCI_CONFIG_ELBI_DATA, data);
+ pci_write_config_dword(pdev, mmPCI_CONFIG_ELBI_CTRL,
+ PCI_CONFIG_ELBI_CTRL_WRITE);
+
+ timeout = ktime_add_ms(ktime_get(), msec);
+ for (;;) {
+ pci_read_config_dword(pdev, mmPCI_CONFIG_ELBI_STS, &val);
+ if (val & PCI_CONFIG_ELBI_STS_MASK)
+ break;
+ if (ktime_compare(ktime_get(), timeout) > 0) {
+ pci_read_config_dword(pdev, mmPCI_CONFIG_ELBI_STS,
+ &val);
+ break;
+ }
+
+ usleep_range(300, 500);
+ }
+
+ if ((val & PCI_CONFIG_ELBI_STS_MASK) == PCI_CONFIG_ELBI_STS_DONE)
+ return 0;
+
+ if (val & PCI_CONFIG_ELBI_STS_ERR)
+ return -EIO;
+
+ if (!(val & PCI_CONFIG_ELBI_STS_MASK)) {
+ dev_err(hdev->dev, "ELBI write didn't finish in time\n");
+ return -EIO;
+ }
+
+ dev_err(hdev->dev, "ELBI write has undefined bits in status\n");
+ return -EIO;
+}
+
+/**
+ * hl_pci_iatu_write() - iatu write routine.
+ * @hdev: Pointer to hl_device structure.
+ * @addr: Address to write to
+ * @data: Data to write
+ *
+ * Return: 0 on success, negative value for failure.
+ */
+int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u32 dbi_offset;
+ int rc;
+
+ dbi_offset = addr & 0xFFF;
+
+ /* Ignore result of writing to pcie_aux_dbi_reg_addr as it could fail
+ * in case the firmware security is enabled
+ */
+ hl_pci_elbi_write(hdev, prop->pcie_aux_dbi_reg_addr, 0x00300000);
+
+ rc = hl_pci_elbi_write(hdev, prop->pcie_dbi_base_address + dbi_offset,
+ data);
+
+ if (rc)
+ return -EIO;
+
+ return 0;
+}
+
+/**
+ * hl_pci_reset_link_through_bridge() - Reset PCI link.
+ * @hdev: Pointer to hl_device structure.
+ */
+static void hl_pci_reset_link_through_bridge(struct hl_device *hdev)
+{
+ struct pci_dev *pdev = hdev->pdev;
+ struct pci_dev *parent_port;
+ u16 val;
+
+ parent_port = pdev->bus->self;
+ pci_read_config_word(parent_port, PCI_BRIDGE_CONTROL, &val);
+ val |= PCI_BRIDGE_CTL_BUS_RESET;
+ pci_write_config_word(parent_port, PCI_BRIDGE_CONTROL, val);
+ ssleep(1);
+
+ val &= ~(PCI_BRIDGE_CTL_BUS_RESET);
+ pci_write_config_word(parent_port, PCI_BRIDGE_CONTROL, val);
+ ssleep(3);
+}
+
+/**
+ * hl_pci_set_inbound_region() - Configure inbound region
+ * @hdev: Pointer to hl_device structure.
+ * @region: Inbound region number.
+ * @pci_region: Inbound region parameters.
+ *
+ * Configure the iATU inbound region.
+ *
+ * Return: 0 on success, negative value for failure.
+ */
+int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region,
+ struct hl_inbound_pci_region *pci_region)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u64 bar_phys_base, region_base, region_end_address;
+ u32 offset, ctrl_reg_val;
+ int rc = 0;
+
+ /* region offset */
+ offset = (0x200 * region) + 0x100;
+
+ if (pci_region->mode == PCI_ADDRESS_MATCH_MODE) {
+ bar_phys_base = hdev->pcie_bar_phys[pci_region->bar];
+ region_base = bar_phys_base + pci_region->offset_in_bar;
+ region_end_address = region_base + pci_region->size - 1;
+
+ rc |= hl_pci_iatu_write(hdev, offset + 0x8,
+ lower_32_bits(region_base));
+ rc |= hl_pci_iatu_write(hdev, offset + 0xC,
+ upper_32_bits(region_base));
+ rc |= hl_pci_iatu_write(hdev, offset + 0x10,
+ lower_32_bits(region_end_address));
+ }
+
+ /* Point to the specified address */
+ rc |= hl_pci_iatu_write(hdev, offset + 0x14,
+ lower_32_bits(pci_region->addr));
+ rc |= hl_pci_iatu_write(hdev, offset + 0x18,
+ upper_32_bits(pci_region->addr));
+ rc |= hl_pci_iatu_write(hdev, offset + 0x0, 0);
+
+ /* Enable + bar/address match + match enable + bar number */
+ ctrl_reg_val = FIELD_PREP(IATU_REGION_CTRL_REGION_EN_MASK, 1);
+ ctrl_reg_val |= FIELD_PREP(IATU_REGION_CTRL_MATCH_MODE_MASK,
+ pci_region->mode);
+ ctrl_reg_val |= FIELD_PREP(IATU_REGION_CTRL_NUM_MATCH_EN_MASK, 1);
+
+ if (pci_region->mode == PCI_BAR_MATCH_MODE)
+ ctrl_reg_val |= FIELD_PREP(IATU_REGION_CTRL_BAR_NUM_MASK,
+ pci_region->bar);
+
+ rc |= hl_pci_iatu_write(hdev, offset + 0x4, ctrl_reg_val);
+
+ /* Return the DBI window to the default location
+ * Ignore result of writing to pcie_aux_dbi_reg_addr as it could fail
+ * in case the firmware security is enabled
+ */
+ hl_pci_elbi_write(hdev, prop->pcie_aux_dbi_reg_addr, 0);
+
+ if (rc)
+ dev_err(hdev->dev, "failed to map bar %u to 0x%08llx\n",
+ pci_region->bar, pci_region->addr);
+
+ return rc;
+}
+
+/**
+ * hl_pci_set_outbound_region() - Configure outbound region 0
+ * @hdev: Pointer to hl_device structure.
+ * @pci_region: Outbound region parameters.
+ *
+ * Configure the iATU outbound region 0.
+ *
+ * Return: 0 on success, negative value for failure.
+ */
+int hl_pci_set_outbound_region(struct hl_device *hdev,
+ struct hl_outbound_pci_region *pci_region)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u64 outbound_region_end_address;
+ int rc = 0;
+
+ /* Outbound Region 0 */
+ outbound_region_end_address =
+ pci_region->addr + pci_region->size - 1;
+ rc |= hl_pci_iatu_write(hdev, 0x008,
+ lower_32_bits(pci_region->addr));
+ rc |= hl_pci_iatu_write(hdev, 0x00C,
+ upper_32_bits(pci_region->addr));
+ rc |= hl_pci_iatu_write(hdev, 0x010,
+ lower_32_bits(outbound_region_end_address));
+ rc |= hl_pci_iatu_write(hdev, 0x014, 0);
+
+ if ((hdev->power9_64bit_dma_enable) && (hdev->dma_mask == 64))
+ rc |= hl_pci_iatu_write(hdev, 0x018, 0x08000000);
+ else
+ rc |= hl_pci_iatu_write(hdev, 0x018, 0);
+
+ rc |= hl_pci_iatu_write(hdev, 0x020,
+ upper_32_bits(outbound_region_end_address));
+ /* Increase region size */
+ rc |= hl_pci_iatu_write(hdev, 0x000, 0x00002000);
+ /* Enable */
+ rc |= hl_pci_iatu_write(hdev, 0x004, 0x80000000);
+
+ /* Return the DBI window to the default location
+ * Ignore result of writing to pcie_aux_dbi_reg_addr as it could fail
+ * in case the firmware security is enabled
+ */
+ hl_pci_elbi_write(hdev, prop->pcie_aux_dbi_reg_addr, 0);
+
+ return rc;
+}
+
+/**
+ * hl_pci_set_dma_mask() - Set DMA masks for the device.
+ * @hdev: Pointer to hl_device structure.
+ *
+ * This function sets the DMA masks (regular and consistent) for a specified
+ * value. If it doesn't succeed, it tries to set it to a fall-back value
+ *
+ * Return: 0 on success, non-zero for failure.
+ */
+static int hl_pci_set_dma_mask(struct hl_device *hdev)
+{
+ struct pci_dev *pdev = hdev->pdev;
+ int rc;
+
+ /* set DMA mask */
+ rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(hdev->dma_mask));
+ if (rc) {
+ dev_err(hdev->dev,
+ "Failed to set pci dma mask to %d bits, error %d\n",
+ hdev->dma_mask, rc);
+ return rc;
+ }
+
+ rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(hdev->dma_mask));
+ if (rc) {
+ dev_err(hdev->dev,
+ "Failed to set pci consistent dma mask to %d bits, error %d\n",
+ hdev->dma_mask, rc);
+ return rc;
+ }
+
+ return 0;
+}
+
+/**
+ * hl_pci_init() - PCI initialization code.
+ * @hdev: Pointer to hl_device structure.
+ *
+ * Set DMA masks, initialize the PCI controller and map the PCI BARs.
+ *
+ * Return: 0 on success, non-zero for failure.
+ */
+int hl_pci_init(struct hl_device *hdev)
+{
+ struct pci_dev *pdev = hdev->pdev;
+ int rc;
+
+ if (hdev->reset_pcilink)
+ hl_pci_reset_link_through_bridge(hdev);
+
+ rc = pci_enable_device_mem(pdev);
+ if (rc) {
+ dev_err(hdev->dev, "can't enable PCI device\n");
+ return rc;
+ }
+
+ pci_set_master(pdev);
+
+ rc = hdev->asic_funcs->pci_bars_map(hdev);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to initialize PCI BARs\n");
+ goto disable_device;
+ }
+
+ rc = hdev->asic_funcs->init_iatu(hdev);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to initialize iATU\n");
+ goto unmap_pci_bars;
+ }
+
+ rc = hl_pci_set_dma_mask(hdev);
+ if (rc)
+ goto unmap_pci_bars;
+
+ return 0;
+
+unmap_pci_bars:
+ hl_pci_bars_unmap(hdev);
+disable_device:
+ pci_clear_master(pdev);
+ pci_disable_device(pdev);
+
+ return rc;
+}
+
+/**
+ * hl_fw_fini() - PCI finalization code.
+ * @hdev: Pointer to hl_device structure
+ *
+ * Unmap PCI bars and disable PCI device.
+ */
+void hl_pci_fini(struct hl_device *hdev)
+{
+ hl_pci_bars_unmap(hdev);
+
+ pci_clear_master(hdev->pdev);
+ pci_disable_device(hdev->pdev);
+}