Calling pipe2() with O_NOTIFICATION_PIPE could results in memory
leaks unless watch_queue_init() is successful.
In case of watch_queue_init() failure in pipe2() we are left
with inode and pipe_inode_info instances that need to be freed. That
failure exit has been introduced in commit
c73be61cede5 ("pipe: Add
general notification queue support") and its handling should've been
identical to nearby treatment of alloc_file_pseudo() failures - it
is dealing with the same situation. As it is, the mainline kernel
leaks in that case.
Another problem is that CONFIG_WATCH_QUEUE and !CONFIG_WATCH_QUEUE
cases are treated differently (and the former leaks just pipe_inode_info,
the latter - both pipe_inode_info and inode).
Fixed by providing a dummy wacth_queue_init() in !CONFIG_WATCH_QUEUE
case and by having failures of wacth_queue_init() handled the same way
we handle alloc_file_pseudo() ones.
Fixes: c73be61cede5 ("pipe: Add general notification queue support")
Signed-off-by: Qian Cai <cai@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
{
struct inode *inode = get_pipe_inode();
struct file *f;
+ int error;
if (!inode)
return -ENFILE;
if (flags & O_NOTIFICATION_PIPE) {
-#ifdef CONFIG_WATCH_QUEUE
- if (watch_queue_init(inode->i_pipe) < 0) {
+ error = watch_queue_init(inode->i_pipe);
+ if (error) {
+ free_pipe_info(inode->i_pipe);
iput(inode);
- return -ENOMEM;
+ return error;
}
-#else
- return -ENOPKG;
-#endif
}
f = alloc_file_pseudo(inode, pipe_mnt, "",
*/
#define watch_sizeof(STRUCT) (sizeof(STRUCT) << WATCH_INFO_LENGTH__SHIFT)
+#else
+static inline int watch_queue_init(struct pipe_inode_info *pipe)
+{
+ return -ENOPKG;
+}
+
#endif
#endif /* _LINUX_WATCH_QUEUE_H */