void (*cond_sync_exp)(unsigned long oldstate);
unsigned long (*get_gp_state)(void);
unsigned long (*get_gp_completed)(void);
+ void (*get_gp_completed_full)(struct rcu_gp_oldstate *rgosp);
unsigned long (*start_gp_poll)(void);
bool (*poll_gp_state)(unsigned long oldstate);
+ bool (*poll_gp_state_full)(struct rcu_gp_oldstate *rgosp);
void (*cond_sync)(unsigned long oldstate);
call_rcu_func_t call;
void (*cb_barrier)(void);
.exp_sync = synchronize_rcu_expedited,
.get_gp_state = get_state_synchronize_rcu,
.get_gp_completed = get_completed_synchronize_rcu,
+ .get_gp_completed_full = get_completed_synchronize_rcu_full,
.start_gp_poll = start_poll_synchronize_rcu,
.poll_gp_state = poll_state_synchronize_rcu,
+ .poll_gp_state_full = poll_state_synchronize_rcu_full,
.cond_sync = cond_synchronize_rcu,
.get_gp_state_exp = get_state_synchronize_rcu,
.start_gp_poll_exp = start_poll_synchronize_rcu_expedited,
bool boot_ended;
bool can_expedite = !rcu_gp_is_expedited() && !rcu_gp_is_normal();
unsigned long cookie;
+ struct rcu_gp_oldstate cookie_full;
int expediting = 0;
unsigned long gp_snap;
int i;
}
cur_ops->readunlock(idx);
}
+ if (cur_ops->get_gp_completed_full && cur_ops->poll_gp_state_full) {
+ cur_ops->get_gp_completed_full(&cookie_full);
+ WARN_ON_ONCE(!cur_ops->poll_gp_state_full(&cookie_full));
+ }
switch (synctype[torture_random(&rand) % nsynctypes]) {
case RTWS_DEF_FREE:
rcu_torture_writer_state = RTWS_DEF_FREE;
}
EXPORT_SYMBOL_GPL(synchronize_rcu);
+/**
+ * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie
+ * @rgosp: Place to put state cookie
+ *
+ * Stores into @rgosp a value that will always be treated by functions
+ * like poll_state_synchronize_rcu_full() as a cookie whose grace period
+ * has already completed.
+ */
+void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
+{
+ rgosp->rgos_norm = RCU_GET_STATE_COMPLETED;
+ rgosp->rgos_exp = RCU_GET_STATE_COMPLETED;
+ rgosp->rgos_polled = RCU_GET_STATE_COMPLETED;
+}
+EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full);
+
/**
* get_state_synchronize_rcu - Snapshot current RCU state
*
EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
/**
- * poll_state_synchronize_rcu - Conditionally wait for an RCU grace period
+ * poll_state_synchronize_rcu - Has the specified RCU grace period completed?
*
* @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
*
* But counter wrap is harmless. If the counter wraps, we have waited for
* more than a billion grace periods (and way more on a 64-bit system!).
* Those needing to keep oldstate values for very long time periods
- * (many hours even on 32-bit systems) should check them occasionally
- * and either refresh them or set a flag indicating that the grace period
- * has completed.
+ * (many hours even on 32-bit systems) should check them occasionally and
+ * either refresh them or set a flag indicating that the grace period has
+ * completed. Alternatively, they can use get_completed_synchronize_rcu()
+ * to get a guaranteed-completed grace-period state.
*
* This function provides the same memory-ordering guarantees that
* would be provided by a synchronize_rcu() that was invoked at the call
}
EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
+/**
+ * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed?
+ * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
+ *
+ * If a full RCU grace period has elapsed since the earlier call from
+ * which *rgosp was obtained, return @true, otherwise return @false.
+ * If @false is returned, it is the caller's responsibility to invoke this
+ * function later on until it does return @true. Alternatively, the caller
+ * can explicitly wait for a grace period, for example, by passing @rgosp
+ * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
+ *
+ * Yes, this function does not take counter wrap into account.
+ * But counter wrap is harmless. If the counter wraps, we have waited
+ * for more than a billion grace periods (and way more on a 64-bit
+ * system!). Those needing to keep rcu_gp_oldstate values for very
+ * long time periods (many hours even on 32-bit systems) should check
+ * them occasionally and either refresh them or set a flag indicating
+ * that the grace period has completed. Alternatively, they can use
+ * get_completed_synchronize_rcu_full() to get a guaranteed-completed
+ * grace-period state.
+ *
+ * This function provides the same memory-ordering guarantees that would
+ * be provided by a synchronize_rcu() that was invoked at the call to
+ * the function that provided @rgosp, and that returned at the end of this
+ * function. And this guarantee requires that the root rcu_node structure's
+ * ->gp_seq field be checked instead of that of the rcu_state structure.
+ * The problem is that the just-ending grace-period's callbacks can be
+ * invoked between the time that the root rcu_node structure's ->gp_seq
+ * field is updated and the time that the rcu_state structure's ->gp_seq
+ * field is updated. Therefore, if a single synchronize_rcu() is to
+ * cause a subsequent poll_state_synchronize_rcu_full() to return @true,
+ * then the root rcu_node structure is the one that needs to be polled.
+ */
+bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
+{
+ struct rcu_node *rnp = rcu_get_root();
+
+ smp_mb(); // Order against root rcu_node structure grace-period cleanup.
+ if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED ||
+ rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) ||
+ rgosp->rgos_exp == RCU_GET_STATE_COMPLETED ||
+ rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp) ||
+ rgosp->rgos_polled == RCU_GET_STATE_COMPLETED ||
+ rcu_seq_done_exact(&rcu_state.gp_seq_polled, rgosp->rgos_polled)) {
+ smp_mb(); /* Ensure GP ends before subsequent accesses. */
+ return true;
+ }
+ return false;
+}
+EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full);
+
/**
* cond_synchronize_rcu - Conditionally wait for an RCU grace period
*