PM: AVS: qcom-cpr: Move the driver to the qcom specific drivers
authorUlf Hansson <ulf.hansson@linaro.org>
Tue, 6 Oct 2020 16:05:13 +0000 (18:05 +0200)
committerRafael J. Wysocki <rafael.j.wysocki@intel.com>
Thu, 22 Oct 2020 16:38:21 +0000 (18:38 +0200)
The avs drivers are all SoC specific drivers that doesn't share any code.
Instead they are located in a directory, mostly to keep similar
functionality together. From a maintenance point of view, it makes better
sense to collect SoC specific drivers like these, into the SoC specific
directories.

Therefore, let's move the qcom-cpr driver to the qcom directory.

Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
Acked-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Acked-by: Niklas Cassel <nks@flawful.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
MAINTAINERS
drivers/power/avs/Kconfig
drivers/power/avs/Makefile
drivers/power/avs/qcom-cpr.c [deleted file]
drivers/soc/qcom/Kconfig
drivers/soc/qcom/Makefile
drivers/soc/qcom/cpr.c [new file with mode: 0644]

index 6c17687faa521a9f991b5b5fa4d668f8d3b23414..d08ff56e35b6c61e18269080ecad4844d08785e0 100644 (file)
@@ -14354,7 +14354,7 @@ L:      linux-pm@vger.kernel.org
 L:     linux-arm-msm@vger.kernel.org
 S:     Maintained
 F:     Documentation/devicetree/bindings/power/avs/qcom,cpr.txt
-F:     drivers/power/avs/qcom-cpr.c
+F:     drivers/soc/qcom/cpr.c
 
 QUALCOMM CPUFREQ DRIVER MSM8996/APQ8096
 M:     Ilia Lin <ilia.lin@kernel.org>
index d789509ae7e9a8d67526f79d931a7a916dab94da..a4e40e534e6a84db241abfe5076962a90f8a71bd 100644 (file)
@@ -1,17 +1 @@
 # SPDX-License-Identifier: GPL-2.0-only
-
-config QCOM_CPR
-       tristate "QCOM Core Power Reduction (CPR) support"
-       depends on POWER_AVS && HAS_IOMEM
-       select PM_OPP
-       select REGMAP
-       help
-         Say Y here to enable support for the CPR hardware found on Qualcomm
-         SoCs like QCS404.
-
-         This driver populates CPU OPPs tables and makes adjustments to the
-         tables based on feedback from the CPR hardware. If you want to do
-         CPUfrequency scaling say Y here.
-
-         To compile this driver as a module, choose M here: the module will
-         be called qcom-cpr
index 735832f4721438a2073c7b6b76d254a426285a10..a4e40e534e6a84db241abfe5076962a90f8a71bd 100644 (file)
@@ -1,2 +1 @@
 # SPDX-License-Identifier: GPL-2.0-only
-obj-$(CONFIG_QCOM_CPR)                 += qcom-cpr.o
diff --git a/drivers/power/avs/qcom-cpr.c b/drivers/power/avs/qcom-cpr.c
deleted file mode 100644 (file)
index b24cc77..0000000
+++ /dev/null
@@ -1,1788 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0
-/*
- * Copyright (c) 2013-2015, The Linux Foundation. All rights reserved.
- * Copyright (c) 2019, Linaro Limited
- */
-
-#include <linux/module.h>
-#include <linux/err.h>
-#include <linux/debugfs.h>
-#include <linux/string.h>
-#include <linux/kernel.h>
-#include <linux/list.h>
-#include <linux/init.h>
-#include <linux/io.h>
-#include <linux/bitops.h>
-#include <linux/slab.h>
-#include <linux/of.h>
-#include <linux/of_device.h>
-#include <linux/platform_device.h>
-#include <linux/pm_domain.h>
-#include <linux/pm_opp.h>
-#include <linux/interrupt.h>
-#include <linux/regmap.h>
-#include <linux/mfd/syscon.h>
-#include <linux/regulator/consumer.h>
-#include <linux/clk.h>
-#include <linux/nvmem-consumer.h>
-
-/* Register Offsets for RB-CPR and Bit Definitions */
-
-/* RBCPR Version Register */
-#define REG_RBCPR_VERSION              0
-#define RBCPR_VER_2                    0x02
-#define FLAGS_IGNORE_1ST_IRQ_STATUS    BIT(0)
-
-/* RBCPR Gate Count and Target Registers */
-#define REG_RBCPR_GCNT_TARGET(n)       (0x60 + 4 * (n))
-
-#define RBCPR_GCNT_TARGET_TARGET_SHIFT 0
-#define RBCPR_GCNT_TARGET_TARGET_MASK  GENMASK(11, 0)
-#define RBCPR_GCNT_TARGET_GCNT_SHIFT   12
-#define RBCPR_GCNT_TARGET_GCNT_MASK    GENMASK(9, 0)
-
-/* RBCPR Timer Control */
-#define REG_RBCPR_TIMER_INTERVAL       0x44
-#define REG_RBIF_TIMER_ADJUST          0x4c
-
-#define RBIF_TIMER_ADJ_CONS_UP_MASK    GENMASK(3, 0)
-#define RBIF_TIMER_ADJ_CONS_UP_SHIFT   0
-#define RBIF_TIMER_ADJ_CONS_DOWN_MASK  GENMASK(3, 0)
-#define RBIF_TIMER_ADJ_CONS_DOWN_SHIFT 4
-#define RBIF_TIMER_ADJ_CLAMP_INT_MASK  GENMASK(7, 0)
-#define RBIF_TIMER_ADJ_CLAMP_INT_SHIFT 8
-
-/* RBCPR Config Register */
-#define REG_RBIF_LIMIT                 0x48
-#define RBIF_LIMIT_CEILING_MASK                GENMASK(5, 0)
-#define RBIF_LIMIT_CEILING_SHIFT       6
-#define RBIF_LIMIT_FLOOR_BITS          6
-#define RBIF_LIMIT_FLOOR_MASK          GENMASK(5, 0)
-
-#define RBIF_LIMIT_CEILING_DEFAULT     RBIF_LIMIT_CEILING_MASK
-#define RBIF_LIMIT_FLOOR_DEFAULT       0
-
-#define REG_RBIF_SW_VLEVEL             0x94
-#define RBIF_SW_VLEVEL_DEFAULT         0x20
-
-#define REG_RBCPR_STEP_QUOT            0x80
-#define RBCPR_STEP_QUOT_STEPQUOT_MASK  GENMASK(7, 0)
-#define RBCPR_STEP_QUOT_IDLE_CLK_MASK  GENMASK(3, 0)
-#define RBCPR_STEP_QUOT_IDLE_CLK_SHIFT 8
-
-/* RBCPR Control Register */
-#define REG_RBCPR_CTL                  0x90
-
-#define RBCPR_CTL_LOOP_EN                      BIT(0)
-#define RBCPR_CTL_TIMER_EN                     BIT(3)
-#define RBCPR_CTL_SW_AUTO_CONT_ACK_EN          BIT(5)
-#define RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN      BIT(6)
-#define RBCPR_CTL_COUNT_MODE                   BIT(10)
-#define RBCPR_CTL_UP_THRESHOLD_MASK    GENMASK(3, 0)
-#define RBCPR_CTL_UP_THRESHOLD_SHIFT   24
-#define RBCPR_CTL_DN_THRESHOLD_MASK    GENMASK(3, 0)
-#define RBCPR_CTL_DN_THRESHOLD_SHIFT   28
-
-/* RBCPR Ack/Nack Response */
-#define REG_RBIF_CONT_ACK_CMD          0x98
-#define REG_RBIF_CONT_NACK_CMD         0x9c
-
-/* RBCPR Result status Register */
-#define REG_RBCPR_RESULT_0             0xa0
-
-#define RBCPR_RESULT0_BUSY_SHIFT       19
-#define RBCPR_RESULT0_BUSY_MASK                BIT(RBCPR_RESULT0_BUSY_SHIFT)
-#define RBCPR_RESULT0_ERROR_LT0_SHIFT  18
-#define RBCPR_RESULT0_ERROR_SHIFT      6
-#define RBCPR_RESULT0_ERROR_MASK       GENMASK(11, 0)
-#define RBCPR_RESULT0_ERROR_STEPS_SHIFT        2
-#define RBCPR_RESULT0_ERROR_STEPS_MASK GENMASK(3, 0)
-#define RBCPR_RESULT0_STEP_UP_SHIFT    1
-
-/* RBCPR Interrupt Control Register */
-#define REG_RBIF_IRQ_EN(n)             (0x100 + 4 * (n))
-#define REG_RBIF_IRQ_CLEAR             0x110
-#define REG_RBIF_IRQ_STATUS            0x114
-
-#define CPR_INT_DONE           BIT(0)
-#define CPR_INT_MIN            BIT(1)
-#define CPR_INT_DOWN           BIT(2)
-#define CPR_INT_MID            BIT(3)
-#define CPR_INT_UP             BIT(4)
-#define CPR_INT_MAX            BIT(5)
-#define CPR_INT_CLAMP          BIT(6)
-#define CPR_INT_ALL    (CPR_INT_DONE | CPR_INT_MIN | CPR_INT_DOWN | \
-                       CPR_INT_MID | CPR_INT_UP | CPR_INT_MAX | CPR_INT_CLAMP)
-#define CPR_INT_DEFAULT        (CPR_INT_UP | CPR_INT_DOWN)
-
-#define CPR_NUM_RING_OSC       8
-
-/* CPR eFuse parameters */
-#define CPR_FUSE_TARGET_QUOT_BITS_MASK GENMASK(11, 0)
-
-#define CPR_FUSE_MIN_QUOT_DIFF         50
-
-#define FUSE_REVISION_UNKNOWN          (-1)
-
-enum voltage_change_dir {
-       NO_CHANGE,
-       DOWN,
-       UP,
-};
-
-struct cpr_fuse {
-       char *ring_osc;
-       char *init_voltage;
-       char *quotient;
-       char *quotient_offset;
-};
-
-struct fuse_corner_data {
-       int ref_uV;
-       int max_uV;
-       int min_uV;
-       int max_volt_scale;
-       int max_quot_scale;
-       /* fuse quot */
-       int quot_offset;
-       int quot_scale;
-       int quot_adjust;
-       /* fuse quot_offset */
-       int quot_offset_scale;
-       int quot_offset_adjust;
-};
-
-struct cpr_fuses {
-       int init_voltage_step;
-       int init_voltage_width;
-       struct fuse_corner_data *fuse_corner_data;
-};
-
-struct corner_data {
-       unsigned int fuse_corner;
-       unsigned long freq;
-};
-
-struct cpr_desc {
-       unsigned int num_fuse_corners;
-       int min_diff_quot;
-       int *step_quot;
-
-       unsigned int            timer_delay_us;
-       unsigned int            timer_cons_up;
-       unsigned int            timer_cons_down;
-       unsigned int            up_threshold;
-       unsigned int            down_threshold;
-       unsigned int            idle_clocks;
-       unsigned int            gcnt_us;
-       unsigned int            vdd_apc_step_up_limit;
-       unsigned int            vdd_apc_step_down_limit;
-       unsigned int            clamp_timer_interval;
-
-       struct cpr_fuses cpr_fuses;
-       bool reduce_to_fuse_uV;
-       bool reduce_to_corner_uV;
-};
-
-struct acc_desc {
-       unsigned int    enable_reg;
-       u32             enable_mask;
-
-       struct reg_sequence     *config;
-       struct reg_sequence     *settings;
-       int                     num_regs_per_fuse;
-};
-
-struct cpr_acc_desc {
-       const struct cpr_desc *cpr_desc;
-       const struct acc_desc *acc_desc;
-};
-
-struct fuse_corner {
-       int min_uV;
-       int max_uV;
-       int uV;
-       int quot;
-       int step_quot;
-       const struct reg_sequence *accs;
-       int num_accs;
-       unsigned long max_freq;
-       u8 ring_osc_idx;
-};
-
-struct corner {
-       int min_uV;
-       int max_uV;
-       int uV;
-       int last_uV;
-       int quot_adjust;
-       u32 save_ctl;
-       u32 save_irq;
-       unsigned long freq;
-       struct fuse_corner *fuse_corner;
-};
-
-struct cpr_drv {
-       unsigned int            num_corners;
-       unsigned int            ref_clk_khz;
-
-       struct generic_pm_domain pd;
-       struct device           *dev;
-       struct device           *attached_cpu_dev;
-       struct mutex            lock;
-       void __iomem            *base;
-       struct corner           *corner;
-       struct regulator        *vdd_apc;
-       struct clk              *cpu_clk;
-       struct regmap           *tcsr;
-       bool                    loop_disabled;
-       u32                     gcnt;
-       unsigned long           flags;
-
-       struct fuse_corner      *fuse_corners;
-       struct corner           *corners;
-
-       const struct cpr_desc *desc;
-       const struct acc_desc *acc_desc;
-       const struct cpr_fuse *cpr_fuses;
-
-       struct dentry *debugfs;
-};
-
-static bool cpr_is_allowed(struct cpr_drv *drv)
-{
-       return !drv->loop_disabled;
-}
-
-static void cpr_write(struct cpr_drv *drv, u32 offset, u32 value)
-{
-       writel_relaxed(value, drv->base + offset);
-}
-
-static u32 cpr_read(struct cpr_drv *drv, u32 offset)
-{
-       return readl_relaxed(drv->base + offset);
-}
-
-static void
-cpr_masked_write(struct cpr_drv *drv, u32 offset, u32 mask, u32 value)
-{
-       u32 val;
-
-       val = readl_relaxed(drv->base + offset);
-       val &= ~mask;
-       val |= value & mask;
-       writel_relaxed(val, drv->base + offset);
-}
-
-static void cpr_irq_clr(struct cpr_drv *drv)
-{
-       cpr_write(drv, REG_RBIF_IRQ_CLEAR, CPR_INT_ALL);
-}
-
-static void cpr_irq_clr_nack(struct cpr_drv *drv)
-{
-       cpr_irq_clr(drv);
-       cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
-}
-
-static void cpr_irq_clr_ack(struct cpr_drv *drv)
-{
-       cpr_irq_clr(drv);
-       cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
-}
-
-static void cpr_irq_set(struct cpr_drv *drv, u32 int_bits)
-{
-       cpr_write(drv, REG_RBIF_IRQ_EN(0), int_bits);
-}
-
-static void cpr_ctl_modify(struct cpr_drv *drv, u32 mask, u32 value)
-{
-       cpr_masked_write(drv, REG_RBCPR_CTL, mask, value);
-}
-
-static void cpr_ctl_enable(struct cpr_drv *drv, struct corner *corner)
-{
-       u32 val, mask;
-       const struct cpr_desc *desc = drv->desc;
-
-       /* Program Consecutive Up & Down */
-       val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
-       val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
-       mask = RBIF_TIMER_ADJ_CONS_UP_MASK | RBIF_TIMER_ADJ_CONS_DOWN_MASK;
-       cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST, mask, val);
-       cpr_masked_write(drv, REG_RBCPR_CTL,
-                        RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
-                        RBCPR_CTL_SW_AUTO_CONT_ACK_EN,
-                        corner->save_ctl);
-       cpr_irq_set(drv, corner->save_irq);
-
-       if (cpr_is_allowed(drv) && corner->max_uV > corner->min_uV)
-               val = RBCPR_CTL_LOOP_EN;
-       else
-               val = 0;
-       cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, val);
-}
-
-static void cpr_ctl_disable(struct cpr_drv *drv)
-{
-       cpr_irq_set(drv, 0);
-       cpr_ctl_modify(drv, RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
-                      RBCPR_CTL_SW_AUTO_CONT_ACK_EN, 0);
-       cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST,
-                        RBIF_TIMER_ADJ_CONS_UP_MASK |
-                        RBIF_TIMER_ADJ_CONS_DOWN_MASK, 0);
-       cpr_irq_clr(drv);
-       cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
-       cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
-       cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, 0);
-}
-
-static bool cpr_ctl_is_enabled(struct cpr_drv *drv)
-{
-       u32 reg_val;
-
-       reg_val = cpr_read(drv, REG_RBCPR_CTL);
-       return reg_val & RBCPR_CTL_LOOP_EN;
-}
-
-static bool cpr_ctl_is_busy(struct cpr_drv *drv)
-{
-       u32 reg_val;
-
-       reg_val = cpr_read(drv, REG_RBCPR_RESULT_0);
-       return reg_val & RBCPR_RESULT0_BUSY_MASK;
-}
-
-static void cpr_corner_save(struct cpr_drv *drv, struct corner *corner)
-{
-       corner->save_ctl = cpr_read(drv, REG_RBCPR_CTL);
-       corner->save_irq = cpr_read(drv, REG_RBIF_IRQ_EN(0));
-}
-
-static void cpr_corner_restore(struct cpr_drv *drv, struct corner *corner)
-{
-       u32 gcnt, ctl, irq, ro_sel, step_quot;
-       struct fuse_corner *fuse = corner->fuse_corner;
-       const struct cpr_desc *desc = drv->desc;
-       int i;
-
-       ro_sel = fuse->ring_osc_idx;
-       gcnt = drv->gcnt;
-       gcnt |= fuse->quot - corner->quot_adjust;
-
-       /* Program the step quotient and idle clocks */
-       step_quot = desc->idle_clocks << RBCPR_STEP_QUOT_IDLE_CLK_SHIFT;
-       step_quot |= fuse->step_quot & RBCPR_STEP_QUOT_STEPQUOT_MASK;
-       cpr_write(drv, REG_RBCPR_STEP_QUOT, step_quot);
-
-       /* Clear the target quotient value and gate count of all ROs */
-       for (i = 0; i < CPR_NUM_RING_OSC; i++)
-               cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
-
-       cpr_write(drv, REG_RBCPR_GCNT_TARGET(ro_sel), gcnt);
-       ctl = corner->save_ctl;
-       cpr_write(drv, REG_RBCPR_CTL, ctl);
-       irq = corner->save_irq;
-       cpr_irq_set(drv, irq);
-       dev_dbg(drv->dev, "gcnt = %#08x, ctl = %#08x, irq = %#08x\n", gcnt,
-               ctl, irq);
-}
-
-static void cpr_set_acc(struct regmap *tcsr, struct fuse_corner *f,
-                       struct fuse_corner *end)
-{
-       if (f == end)
-               return;
-
-       if (f < end) {
-               for (f += 1; f <= end; f++)
-                       regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
-       } else {
-               for (f -= 1; f >= end; f--)
-                       regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
-       }
-}
-
-static int cpr_pre_voltage(struct cpr_drv *drv,
-                          struct fuse_corner *fuse_corner,
-                          enum voltage_change_dir dir)
-{
-       struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
-
-       if (drv->tcsr && dir == DOWN)
-               cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
-
-       return 0;
-}
-
-static int cpr_post_voltage(struct cpr_drv *drv,
-                           struct fuse_corner *fuse_corner,
-                           enum voltage_change_dir dir)
-{
-       struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
-
-       if (drv->tcsr && dir == UP)
-               cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
-
-       return 0;
-}
-
-static int cpr_scale_voltage(struct cpr_drv *drv, struct corner *corner,
-                            int new_uV, enum voltage_change_dir dir)
-{
-       int ret;
-       struct fuse_corner *fuse_corner = corner->fuse_corner;
-
-       ret = cpr_pre_voltage(drv, fuse_corner, dir);
-       if (ret)
-               return ret;
-
-       ret = regulator_set_voltage(drv->vdd_apc, new_uV, new_uV);
-       if (ret) {
-               dev_err_ratelimited(drv->dev, "failed to set apc voltage %d\n",
-                                   new_uV);
-               return ret;
-       }
-
-       ret = cpr_post_voltage(drv, fuse_corner, dir);
-       if (ret)
-               return ret;
-
-       return 0;
-}
-
-static unsigned int cpr_get_cur_perf_state(struct cpr_drv *drv)
-{
-       return drv->corner ? drv->corner - drv->corners + 1 : 0;
-}
-
-static int cpr_scale(struct cpr_drv *drv, enum voltage_change_dir dir)
-{
-       u32 val, error_steps, reg_mask;
-       int last_uV, new_uV, step_uV, ret;
-       struct corner *corner;
-       const struct cpr_desc *desc = drv->desc;
-
-       if (dir != UP && dir != DOWN)
-               return 0;
-
-       step_uV = regulator_get_linear_step(drv->vdd_apc);
-       if (!step_uV)
-               return -EINVAL;
-
-       corner = drv->corner;
-
-       val = cpr_read(drv, REG_RBCPR_RESULT_0);
-
-       error_steps = val >> RBCPR_RESULT0_ERROR_STEPS_SHIFT;
-       error_steps &= RBCPR_RESULT0_ERROR_STEPS_MASK;
-       last_uV = corner->last_uV;
-
-       if (dir == UP) {
-               if (desc->clamp_timer_interval &&
-                   error_steps < desc->up_threshold) {
-                       /*
-                        * Handle the case where another measurement started
-                        * after the interrupt was triggered due to a core
-                        * exiting from power collapse.
-                        */
-                       error_steps = max(desc->up_threshold,
-                                         desc->vdd_apc_step_up_limit);
-               }
-
-               if (last_uV >= corner->max_uV) {
-                       cpr_irq_clr_nack(drv);
-
-                       /* Maximize the UP threshold */
-                       reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
-                       reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
-                       val = reg_mask;
-                       cpr_ctl_modify(drv, reg_mask, val);
-
-                       /* Disable UP interrupt */
-                       cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_UP);
-
-                       return 0;
-               }
-
-               if (error_steps > desc->vdd_apc_step_up_limit)
-                       error_steps = desc->vdd_apc_step_up_limit;
-
-               /* Calculate new voltage */
-               new_uV = last_uV + error_steps * step_uV;
-               new_uV = min(new_uV, corner->max_uV);
-
-               dev_dbg(drv->dev,
-                       "UP: -> new_uV: %d last_uV: %d perf state: %u\n",
-                       new_uV, last_uV, cpr_get_cur_perf_state(drv));
-       } else {
-               if (desc->clamp_timer_interval &&
-                   error_steps < desc->down_threshold) {
-                       /*
-                        * Handle the case where another measurement started
-                        * after the interrupt was triggered due to a core
-                        * exiting from power collapse.
-                        */
-                       error_steps = max(desc->down_threshold,
-                                         desc->vdd_apc_step_down_limit);
-               }
-
-               if (last_uV <= corner->min_uV) {
-                       cpr_irq_clr_nack(drv);
-
-                       /* Enable auto nack down */
-                       reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
-                       val = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
-
-                       cpr_ctl_modify(drv, reg_mask, val);
-
-                       /* Disable DOWN interrupt */
-                       cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_DOWN);
-
-                       return 0;
-               }
-
-               if (error_steps > desc->vdd_apc_step_down_limit)
-                       error_steps = desc->vdd_apc_step_down_limit;
-
-               /* Calculate new voltage */
-               new_uV = last_uV - error_steps * step_uV;
-               new_uV = max(new_uV, corner->min_uV);
-
-               dev_dbg(drv->dev,
-                       "DOWN: -> new_uV: %d last_uV: %d perf state: %u\n",
-                       new_uV, last_uV, cpr_get_cur_perf_state(drv));
-       }
-
-       ret = cpr_scale_voltage(drv, corner, new_uV, dir);
-       if (ret) {
-               cpr_irq_clr_nack(drv);
-               return ret;
-       }
-       drv->corner->last_uV = new_uV;
-
-       if (dir == UP) {
-               /* Disable auto nack down */
-               reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
-               val = 0;
-       } else {
-               /* Restore default threshold for UP */
-               reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
-               reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
-               val = desc->up_threshold;
-               val <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
-       }
-
-       cpr_ctl_modify(drv, reg_mask, val);
-
-       /* Re-enable default interrupts */
-       cpr_irq_set(drv, CPR_INT_DEFAULT);
-
-       /* Ack */
-       cpr_irq_clr_ack(drv);
-
-       return 0;
-}
-
-static irqreturn_t cpr_irq_handler(int irq, void *dev)
-{
-       struct cpr_drv *drv = dev;
-       const struct cpr_desc *desc = drv->desc;
-       irqreturn_t ret = IRQ_HANDLED;
-       u32 val;
-
-       mutex_lock(&drv->lock);
-
-       val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
-       if (drv->flags & FLAGS_IGNORE_1ST_IRQ_STATUS)
-               val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
-
-       dev_dbg(drv->dev, "IRQ_STATUS = %#02x\n", val);
-
-       if (!cpr_ctl_is_enabled(drv)) {
-               dev_dbg(drv->dev, "CPR is disabled\n");
-               ret = IRQ_NONE;
-       } else if (cpr_ctl_is_busy(drv) && !desc->clamp_timer_interval) {
-               dev_dbg(drv->dev, "CPR measurement is not ready\n");
-       } else if (!cpr_is_allowed(drv)) {
-               val = cpr_read(drv, REG_RBCPR_CTL);
-               dev_err_ratelimited(drv->dev,
-                                   "Interrupt broken? RBCPR_CTL = %#02x\n",
-                                   val);
-               ret = IRQ_NONE;
-       } else {
-               /*
-                * Following sequence of handling is as per each IRQ's
-                * priority
-                */
-               if (val & CPR_INT_UP) {
-                       cpr_scale(drv, UP);
-               } else if (val & CPR_INT_DOWN) {
-                       cpr_scale(drv, DOWN);
-               } else if (val & CPR_INT_MIN) {
-                       cpr_irq_clr_nack(drv);
-               } else if (val & CPR_INT_MAX) {
-                       cpr_irq_clr_nack(drv);
-               } else if (val & CPR_INT_MID) {
-                       /* RBCPR_CTL_SW_AUTO_CONT_ACK_EN is enabled */
-                       dev_dbg(drv->dev, "IRQ occurred for Mid Flag\n");
-               } else {
-                       dev_dbg(drv->dev,
-                               "IRQ occurred for unknown flag (%#08x)\n", val);
-               }
-
-               /* Save register values for the corner */
-               cpr_corner_save(drv, drv->corner);
-       }
-
-       mutex_unlock(&drv->lock);
-
-       return ret;
-}
-
-static int cpr_enable(struct cpr_drv *drv)
-{
-       int ret;
-
-       ret = regulator_enable(drv->vdd_apc);
-       if (ret)
-               return ret;
-
-       mutex_lock(&drv->lock);
-
-       if (cpr_is_allowed(drv) && drv->corner) {
-               cpr_irq_clr(drv);
-               cpr_corner_restore(drv, drv->corner);
-               cpr_ctl_enable(drv, drv->corner);
-       }
-
-       mutex_unlock(&drv->lock);
-
-       return 0;
-}
-
-static int cpr_disable(struct cpr_drv *drv)
-{
-       mutex_lock(&drv->lock);
-
-       if (cpr_is_allowed(drv)) {
-               cpr_ctl_disable(drv);
-               cpr_irq_clr(drv);
-       }
-
-       mutex_unlock(&drv->lock);
-
-       return regulator_disable(drv->vdd_apc);
-}
-
-static int cpr_config(struct cpr_drv *drv)
-{
-       int i;
-       u32 val, gcnt;
-       struct corner *corner;
-       const struct cpr_desc *desc = drv->desc;
-
-       /* Disable interrupt and CPR */
-       cpr_write(drv, REG_RBIF_IRQ_EN(0), 0);
-       cpr_write(drv, REG_RBCPR_CTL, 0);
-
-       /* Program the default HW ceiling, floor and vlevel */
-       val = (RBIF_LIMIT_CEILING_DEFAULT & RBIF_LIMIT_CEILING_MASK)
-               << RBIF_LIMIT_CEILING_SHIFT;
-       val |= RBIF_LIMIT_FLOOR_DEFAULT & RBIF_LIMIT_FLOOR_MASK;
-       cpr_write(drv, REG_RBIF_LIMIT, val);
-       cpr_write(drv, REG_RBIF_SW_VLEVEL, RBIF_SW_VLEVEL_DEFAULT);
-
-       /*
-        * Clear the target quotient value and gate count of all
-        * ring oscillators
-        */
-       for (i = 0; i < CPR_NUM_RING_OSC; i++)
-               cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
-
-       /* Init and save gcnt */
-       gcnt = (drv->ref_clk_khz * desc->gcnt_us) / 1000;
-       gcnt = gcnt & RBCPR_GCNT_TARGET_GCNT_MASK;
-       gcnt <<= RBCPR_GCNT_TARGET_GCNT_SHIFT;
-       drv->gcnt = gcnt;
-
-       /* Program the delay count for the timer */
-       val = (drv->ref_clk_khz * desc->timer_delay_us) / 1000;
-       cpr_write(drv, REG_RBCPR_TIMER_INTERVAL, val);
-       dev_dbg(drv->dev, "Timer count: %#0x (for %d us)\n", val,
-               desc->timer_delay_us);
-
-       /* Program Consecutive Up & Down */
-       val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
-       val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
-       val |= desc->clamp_timer_interval << RBIF_TIMER_ADJ_CLAMP_INT_SHIFT;
-       cpr_write(drv, REG_RBIF_TIMER_ADJUST, val);
-
-       /* Program the control register */
-       val = desc->up_threshold << RBCPR_CTL_UP_THRESHOLD_SHIFT;
-       val |= desc->down_threshold << RBCPR_CTL_DN_THRESHOLD_SHIFT;
-       val |= RBCPR_CTL_TIMER_EN | RBCPR_CTL_COUNT_MODE;
-       val |= RBCPR_CTL_SW_AUTO_CONT_ACK_EN;
-       cpr_write(drv, REG_RBCPR_CTL, val);
-
-       for (i = 0; i < drv->num_corners; i++) {
-               corner = &drv->corners[i];
-               corner->save_ctl = val;
-               corner->save_irq = CPR_INT_DEFAULT;
-       }
-
-       cpr_irq_set(drv, CPR_INT_DEFAULT);
-
-       val = cpr_read(drv, REG_RBCPR_VERSION);
-       if (val <= RBCPR_VER_2)
-               drv->flags |= FLAGS_IGNORE_1ST_IRQ_STATUS;
-
-       return 0;
-}
-
-static int cpr_set_performance_state(struct generic_pm_domain *domain,
-                                    unsigned int state)
-{
-       struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
-       struct corner *corner, *end;
-       enum voltage_change_dir dir;
-       int ret = 0, new_uV;
-
-       mutex_lock(&drv->lock);
-
-       dev_dbg(drv->dev, "%s: setting perf state: %u (prev state: %u)\n",
-               __func__, state, cpr_get_cur_perf_state(drv));
-
-       /*
-        * Determine new corner we're going to.
-        * Remove one since lowest performance state is 1.
-        */
-       corner = drv->corners + state - 1;
-       end = &drv->corners[drv->num_corners - 1];
-       if (corner > end || corner < drv->corners) {
-               ret = -EINVAL;
-               goto unlock;
-       }
-
-       /* Determine direction */
-       if (drv->corner > corner)
-               dir = DOWN;
-       else if (drv->corner < corner)
-               dir = UP;
-       else
-               dir = NO_CHANGE;
-
-       if (cpr_is_allowed(drv))
-               new_uV = corner->last_uV;
-       else
-               new_uV = corner->uV;
-
-       if (cpr_is_allowed(drv))
-               cpr_ctl_disable(drv);
-
-       ret = cpr_scale_voltage(drv, corner, new_uV, dir);
-       if (ret)
-               goto unlock;
-
-       if (cpr_is_allowed(drv)) {
-               cpr_irq_clr(drv);
-               if (drv->corner != corner)
-                       cpr_corner_restore(drv, corner);
-               cpr_ctl_enable(drv, corner);
-       }
-
-       drv->corner = corner;
-
-unlock:
-       mutex_unlock(&drv->lock);
-
-       return ret;
-}
-
-static int cpr_read_efuse(struct device *dev, const char *cname, u32 *data)
-{
-       struct nvmem_cell *cell;
-       ssize_t len;
-       char *ret;
-       int i;
-
-       *data = 0;
-
-       cell = nvmem_cell_get(dev, cname);
-       if (IS_ERR(cell)) {
-               if (PTR_ERR(cell) != -EPROBE_DEFER)
-                       dev_err(dev, "undefined cell %s\n", cname);
-               return PTR_ERR(cell);
-       }
-
-       ret = nvmem_cell_read(cell, &len);
-       nvmem_cell_put(cell);
-       if (IS_ERR(ret)) {
-               dev_err(dev, "can't read cell %s\n", cname);
-               return PTR_ERR(ret);
-       }
-
-       for (i = 0; i < len; i++)
-               *data |= ret[i] << (8 * i);
-
-       kfree(ret);
-       dev_dbg(dev, "efuse read(%s) = %x, bytes %zd\n", cname, *data, len);
-
-       return 0;
-}
-
-static int
-cpr_populate_ring_osc_idx(struct cpr_drv *drv)
-{
-       struct fuse_corner *fuse = drv->fuse_corners;
-       struct fuse_corner *end = fuse + drv->desc->num_fuse_corners;
-       const struct cpr_fuse *fuses = drv->cpr_fuses;
-       u32 data;
-       int ret;
-
-       for (; fuse < end; fuse++, fuses++) {
-               ret = cpr_read_efuse(drv->dev, fuses->ring_osc,
-                                    &data);
-               if (ret)
-                       return ret;
-               fuse->ring_osc_idx = data;
-       }
-
-       return 0;
-}
-
-static int cpr_read_fuse_uV(const struct cpr_desc *desc,
-                           const struct fuse_corner_data *fdata,
-                           const char *init_v_efuse,
-                           int step_volt,
-                           struct cpr_drv *drv)
-{
-       int step_size_uV, steps, uV;
-       u32 bits = 0;
-       int ret;
-
-       ret = cpr_read_efuse(drv->dev, init_v_efuse, &bits);
-       if (ret)
-               return ret;
-
-       steps = bits & ~BIT(desc->cpr_fuses.init_voltage_width - 1);
-       /* Not two's complement.. instead highest bit is sign bit */
-       if (bits & BIT(desc->cpr_fuses.init_voltage_width - 1))
-               steps = -steps;
-
-       step_size_uV = desc->cpr_fuses.init_voltage_step;
-
-       uV = fdata->ref_uV + steps * step_size_uV;
-       return DIV_ROUND_UP(uV, step_volt) * step_volt;
-}
-
-static int cpr_fuse_corner_init(struct cpr_drv *drv)
-{
-       const struct cpr_desc *desc = drv->desc;
-       const struct cpr_fuse *fuses = drv->cpr_fuses;
-       const struct acc_desc *acc_desc = drv->acc_desc;
-       int i;
-       unsigned int step_volt;
-       struct fuse_corner_data *fdata;
-       struct fuse_corner *fuse, *end;
-       int uV;
-       const struct reg_sequence *accs;
-       int ret;
-
-       accs = acc_desc->settings;
-
-       step_volt = regulator_get_linear_step(drv->vdd_apc);
-       if (!step_volt)
-               return -EINVAL;
-
-       /* Populate fuse_corner members */
-       fuse = drv->fuse_corners;
-       end = &fuse[desc->num_fuse_corners - 1];
-       fdata = desc->cpr_fuses.fuse_corner_data;
-
-       for (i = 0; fuse <= end; fuse++, fuses++, i++, fdata++) {
-               /*
-                * Update SoC voltages: platforms might choose a different
-                * regulators than the one used to characterize the algorithms
-                * (ie, init_voltage_step).
-                */
-               fdata->min_uV = roundup(fdata->min_uV, step_volt);
-               fdata->max_uV = roundup(fdata->max_uV, step_volt);
-
-               /* Populate uV */
-               uV = cpr_read_fuse_uV(desc, fdata, fuses->init_voltage,
-                                     step_volt, drv);
-               if (uV < 0)
-                       return uV;
-
-               fuse->min_uV = fdata->min_uV;
-               fuse->max_uV = fdata->max_uV;
-               fuse->uV = clamp(uV, fuse->min_uV, fuse->max_uV);
-
-               if (fuse == end) {
-                       /*
-                        * Allow the highest fuse corner's PVS voltage to
-                        * define the ceiling voltage for that corner in order
-                        * to support SoC's in which variable ceiling values
-                        * are required.
-                        */
-                       end->max_uV = max(end->max_uV, end->uV);
-               }
-
-               /* Populate target quotient by scaling */
-               ret = cpr_read_efuse(drv->dev, fuses->quotient, &fuse->quot);
-               if (ret)
-                       return ret;
-
-               fuse->quot *= fdata->quot_scale;
-               fuse->quot += fdata->quot_offset;
-               fuse->quot += fdata->quot_adjust;
-               fuse->step_quot = desc->step_quot[fuse->ring_osc_idx];
-
-               /* Populate acc settings */
-               fuse->accs = accs;
-               fuse->num_accs = acc_desc->num_regs_per_fuse;
-               accs += acc_desc->num_regs_per_fuse;
-       }
-
-       /*
-        * Restrict all fuse corner PVS voltages based upon per corner
-        * ceiling and floor voltages.
-        */
-       for (fuse = drv->fuse_corners, i = 0; fuse <= end; fuse++, i++) {
-               if (fuse->uV > fuse->max_uV)
-                       fuse->uV = fuse->max_uV;
-               else if (fuse->uV < fuse->min_uV)
-                       fuse->uV = fuse->min_uV;
-
-               ret = regulator_is_supported_voltage(drv->vdd_apc,
-                                                    fuse->min_uV,
-                                                    fuse->min_uV);
-               if (!ret) {
-                       dev_err(drv->dev,
-                               "min uV: %d (fuse corner: %d) not supported by regulator\n",
-                               fuse->min_uV, i);
-                       return -EINVAL;
-               }
-
-               ret = regulator_is_supported_voltage(drv->vdd_apc,
-                                                    fuse->max_uV,
-                                                    fuse->max_uV);
-               if (!ret) {
-                       dev_err(drv->dev,
-                               "max uV: %d (fuse corner: %d) not supported by regulator\n",
-                               fuse->max_uV, i);
-                       return -EINVAL;
-               }
-
-               dev_dbg(drv->dev,
-                       "fuse corner %d: [%d %d %d] RO%hhu quot %d squot %d\n",
-                       i, fuse->min_uV, fuse->uV, fuse->max_uV,
-                       fuse->ring_osc_idx, fuse->quot, fuse->step_quot);
-       }
-
-       return 0;
-}
-
-static int cpr_calculate_scaling(const char *quot_offset,
-                                struct cpr_drv *drv,
-                                const struct fuse_corner_data *fdata,
-                                const struct corner *corner)
-{
-       u32 quot_diff = 0;
-       unsigned long freq_diff;
-       int scaling;
-       const struct fuse_corner *fuse, *prev_fuse;
-       int ret;
-
-       fuse = corner->fuse_corner;
-       prev_fuse = fuse - 1;
-
-       if (quot_offset) {
-               ret = cpr_read_efuse(drv->dev, quot_offset, &quot_diff);
-               if (ret)
-                       return ret;
-
-               quot_diff *= fdata->quot_offset_scale;
-               quot_diff += fdata->quot_offset_adjust;
-       } else {
-               quot_diff = fuse->quot - prev_fuse->quot;
-       }
-
-       freq_diff = fuse->max_freq - prev_fuse->max_freq;
-       freq_diff /= 1000000; /* Convert to MHz */
-       scaling = 1000 * quot_diff / freq_diff;
-       return min(scaling, fdata->max_quot_scale);
-}
-
-static int cpr_interpolate(const struct corner *corner, int step_volt,
-                          const struct fuse_corner_data *fdata)
-{
-       unsigned long f_high, f_low, f_diff;
-       int uV_high, uV_low, uV;
-       u64 temp, temp_limit;
-       const struct fuse_corner *fuse, *prev_fuse;
-
-       fuse = corner->fuse_corner;
-       prev_fuse = fuse - 1;
-
-       f_high = fuse->max_freq;
-       f_low = prev_fuse->max_freq;
-       uV_high = fuse->uV;
-       uV_low = prev_fuse->uV;
-       f_diff = fuse->max_freq - corner->freq;
-
-       /*
-        * Don't interpolate in the wrong direction. This could happen
-        * if the adjusted fuse voltage overlaps with the previous fuse's
-        * adjusted voltage.
-        */
-       if (f_high <= f_low || uV_high <= uV_low || f_high <= corner->freq)
-               return corner->uV;
-
-       temp = f_diff * (uV_high - uV_low);
-       do_div(temp, f_high - f_low);
-
-       /*
-        * max_volt_scale has units of uV/MHz while freq values
-        * have units of Hz.  Divide by 1000000 to convert to.
-        */
-       temp_limit = f_diff * fdata->max_volt_scale;
-       do_div(temp_limit, 1000000);
-
-       uV = uV_high - min(temp, temp_limit);
-       return roundup(uV, step_volt);
-}
-
-static unsigned int cpr_get_fuse_corner(struct dev_pm_opp *opp)
-{
-       struct device_node *np;
-       unsigned int fuse_corner = 0;
-
-       np = dev_pm_opp_get_of_node(opp);
-       if (of_property_read_u32(np, "qcom,opp-fuse-level", &fuse_corner))
-               pr_err("%s: missing 'qcom,opp-fuse-level' property\n",
-                      __func__);
-
-       of_node_put(np);
-
-       return fuse_corner;
-}
-
-static unsigned long cpr_get_opp_hz_for_req(struct dev_pm_opp *ref,
-                                           struct device *cpu_dev)
-{
-       u64 rate = 0;
-       struct device_node *ref_np;
-       struct device_node *desc_np;
-       struct device_node *child_np = NULL;
-       struct device_node *child_req_np = NULL;
-
-       desc_np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
-       if (!desc_np)
-               return 0;
-
-       ref_np = dev_pm_opp_get_of_node(ref);
-       if (!ref_np)
-               goto out_ref;
-
-       do {
-               of_node_put(child_req_np);
-               child_np = of_get_next_available_child(desc_np, child_np);
-               child_req_np = of_parse_phandle(child_np, "required-opps", 0);
-       } while (child_np && child_req_np != ref_np);
-
-       if (child_np && child_req_np == ref_np)
-               of_property_read_u64(child_np, "opp-hz", &rate);
-
-       of_node_put(child_req_np);
-       of_node_put(child_np);
-       of_node_put(ref_np);
-out_ref:
-       of_node_put(desc_np);
-
-       return (unsigned long) rate;
-}
-
-static int cpr_corner_init(struct cpr_drv *drv)
-{
-       const struct cpr_desc *desc = drv->desc;
-       const struct cpr_fuse *fuses = drv->cpr_fuses;
-       int i, level, scaling = 0;
-       unsigned int fnum, fc;
-       const char *quot_offset;
-       struct fuse_corner *fuse, *prev_fuse;
-       struct corner *corner, *end;
-       struct corner_data *cdata;
-       const struct fuse_corner_data *fdata;
-       bool apply_scaling;
-       unsigned long freq_diff, freq_diff_mhz;
-       unsigned long freq;
-       int step_volt = regulator_get_linear_step(drv->vdd_apc);
-       struct dev_pm_opp *opp;
-
-       if (!step_volt)
-               return -EINVAL;
-
-       corner = drv->corners;
-       end = &corner[drv->num_corners - 1];
-
-       cdata = devm_kcalloc(drv->dev, drv->num_corners,
-                            sizeof(struct corner_data),
-                            GFP_KERNEL);
-       if (!cdata)
-               return -ENOMEM;
-
-       /*
-        * Store maximum frequency for each fuse corner based on the frequency
-        * plan
-        */
-       for (level = 1; level <= drv->num_corners; level++) {
-               opp = dev_pm_opp_find_level_exact(&drv->pd.dev, level);
-               if (IS_ERR(opp))
-                       return -EINVAL;
-               fc = cpr_get_fuse_corner(opp);
-               if (!fc) {
-                       dev_pm_opp_put(opp);
-                       return -EINVAL;
-               }
-               fnum = fc - 1;
-               freq = cpr_get_opp_hz_for_req(opp, drv->attached_cpu_dev);
-               if (!freq) {
-                       dev_pm_opp_put(opp);
-                       return -EINVAL;
-               }
-               cdata[level - 1].fuse_corner = fnum;
-               cdata[level - 1].freq = freq;
-
-               fuse = &drv->fuse_corners[fnum];
-               dev_dbg(drv->dev, "freq: %lu level: %u fuse level: %u\n",
-                       freq, dev_pm_opp_get_level(opp) - 1, fnum);
-               if (freq > fuse->max_freq)
-                       fuse->max_freq = freq;
-               dev_pm_opp_put(opp);
-       }
-
-       /*
-        * Get the quotient adjustment scaling factor, according to:
-        *
-        * scaling = min(1000 * (QUOT(corner_N) - QUOT(corner_N-1))
-        *              / (freq(corner_N) - freq(corner_N-1)), max_factor)
-        *
-        * QUOT(corner_N):      quotient read from fuse for fuse corner N
-        * QUOT(corner_N-1):    quotient read from fuse for fuse corner (N - 1)
-        * freq(corner_N):      max frequency in MHz supported by fuse corner N
-        * freq(corner_N-1):    max frequency in MHz supported by fuse corner
-        *                       (N - 1)
-        *
-        * Then walk through the corners mapped to each fuse corner
-        * and calculate the quotient adjustment for each one using the
-        * following formula:
-        *
-        * quot_adjust = (freq_max - freq_corner) * scaling / 1000
-        *
-        * freq_max: max frequency in MHz supported by the fuse corner
-        * freq_corner: frequency in MHz corresponding to the corner
-        * scaling: calculated from above equation
-        *
-        *
-        *     +                           +
-        *     |                         v |
-        *   q |           f c           o |           f c
-        *   u |         c               l |         c
-        *   o |       f                 t |       f
-        *   t |     c                   a |     c
-        *     | c f                     g | c f
-        *     |                         e |
-        *     +---------------            +----------------
-        *       0 1 2 3 4 5 6               0 1 2 3 4 5 6
-        *          corner                      corner
-        *
-        *    c = corner
-        *    f = fuse corner
-        *
-        */
-       for (apply_scaling = false, i = 0; corner <= end; corner++, i++) {
-               fnum = cdata[i].fuse_corner;
-               fdata = &desc->cpr_fuses.fuse_corner_data[fnum];
-               quot_offset = fuses[fnum].quotient_offset;
-               fuse = &drv->fuse_corners[fnum];
-               if (fnum)
-                       prev_fuse = &drv->fuse_corners[fnum - 1];
-               else
-                       prev_fuse = NULL;
-
-               corner->fuse_corner = fuse;
-               corner->freq = cdata[i].freq;
-               corner->uV = fuse->uV;
-
-               if (prev_fuse && cdata[i - 1].freq == prev_fuse->max_freq) {
-                       scaling = cpr_calculate_scaling(quot_offset, drv,
-                                                       fdata, corner);
-                       if (scaling < 0)
-                               return scaling;
-
-                       apply_scaling = true;
-               } else if (corner->freq == fuse->max_freq) {
-                       /* This is a fuse corner; don't scale anything */
-                       apply_scaling = false;
-               }
-
-               if (apply_scaling) {
-                       freq_diff = fuse->max_freq - corner->freq;
-                       freq_diff_mhz = freq_diff / 1000000;
-                       corner->quot_adjust = scaling * freq_diff_mhz / 1000;
-
-                       corner->uV = cpr_interpolate(corner, step_volt, fdata);
-               }
-
-               corner->max_uV = fuse->max_uV;
-               corner->min_uV = fuse->min_uV;
-               corner->uV = clamp(corner->uV, corner->min_uV, corner->max_uV);
-               corner->last_uV = corner->uV;
-
-               /* Reduce the ceiling voltage if needed */
-               if (desc->reduce_to_corner_uV && corner->uV < corner->max_uV)
-                       corner->max_uV = corner->uV;
-               else if (desc->reduce_to_fuse_uV && fuse->uV < corner->max_uV)
-                       corner->max_uV = max(corner->min_uV, fuse->uV);
-
-               dev_dbg(drv->dev, "corner %d: [%d %d %d] quot %d\n", i,
-                       corner->min_uV, corner->uV, corner->max_uV,
-                       fuse->quot - corner->quot_adjust);
-       }
-
-       return 0;
-}
-
-static const struct cpr_fuse *cpr_get_fuses(struct cpr_drv *drv)
-{
-       const struct cpr_desc *desc = drv->desc;
-       struct cpr_fuse *fuses;
-       int i;
-
-       fuses = devm_kcalloc(drv->dev, desc->num_fuse_corners,
-                            sizeof(struct cpr_fuse),
-                            GFP_KERNEL);
-       if (!fuses)
-               return ERR_PTR(-ENOMEM);
-
-       for (i = 0; i < desc->num_fuse_corners; i++) {
-               char tbuf[32];
-
-               snprintf(tbuf, 32, "cpr_ring_osc%d", i + 1);
-               fuses[i].ring_osc = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
-               if (!fuses[i].ring_osc)
-                       return ERR_PTR(-ENOMEM);
-
-               snprintf(tbuf, 32, "cpr_init_voltage%d", i + 1);
-               fuses[i].init_voltage = devm_kstrdup(drv->dev, tbuf,
-                                                    GFP_KERNEL);
-               if (!fuses[i].init_voltage)
-                       return ERR_PTR(-ENOMEM);
-
-               snprintf(tbuf, 32, "cpr_quotient%d", i + 1);
-               fuses[i].quotient = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
-               if (!fuses[i].quotient)
-                       return ERR_PTR(-ENOMEM);
-
-               snprintf(tbuf, 32, "cpr_quotient_offset%d", i + 1);
-               fuses[i].quotient_offset = devm_kstrdup(drv->dev, tbuf,
-                                                       GFP_KERNEL);
-               if (!fuses[i].quotient_offset)
-                       return ERR_PTR(-ENOMEM);
-       }
-
-       return fuses;
-}
-
-static void cpr_set_loop_allowed(struct cpr_drv *drv)
-{
-       drv->loop_disabled = false;
-}
-
-static int cpr_init_parameters(struct cpr_drv *drv)
-{
-       const struct cpr_desc *desc = drv->desc;
-       struct clk *clk;
-
-       clk = clk_get(drv->dev, "ref");
-       if (IS_ERR(clk))
-               return PTR_ERR(clk);
-
-       drv->ref_clk_khz = clk_get_rate(clk) / 1000;
-       clk_put(clk);
-
-       if (desc->timer_cons_up > RBIF_TIMER_ADJ_CONS_UP_MASK ||
-           desc->timer_cons_down > RBIF_TIMER_ADJ_CONS_DOWN_MASK ||
-           desc->up_threshold > RBCPR_CTL_UP_THRESHOLD_MASK ||
-           desc->down_threshold > RBCPR_CTL_DN_THRESHOLD_MASK ||
-           desc->idle_clocks > RBCPR_STEP_QUOT_IDLE_CLK_MASK ||
-           desc->clamp_timer_interval > RBIF_TIMER_ADJ_CLAMP_INT_MASK)
-               return -EINVAL;
-
-       dev_dbg(drv->dev, "up threshold = %u, down threshold = %u\n",
-               desc->up_threshold, desc->down_threshold);
-
-       return 0;
-}
-
-static int cpr_find_initial_corner(struct cpr_drv *drv)
-{
-       unsigned long rate;
-       const struct corner *end;
-       struct corner *iter;
-       unsigned int i = 0;
-
-       if (!drv->cpu_clk) {
-               dev_err(drv->dev, "cannot get rate from NULL clk\n");
-               return -EINVAL;
-       }
-
-       end = &drv->corners[drv->num_corners - 1];
-       rate = clk_get_rate(drv->cpu_clk);
-
-       /*
-        * Some bootloaders set a CPU clock frequency that is not defined
-        * in the OPP table. When running at an unlisted frequency,
-        * cpufreq_online() will change to the OPP which has the lowest
-        * frequency, at or above the unlisted frequency.
-        * Since cpufreq_online() always "rounds up" in the case of an
-        * unlisted frequency, this function always "rounds down" in case
-        * of an unlisted frequency. That way, when cpufreq_online()
-        * triggers the first ever call to cpr_set_performance_state(),
-        * it will correctly determine the direction as UP.
-        */
-       for (iter = drv->corners; iter <= end; iter++) {
-               if (iter->freq > rate)
-                       break;
-               i++;
-               if (iter->freq == rate) {
-                       drv->corner = iter;
-                       break;
-               }
-               if (iter->freq < rate)
-                       drv->corner = iter;
-       }
-
-       if (!drv->corner) {
-               dev_err(drv->dev, "boot up corner not found\n");
-               return -EINVAL;
-       }
-
-       dev_dbg(drv->dev, "boot up perf state: %u\n", i);
-
-       return 0;
-}
-
-static const struct cpr_desc qcs404_cpr_desc = {
-       .num_fuse_corners = 3,
-       .min_diff_quot = CPR_FUSE_MIN_QUOT_DIFF,
-       .step_quot = (int []){ 25, 25, 25, },
-       .timer_delay_us = 5000,
-       .timer_cons_up = 0,
-       .timer_cons_down = 2,
-       .up_threshold = 1,
-       .down_threshold = 3,
-       .idle_clocks = 15,
-       .gcnt_us = 1,
-       .vdd_apc_step_up_limit = 1,
-       .vdd_apc_step_down_limit = 1,
-       .cpr_fuses = {
-               .init_voltage_step = 8000,
-               .init_voltage_width = 6,
-               .fuse_corner_data = (struct fuse_corner_data[]){
-                       /* fuse corner 0 */
-                       {
-                               .ref_uV = 1224000,
-                               .max_uV = 1224000,
-                               .min_uV = 1048000,
-                               .max_volt_scale = 0,
-                               .max_quot_scale = 0,
-                               .quot_offset = 0,
-                               .quot_scale = 1,
-                               .quot_adjust = 0,
-                               .quot_offset_scale = 5,
-                               .quot_offset_adjust = 0,
-                       },
-                       /* fuse corner 1 */
-                       {
-                               .ref_uV = 1288000,
-                               .max_uV = 1288000,
-                               .min_uV = 1048000,
-                               .max_volt_scale = 2000,
-                               .max_quot_scale = 1400,
-                               .quot_offset = 0,
-                               .quot_scale = 1,
-                               .quot_adjust = -20,
-                               .quot_offset_scale = 5,
-                               .quot_offset_adjust = 0,
-                       },
-                       /* fuse corner 2 */
-                       {
-                               .ref_uV = 1352000,
-                               .max_uV = 1384000,
-                               .min_uV = 1088000,
-                               .max_volt_scale = 2000,
-                               .max_quot_scale = 1400,
-                               .quot_offset = 0,
-                               .quot_scale = 1,
-                               .quot_adjust = 0,
-                               .quot_offset_scale = 5,
-                               .quot_offset_adjust = 0,
-                       },
-               },
-       },
-};
-
-static const struct acc_desc qcs404_acc_desc = {
-       .settings = (struct reg_sequence[]){
-               { 0xb120, 0x1041040 },
-               { 0xb124, 0x41 },
-               { 0xb120, 0x0 },
-               { 0xb124, 0x0 },
-               { 0xb120, 0x0 },
-               { 0xb124, 0x0 },
-       },
-       .config = (struct reg_sequence[]){
-               { 0xb138, 0xff },
-               { 0xb130, 0x5555 },
-       },
-       .num_regs_per_fuse = 2,
-};
-
-static const struct cpr_acc_desc qcs404_cpr_acc_desc = {
-       .cpr_desc = &qcs404_cpr_desc,
-       .acc_desc = &qcs404_acc_desc,
-};
-
-static unsigned int cpr_get_performance_state(struct generic_pm_domain *genpd,
-                                             struct dev_pm_opp *opp)
-{
-       return dev_pm_opp_get_level(opp);
-}
-
-static int cpr_power_off(struct generic_pm_domain *domain)
-{
-       struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
-
-       return cpr_disable(drv);
-}
-
-static int cpr_power_on(struct generic_pm_domain *domain)
-{
-       struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
-
-       return cpr_enable(drv);
-}
-
-static int cpr_pd_attach_dev(struct generic_pm_domain *domain,
-                            struct device *dev)
-{
-       struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
-       const struct acc_desc *acc_desc = drv->acc_desc;
-       int ret = 0;
-
-       mutex_lock(&drv->lock);
-
-       dev_dbg(drv->dev, "attach callback for: %s\n", dev_name(dev));
-
-       /*
-        * This driver only supports scaling voltage for a CPU cluster
-        * where all CPUs in the cluster share a single regulator.
-        * Therefore, save the struct device pointer only for the first
-        * CPU device that gets attached. There is no need to do any
-        * additional initialization when further CPUs get attached.
-        */
-       if (drv->attached_cpu_dev)
-               goto unlock;
-
-       /*
-        * cpr_scale_voltage() requires the direction (if we are changing
-        * to a higher or lower OPP). The first time
-        * cpr_set_performance_state() is called, there is no previous
-        * performance state defined. Therefore, we call
-        * cpr_find_initial_corner() that gets the CPU clock frequency
-        * set by the bootloader, so that we can determine the direction
-        * the first time cpr_set_performance_state() is called.
-        */
-       drv->cpu_clk = devm_clk_get(dev, NULL);
-       if (IS_ERR(drv->cpu_clk)) {
-               ret = PTR_ERR(drv->cpu_clk);
-               if (ret != -EPROBE_DEFER)
-                       dev_err(drv->dev, "could not get cpu clk: %d\n", ret);
-               goto unlock;
-       }
-       drv->attached_cpu_dev = dev;
-
-       dev_dbg(drv->dev, "using cpu clk from: %s\n",
-               dev_name(drv->attached_cpu_dev));
-
-       /*
-        * Everything related to (virtual) corners has to be initialized
-        * here, when attaching to the power domain, since we need to know
-        * the maximum frequency for each fuse corner, and this is only
-        * available after the cpufreq driver has attached to us.
-        * The reason for this is that we need to know the highest
-        * frequency associated with each fuse corner.
-        */
-       ret = dev_pm_opp_get_opp_count(&drv->pd.dev);
-       if (ret < 0) {
-               dev_err(drv->dev, "could not get OPP count\n");
-               goto unlock;
-       }
-       drv->num_corners = ret;
-
-       if (drv->num_corners < 2) {
-               dev_err(drv->dev, "need at least 2 OPPs to use CPR\n");
-               ret = -EINVAL;
-               goto unlock;
-       }
-
-       drv->corners = devm_kcalloc(drv->dev, drv->num_corners,
-                                   sizeof(*drv->corners),
-                                   GFP_KERNEL);
-       if (!drv->corners) {
-               ret = -ENOMEM;
-               goto unlock;
-       }
-
-       ret = cpr_corner_init(drv);
-       if (ret)
-               goto unlock;
-
-       cpr_set_loop_allowed(drv);
-
-       ret = cpr_init_parameters(drv);
-       if (ret)
-               goto unlock;
-
-       /* Configure CPR HW but keep it disabled */
-       ret = cpr_config(drv);
-       if (ret)
-               goto unlock;
-
-       ret = cpr_find_initial_corner(drv);
-       if (ret)
-               goto unlock;
-
-       if (acc_desc->config)
-               regmap_multi_reg_write(drv->tcsr, acc_desc->config,
-                                      acc_desc->num_regs_per_fuse);
-
-       /* Enable ACC if required */
-       if (acc_desc->enable_mask)
-               regmap_update_bits(drv->tcsr, acc_desc->enable_reg,
-                                  acc_desc->enable_mask,
-                                  acc_desc->enable_mask);
-
-       dev_info(drv->dev, "driver initialized with %u OPPs\n",
-                drv->num_corners);
-
-unlock:
-       mutex_unlock(&drv->lock);
-
-       return ret;
-}
-
-static int cpr_debug_info_show(struct seq_file *s, void *unused)
-{
-       u32 gcnt, ro_sel, ctl, irq_status, reg, error_steps;
-       u32 step_dn, step_up, error, error_lt0, busy;
-       struct cpr_drv *drv = s->private;
-       struct fuse_corner *fuse_corner;
-       struct corner *corner;
-
-       corner = drv->corner;
-       fuse_corner = corner->fuse_corner;
-
-       seq_printf(s, "corner, current_volt = %d uV\n",
-                      corner->last_uV);
-
-       ro_sel = fuse_corner->ring_osc_idx;
-       gcnt = cpr_read(drv, REG_RBCPR_GCNT_TARGET(ro_sel));
-       seq_printf(s, "rbcpr_gcnt_target (%u) = %#02X\n", ro_sel, gcnt);
-
-       ctl = cpr_read(drv, REG_RBCPR_CTL);
-       seq_printf(s, "rbcpr_ctl = %#02X\n", ctl);
-
-       irq_status = cpr_read(drv, REG_RBIF_IRQ_STATUS);
-       seq_printf(s, "rbcpr_irq_status = %#02X\n", irq_status);
-
-       reg = cpr_read(drv, REG_RBCPR_RESULT_0);
-       seq_printf(s, "rbcpr_result_0 = %#02X\n", reg);
-
-       step_dn = reg & 0x01;
-       step_up = (reg >> RBCPR_RESULT0_STEP_UP_SHIFT) & 0x01;
-       seq_printf(s, "  [step_dn = %u", step_dn);
-
-       seq_printf(s, ", step_up = %u", step_up);
-
-       error_steps = (reg >> RBCPR_RESULT0_ERROR_STEPS_SHIFT)
-                               & RBCPR_RESULT0_ERROR_STEPS_MASK;
-       seq_printf(s, ", error_steps = %u", error_steps);
-
-       error = (reg >> RBCPR_RESULT0_ERROR_SHIFT) & RBCPR_RESULT0_ERROR_MASK;
-       seq_printf(s, ", error = %u", error);
-
-       error_lt0 = (reg >> RBCPR_RESULT0_ERROR_LT0_SHIFT) & 0x01;
-       seq_printf(s, ", error_lt_0 = %u", error_lt0);
-
-       busy = (reg >> RBCPR_RESULT0_BUSY_SHIFT) & 0x01;
-       seq_printf(s, ", busy = %u]\n", busy);
-
-       return 0;
-}
-DEFINE_SHOW_ATTRIBUTE(cpr_debug_info);
-
-static void cpr_debugfs_init(struct cpr_drv *drv)
-{
-       drv->debugfs = debugfs_create_dir("qcom_cpr", NULL);
-
-       debugfs_create_file("debug_info", 0444, drv->debugfs,
-                           drv, &cpr_debug_info_fops);
-}
-
-static int cpr_probe(struct platform_device *pdev)
-{
-       struct resource *res;
-       struct device *dev = &pdev->dev;
-       struct cpr_drv *drv;
-       int irq, ret;
-       const struct cpr_acc_desc *data;
-       struct device_node *np;
-       u32 cpr_rev = FUSE_REVISION_UNKNOWN;
-
-       data = of_device_get_match_data(dev);
-       if (!data || !data->cpr_desc || !data->acc_desc)
-               return -EINVAL;
-
-       drv = devm_kzalloc(dev, sizeof(*drv), GFP_KERNEL);
-       if (!drv)
-               return -ENOMEM;
-       drv->dev = dev;
-       drv->desc = data->cpr_desc;
-       drv->acc_desc = data->acc_desc;
-
-       drv->fuse_corners = devm_kcalloc(dev, drv->desc->num_fuse_corners,
-                                        sizeof(*drv->fuse_corners),
-                                        GFP_KERNEL);
-       if (!drv->fuse_corners)
-               return -ENOMEM;
-
-       np = of_parse_phandle(dev->of_node, "acc-syscon", 0);
-       if (!np)
-               return -ENODEV;
-
-       drv->tcsr = syscon_node_to_regmap(np);
-       of_node_put(np);
-       if (IS_ERR(drv->tcsr))
-               return PTR_ERR(drv->tcsr);
-
-       res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
-       drv->base = devm_ioremap_resource(dev, res);
-       if (IS_ERR(drv->base))
-               return PTR_ERR(drv->base);
-
-       irq = platform_get_irq(pdev, 0);
-       if (irq < 0)
-               return -EINVAL;
-
-       drv->vdd_apc = devm_regulator_get(dev, "vdd-apc");
-       if (IS_ERR(drv->vdd_apc))
-               return PTR_ERR(drv->vdd_apc);
-
-       /*
-        * Initialize fuse corners, since it simply depends
-        * on data in efuses.
-        * Everything related to (virtual) corners has to be
-        * initialized after attaching to the power domain,
-        * since it depends on the CPU's OPP table.
-        */
-       ret = cpr_read_efuse(dev, "cpr_fuse_revision", &cpr_rev);
-       if (ret)
-               return ret;
-
-       drv->cpr_fuses = cpr_get_fuses(drv);
-       if (IS_ERR(drv->cpr_fuses))
-               return PTR_ERR(drv->cpr_fuses);
-
-       ret = cpr_populate_ring_osc_idx(drv);
-       if (ret)
-               return ret;
-
-       ret = cpr_fuse_corner_init(drv);
-       if (ret)
-               return ret;
-
-       mutex_init(&drv->lock);
-
-       ret = devm_request_threaded_irq(dev, irq, NULL,
-                                       cpr_irq_handler,
-                                       IRQF_ONESHOT | IRQF_TRIGGER_RISING,
-                                       "cpr", drv);
-       if (ret)
-               return ret;
-
-       drv->pd.name = devm_kstrdup_const(dev, dev->of_node->full_name,
-                                         GFP_KERNEL);
-       if (!drv->pd.name)
-               return -EINVAL;
-
-       drv->pd.power_off = cpr_power_off;
-       drv->pd.power_on = cpr_power_on;
-       drv->pd.set_performance_state = cpr_set_performance_state;
-       drv->pd.opp_to_performance_state = cpr_get_performance_state;
-       drv->pd.attach_dev = cpr_pd_attach_dev;
-
-       ret = pm_genpd_init(&drv->pd, NULL, true);
-       if (ret)
-               return ret;
-
-       ret = of_genpd_add_provider_simple(dev->of_node, &drv->pd);
-       if (ret)
-               return ret;
-
-       platform_set_drvdata(pdev, drv);
-       cpr_debugfs_init(drv);
-
-       return 0;
-}
-
-static int cpr_remove(struct platform_device *pdev)
-{
-       struct cpr_drv *drv = platform_get_drvdata(pdev);
-
-       if (cpr_is_allowed(drv)) {
-               cpr_ctl_disable(drv);
-               cpr_irq_set(drv, 0);
-       }
-
-       of_genpd_del_provider(pdev->dev.of_node);
-       pm_genpd_remove(&drv->pd);
-
-       debugfs_remove_recursive(drv->debugfs);
-
-       return 0;
-}
-
-static const struct of_device_id cpr_match_table[] = {
-       { .compatible = "qcom,qcs404-cpr", .data = &qcs404_cpr_acc_desc },
-       { }
-};
-MODULE_DEVICE_TABLE(of, cpr_match_table);
-
-static struct platform_driver cpr_driver = {
-       .probe          = cpr_probe,
-       .remove         = cpr_remove,
-       .driver         = {
-               .name   = "qcom-cpr",
-               .of_match_table = cpr_match_table,
-       },
-};
-module_platform_driver(cpr_driver);
-
-MODULE_DESCRIPTION("Core Power Reduction (CPR) driver");
-MODULE_LICENSE("GPL v2");
index 3dc3e3d61ea32eecd2e71530d3ffdc3201bd3f9a..6a3b69b43ad51a978205f0c98a249881b091ed7c 100644 (file)
@@ -26,6 +26,22 @@ config QCOM_COMMAND_DB
          resource on a RPM-hardened platform must use this database to get
          SoC specific identifier and information for the shared resources.
 
+config QCOM_CPR
+       tristate "QCOM Core Power Reduction (CPR) support"
+       depends on ARCH_QCOM && HAS_IOMEM
+       select PM_OPP
+       select REGMAP
+       help
+         Say Y here to enable support for the CPR hardware found on Qualcomm
+         SoCs like QCS404.
+
+         This driver populates CPU OPPs tables and makes adjustments to the
+         tables based on feedback from the CPR hardware. If you want to do
+         CPUfrequency scaling say Y here.
+
+         To compile this driver as a module, choose M here: the module will
+         be called qcom-cpr
+
 config QCOM_GENI_SE
        tristate "QCOM GENI Serial Engine Driver"
        depends on ARCH_QCOM || COMPILE_TEST
index 93392d9dc7f7a69c74d89be15a87188e33c5a8f5..ad675a6593d0dba7cdd81ef12bb32b9642f78c6f 100644 (file)
@@ -3,6 +3,7 @@ CFLAGS_rpmh-rsc.o := -I$(src)
 obj-$(CONFIG_QCOM_AOSS_QMP) += qcom_aoss.o
 obj-$(CONFIG_QCOM_GENI_SE) +=  qcom-geni-se.o
 obj-$(CONFIG_QCOM_COMMAND_DB) += cmd-db.o
+obj-$(CONFIG_QCOM_CPR)         += cpr.o
 obj-$(CONFIG_QCOM_GSBI)        +=      qcom_gsbi.o
 obj-$(CONFIG_QCOM_MDT_LOADER)  += mdt_loader.o
 obj-$(CONFIG_QCOM_OCMEM)       += ocmem.o
diff --git a/drivers/soc/qcom/cpr.c b/drivers/soc/qcom/cpr.c
new file mode 100644 (file)
index 0000000..b24cc77
--- /dev/null
@@ -0,0 +1,1788 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2013-2015, The Linux Foundation. All rights reserved.
+ * Copyright (c) 2019, Linaro Limited
+ */
+
+#include <linux/module.h>
+#include <linux/err.h>
+#include <linux/debugfs.h>
+#include <linux/string.h>
+#include <linux/kernel.h>
+#include <linux/list.h>
+#include <linux/init.h>
+#include <linux/io.h>
+#include <linux/bitops.h>
+#include <linux/slab.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/pm_domain.h>
+#include <linux/pm_opp.h>
+#include <linux/interrupt.h>
+#include <linux/regmap.h>
+#include <linux/mfd/syscon.h>
+#include <linux/regulator/consumer.h>
+#include <linux/clk.h>
+#include <linux/nvmem-consumer.h>
+
+/* Register Offsets for RB-CPR and Bit Definitions */
+
+/* RBCPR Version Register */
+#define REG_RBCPR_VERSION              0
+#define RBCPR_VER_2                    0x02
+#define FLAGS_IGNORE_1ST_IRQ_STATUS    BIT(0)
+
+/* RBCPR Gate Count and Target Registers */
+#define REG_RBCPR_GCNT_TARGET(n)       (0x60 + 4 * (n))
+
+#define RBCPR_GCNT_TARGET_TARGET_SHIFT 0
+#define RBCPR_GCNT_TARGET_TARGET_MASK  GENMASK(11, 0)
+#define RBCPR_GCNT_TARGET_GCNT_SHIFT   12
+#define RBCPR_GCNT_TARGET_GCNT_MASK    GENMASK(9, 0)
+
+/* RBCPR Timer Control */
+#define REG_RBCPR_TIMER_INTERVAL       0x44
+#define REG_RBIF_TIMER_ADJUST          0x4c
+
+#define RBIF_TIMER_ADJ_CONS_UP_MASK    GENMASK(3, 0)
+#define RBIF_TIMER_ADJ_CONS_UP_SHIFT   0
+#define RBIF_TIMER_ADJ_CONS_DOWN_MASK  GENMASK(3, 0)
+#define RBIF_TIMER_ADJ_CONS_DOWN_SHIFT 4
+#define RBIF_TIMER_ADJ_CLAMP_INT_MASK  GENMASK(7, 0)
+#define RBIF_TIMER_ADJ_CLAMP_INT_SHIFT 8
+
+/* RBCPR Config Register */
+#define REG_RBIF_LIMIT                 0x48
+#define RBIF_LIMIT_CEILING_MASK                GENMASK(5, 0)
+#define RBIF_LIMIT_CEILING_SHIFT       6
+#define RBIF_LIMIT_FLOOR_BITS          6
+#define RBIF_LIMIT_FLOOR_MASK          GENMASK(5, 0)
+
+#define RBIF_LIMIT_CEILING_DEFAULT     RBIF_LIMIT_CEILING_MASK
+#define RBIF_LIMIT_FLOOR_DEFAULT       0
+
+#define REG_RBIF_SW_VLEVEL             0x94
+#define RBIF_SW_VLEVEL_DEFAULT         0x20
+
+#define REG_RBCPR_STEP_QUOT            0x80
+#define RBCPR_STEP_QUOT_STEPQUOT_MASK  GENMASK(7, 0)
+#define RBCPR_STEP_QUOT_IDLE_CLK_MASK  GENMASK(3, 0)
+#define RBCPR_STEP_QUOT_IDLE_CLK_SHIFT 8
+
+/* RBCPR Control Register */
+#define REG_RBCPR_CTL                  0x90
+
+#define RBCPR_CTL_LOOP_EN                      BIT(0)
+#define RBCPR_CTL_TIMER_EN                     BIT(3)
+#define RBCPR_CTL_SW_AUTO_CONT_ACK_EN          BIT(5)
+#define RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN      BIT(6)
+#define RBCPR_CTL_COUNT_MODE                   BIT(10)
+#define RBCPR_CTL_UP_THRESHOLD_MASK    GENMASK(3, 0)
+#define RBCPR_CTL_UP_THRESHOLD_SHIFT   24
+#define RBCPR_CTL_DN_THRESHOLD_MASK    GENMASK(3, 0)
+#define RBCPR_CTL_DN_THRESHOLD_SHIFT   28
+
+/* RBCPR Ack/Nack Response */
+#define REG_RBIF_CONT_ACK_CMD          0x98
+#define REG_RBIF_CONT_NACK_CMD         0x9c
+
+/* RBCPR Result status Register */
+#define REG_RBCPR_RESULT_0             0xa0
+
+#define RBCPR_RESULT0_BUSY_SHIFT       19
+#define RBCPR_RESULT0_BUSY_MASK                BIT(RBCPR_RESULT0_BUSY_SHIFT)
+#define RBCPR_RESULT0_ERROR_LT0_SHIFT  18
+#define RBCPR_RESULT0_ERROR_SHIFT      6
+#define RBCPR_RESULT0_ERROR_MASK       GENMASK(11, 0)
+#define RBCPR_RESULT0_ERROR_STEPS_SHIFT        2
+#define RBCPR_RESULT0_ERROR_STEPS_MASK GENMASK(3, 0)
+#define RBCPR_RESULT0_STEP_UP_SHIFT    1
+
+/* RBCPR Interrupt Control Register */
+#define REG_RBIF_IRQ_EN(n)             (0x100 + 4 * (n))
+#define REG_RBIF_IRQ_CLEAR             0x110
+#define REG_RBIF_IRQ_STATUS            0x114
+
+#define CPR_INT_DONE           BIT(0)
+#define CPR_INT_MIN            BIT(1)
+#define CPR_INT_DOWN           BIT(2)
+#define CPR_INT_MID            BIT(3)
+#define CPR_INT_UP             BIT(4)
+#define CPR_INT_MAX            BIT(5)
+#define CPR_INT_CLAMP          BIT(6)
+#define CPR_INT_ALL    (CPR_INT_DONE | CPR_INT_MIN | CPR_INT_DOWN | \
+                       CPR_INT_MID | CPR_INT_UP | CPR_INT_MAX | CPR_INT_CLAMP)
+#define CPR_INT_DEFAULT        (CPR_INT_UP | CPR_INT_DOWN)
+
+#define CPR_NUM_RING_OSC       8
+
+/* CPR eFuse parameters */
+#define CPR_FUSE_TARGET_QUOT_BITS_MASK GENMASK(11, 0)
+
+#define CPR_FUSE_MIN_QUOT_DIFF         50
+
+#define FUSE_REVISION_UNKNOWN          (-1)
+
+enum voltage_change_dir {
+       NO_CHANGE,
+       DOWN,
+       UP,
+};
+
+struct cpr_fuse {
+       char *ring_osc;
+       char *init_voltage;
+       char *quotient;
+       char *quotient_offset;
+};
+
+struct fuse_corner_data {
+       int ref_uV;
+       int max_uV;
+       int min_uV;
+       int max_volt_scale;
+       int max_quot_scale;
+       /* fuse quot */
+       int quot_offset;
+       int quot_scale;
+       int quot_adjust;
+       /* fuse quot_offset */
+       int quot_offset_scale;
+       int quot_offset_adjust;
+};
+
+struct cpr_fuses {
+       int init_voltage_step;
+       int init_voltage_width;
+       struct fuse_corner_data *fuse_corner_data;
+};
+
+struct corner_data {
+       unsigned int fuse_corner;
+       unsigned long freq;
+};
+
+struct cpr_desc {
+       unsigned int num_fuse_corners;
+       int min_diff_quot;
+       int *step_quot;
+
+       unsigned int            timer_delay_us;
+       unsigned int            timer_cons_up;
+       unsigned int            timer_cons_down;
+       unsigned int            up_threshold;
+       unsigned int            down_threshold;
+       unsigned int            idle_clocks;
+       unsigned int            gcnt_us;
+       unsigned int            vdd_apc_step_up_limit;
+       unsigned int            vdd_apc_step_down_limit;
+       unsigned int            clamp_timer_interval;
+
+       struct cpr_fuses cpr_fuses;
+       bool reduce_to_fuse_uV;
+       bool reduce_to_corner_uV;
+};
+
+struct acc_desc {
+       unsigned int    enable_reg;
+       u32             enable_mask;
+
+       struct reg_sequence     *config;
+       struct reg_sequence     *settings;
+       int                     num_regs_per_fuse;
+};
+
+struct cpr_acc_desc {
+       const struct cpr_desc *cpr_desc;
+       const struct acc_desc *acc_desc;
+};
+
+struct fuse_corner {
+       int min_uV;
+       int max_uV;
+       int uV;
+       int quot;
+       int step_quot;
+       const struct reg_sequence *accs;
+       int num_accs;
+       unsigned long max_freq;
+       u8 ring_osc_idx;
+};
+
+struct corner {
+       int min_uV;
+       int max_uV;
+       int uV;
+       int last_uV;
+       int quot_adjust;
+       u32 save_ctl;
+       u32 save_irq;
+       unsigned long freq;
+       struct fuse_corner *fuse_corner;
+};
+
+struct cpr_drv {
+       unsigned int            num_corners;
+       unsigned int            ref_clk_khz;
+
+       struct generic_pm_domain pd;
+       struct device           *dev;
+       struct device           *attached_cpu_dev;
+       struct mutex            lock;
+       void __iomem            *base;
+       struct corner           *corner;
+       struct regulator        *vdd_apc;
+       struct clk              *cpu_clk;
+       struct regmap           *tcsr;
+       bool                    loop_disabled;
+       u32                     gcnt;
+       unsigned long           flags;
+
+       struct fuse_corner      *fuse_corners;
+       struct corner           *corners;
+
+       const struct cpr_desc *desc;
+       const struct acc_desc *acc_desc;
+       const struct cpr_fuse *cpr_fuses;
+
+       struct dentry *debugfs;
+};
+
+static bool cpr_is_allowed(struct cpr_drv *drv)
+{
+       return !drv->loop_disabled;
+}
+
+static void cpr_write(struct cpr_drv *drv, u32 offset, u32 value)
+{
+       writel_relaxed(value, drv->base + offset);
+}
+
+static u32 cpr_read(struct cpr_drv *drv, u32 offset)
+{
+       return readl_relaxed(drv->base + offset);
+}
+
+static void
+cpr_masked_write(struct cpr_drv *drv, u32 offset, u32 mask, u32 value)
+{
+       u32 val;
+
+       val = readl_relaxed(drv->base + offset);
+       val &= ~mask;
+       val |= value & mask;
+       writel_relaxed(val, drv->base + offset);
+}
+
+static void cpr_irq_clr(struct cpr_drv *drv)
+{
+       cpr_write(drv, REG_RBIF_IRQ_CLEAR, CPR_INT_ALL);
+}
+
+static void cpr_irq_clr_nack(struct cpr_drv *drv)
+{
+       cpr_irq_clr(drv);
+       cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
+}
+
+static void cpr_irq_clr_ack(struct cpr_drv *drv)
+{
+       cpr_irq_clr(drv);
+       cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
+}
+
+static void cpr_irq_set(struct cpr_drv *drv, u32 int_bits)
+{
+       cpr_write(drv, REG_RBIF_IRQ_EN(0), int_bits);
+}
+
+static void cpr_ctl_modify(struct cpr_drv *drv, u32 mask, u32 value)
+{
+       cpr_masked_write(drv, REG_RBCPR_CTL, mask, value);
+}
+
+static void cpr_ctl_enable(struct cpr_drv *drv, struct corner *corner)
+{
+       u32 val, mask;
+       const struct cpr_desc *desc = drv->desc;
+
+       /* Program Consecutive Up & Down */
+       val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
+       val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
+       mask = RBIF_TIMER_ADJ_CONS_UP_MASK | RBIF_TIMER_ADJ_CONS_DOWN_MASK;
+       cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST, mask, val);
+       cpr_masked_write(drv, REG_RBCPR_CTL,
+                        RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
+                        RBCPR_CTL_SW_AUTO_CONT_ACK_EN,
+                        corner->save_ctl);
+       cpr_irq_set(drv, corner->save_irq);
+
+       if (cpr_is_allowed(drv) && corner->max_uV > corner->min_uV)
+               val = RBCPR_CTL_LOOP_EN;
+       else
+               val = 0;
+       cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, val);
+}
+
+static void cpr_ctl_disable(struct cpr_drv *drv)
+{
+       cpr_irq_set(drv, 0);
+       cpr_ctl_modify(drv, RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
+                      RBCPR_CTL_SW_AUTO_CONT_ACK_EN, 0);
+       cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST,
+                        RBIF_TIMER_ADJ_CONS_UP_MASK |
+                        RBIF_TIMER_ADJ_CONS_DOWN_MASK, 0);
+       cpr_irq_clr(drv);
+       cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
+       cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
+       cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, 0);
+}
+
+static bool cpr_ctl_is_enabled(struct cpr_drv *drv)
+{
+       u32 reg_val;
+
+       reg_val = cpr_read(drv, REG_RBCPR_CTL);
+       return reg_val & RBCPR_CTL_LOOP_EN;
+}
+
+static bool cpr_ctl_is_busy(struct cpr_drv *drv)
+{
+       u32 reg_val;
+
+       reg_val = cpr_read(drv, REG_RBCPR_RESULT_0);
+       return reg_val & RBCPR_RESULT0_BUSY_MASK;
+}
+
+static void cpr_corner_save(struct cpr_drv *drv, struct corner *corner)
+{
+       corner->save_ctl = cpr_read(drv, REG_RBCPR_CTL);
+       corner->save_irq = cpr_read(drv, REG_RBIF_IRQ_EN(0));
+}
+
+static void cpr_corner_restore(struct cpr_drv *drv, struct corner *corner)
+{
+       u32 gcnt, ctl, irq, ro_sel, step_quot;
+       struct fuse_corner *fuse = corner->fuse_corner;
+       const struct cpr_desc *desc = drv->desc;
+       int i;
+
+       ro_sel = fuse->ring_osc_idx;
+       gcnt = drv->gcnt;
+       gcnt |= fuse->quot - corner->quot_adjust;
+
+       /* Program the step quotient and idle clocks */
+       step_quot = desc->idle_clocks << RBCPR_STEP_QUOT_IDLE_CLK_SHIFT;
+       step_quot |= fuse->step_quot & RBCPR_STEP_QUOT_STEPQUOT_MASK;
+       cpr_write(drv, REG_RBCPR_STEP_QUOT, step_quot);
+
+       /* Clear the target quotient value and gate count of all ROs */
+       for (i = 0; i < CPR_NUM_RING_OSC; i++)
+               cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
+
+       cpr_write(drv, REG_RBCPR_GCNT_TARGET(ro_sel), gcnt);
+       ctl = corner->save_ctl;
+       cpr_write(drv, REG_RBCPR_CTL, ctl);
+       irq = corner->save_irq;
+       cpr_irq_set(drv, irq);
+       dev_dbg(drv->dev, "gcnt = %#08x, ctl = %#08x, irq = %#08x\n", gcnt,
+               ctl, irq);
+}
+
+static void cpr_set_acc(struct regmap *tcsr, struct fuse_corner *f,
+                       struct fuse_corner *end)
+{
+       if (f == end)
+               return;
+
+       if (f < end) {
+               for (f += 1; f <= end; f++)
+                       regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
+       } else {
+               for (f -= 1; f >= end; f--)
+                       regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
+       }
+}
+
+static int cpr_pre_voltage(struct cpr_drv *drv,
+                          struct fuse_corner *fuse_corner,
+                          enum voltage_change_dir dir)
+{
+       struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
+
+       if (drv->tcsr && dir == DOWN)
+               cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
+
+       return 0;
+}
+
+static int cpr_post_voltage(struct cpr_drv *drv,
+                           struct fuse_corner *fuse_corner,
+                           enum voltage_change_dir dir)
+{
+       struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
+
+       if (drv->tcsr && dir == UP)
+               cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
+
+       return 0;
+}
+
+static int cpr_scale_voltage(struct cpr_drv *drv, struct corner *corner,
+                            int new_uV, enum voltage_change_dir dir)
+{
+       int ret;
+       struct fuse_corner *fuse_corner = corner->fuse_corner;
+
+       ret = cpr_pre_voltage(drv, fuse_corner, dir);
+       if (ret)
+               return ret;
+
+       ret = regulator_set_voltage(drv->vdd_apc, new_uV, new_uV);
+       if (ret) {
+               dev_err_ratelimited(drv->dev, "failed to set apc voltage %d\n",
+                                   new_uV);
+               return ret;
+       }
+
+       ret = cpr_post_voltage(drv, fuse_corner, dir);
+       if (ret)
+               return ret;
+
+       return 0;
+}
+
+static unsigned int cpr_get_cur_perf_state(struct cpr_drv *drv)
+{
+       return drv->corner ? drv->corner - drv->corners + 1 : 0;
+}
+
+static int cpr_scale(struct cpr_drv *drv, enum voltage_change_dir dir)
+{
+       u32 val, error_steps, reg_mask;
+       int last_uV, new_uV, step_uV, ret;
+       struct corner *corner;
+       const struct cpr_desc *desc = drv->desc;
+
+       if (dir != UP && dir != DOWN)
+               return 0;
+
+       step_uV = regulator_get_linear_step(drv->vdd_apc);
+       if (!step_uV)
+               return -EINVAL;
+
+       corner = drv->corner;
+
+       val = cpr_read(drv, REG_RBCPR_RESULT_0);
+
+       error_steps = val >> RBCPR_RESULT0_ERROR_STEPS_SHIFT;
+       error_steps &= RBCPR_RESULT0_ERROR_STEPS_MASK;
+       last_uV = corner->last_uV;
+
+       if (dir == UP) {
+               if (desc->clamp_timer_interval &&
+                   error_steps < desc->up_threshold) {
+                       /*
+                        * Handle the case where another measurement started
+                        * after the interrupt was triggered due to a core
+                        * exiting from power collapse.
+                        */
+                       error_steps = max(desc->up_threshold,
+                                         desc->vdd_apc_step_up_limit);
+               }
+
+               if (last_uV >= corner->max_uV) {
+                       cpr_irq_clr_nack(drv);
+
+                       /* Maximize the UP threshold */
+                       reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
+                       reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
+                       val = reg_mask;
+                       cpr_ctl_modify(drv, reg_mask, val);
+
+                       /* Disable UP interrupt */
+                       cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_UP);
+
+                       return 0;
+               }
+
+               if (error_steps > desc->vdd_apc_step_up_limit)
+                       error_steps = desc->vdd_apc_step_up_limit;
+
+               /* Calculate new voltage */
+               new_uV = last_uV + error_steps * step_uV;
+               new_uV = min(new_uV, corner->max_uV);
+
+               dev_dbg(drv->dev,
+                       "UP: -> new_uV: %d last_uV: %d perf state: %u\n",
+                       new_uV, last_uV, cpr_get_cur_perf_state(drv));
+       } else {
+               if (desc->clamp_timer_interval &&
+                   error_steps < desc->down_threshold) {
+                       /*
+                        * Handle the case where another measurement started
+                        * after the interrupt was triggered due to a core
+                        * exiting from power collapse.
+                        */
+                       error_steps = max(desc->down_threshold,
+                                         desc->vdd_apc_step_down_limit);
+               }
+
+               if (last_uV <= corner->min_uV) {
+                       cpr_irq_clr_nack(drv);
+
+                       /* Enable auto nack down */
+                       reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
+                       val = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
+
+                       cpr_ctl_modify(drv, reg_mask, val);
+
+                       /* Disable DOWN interrupt */
+                       cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_DOWN);
+
+                       return 0;
+               }
+
+               if (error_steps > desc->vdd_apc_step_down_limit)
+                       error_steps = desc->vdd_apc_step_down_limit;
+
+               /* Calculate new voltage */
+               new_uV = last_uV - error_steps * step_uV;
+               new_uV = max(new_uV, corner->min_uV);
+
+               dev_dbg(drv->dev,
+                       "DOWN: -> new_uV: %d last_uV: %d perf state: %u\n",
+                       new_uV, last_uV, cpr_get_cur_perf_state(drv));
+       }
+
+       ret = cpr_scale_voltage(drv, corner, new_uV, dir);
+       if (ret) {
+               cpr_irq_clr_nack(drv);
+               return ret;
+       }
+       drv->corner->last_uV = new_uV;
+
+       if (dir == UP) {
+               /* Disable auto nack down */
+               reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
+               val = 0;
+       } else {
+               /* Restore default threshold for UP */
+               reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
+               reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
+               val = desc->up_threshold;
+               val <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
+       }
+
+       cpr_ctl_modify(drv, reg_mask, val);
+
+       /* Re-enable default interrupts */
+       cpr_irq_set(drv, CPR_INT_DEFAULT);
+
+       /* Ack */
+       cpr_irq_clr_ack(drv);
+
+       return 0;
+}
+
+static irqreturn_t cpr_irq_handler(int irq, void *dev)
+{
+       struct cpr_drv *drv = dev;
+       const struct cpr_desc *desc = drv->desc;
+       irqreturn_t ret = IRQ_HANDLED;
+       u32 val;
+
+       mutex_lock(&drv->lock);
+
+       val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
+       if (drv->flags & FLAGS_IGNORE_1ST_IRQ_STATUS)
+               val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
+
+       dev_dbg(drv->dev, "IRQ_STATUS = %#02x\n", val);
+
+       if (!cpr_ctl_is_enabled(drv)) {
+               dev_dbg(drv->dev, "CPR is disabled\n");
+               ret = IRQ_NONE;
+       } else if (cpr_ctl_is_busy(drv) && !desc->clamp_timer_interval) {
+               dev_dbg(drv->dev, "CPR measurement is not ready\n");
+       } else if (!cpr_is_allowed(drv)) {
+               val = cpr_read(drv, REG_RBCPR_CTL);
+               dev_err_ratelimited(drv->dev,
+                                   "Interrupt broken? RBCPR_CTL = %#02x\n",
+                                   val);
+               ret = IRQ_NONE;
+       } else {
+               /*
+                * Following sequence of handling is as per each IRQ's
+                * priority
+                */
+               if (val & CPR_INT_UP) {
+                       cpr_scale(drv, UP);
+               } else if (val & CPR_INT_DOWN) {
+                       cpr_scale(drv, DOWN);
+               } else if (val & CPR_INT_MIN) {
+                       cpr_irq_clr_nack(drv);
+               } else if (val & CPR_INT_MAX) {
+                       cpr_irq_clr_nack(drv);
+               } else if (val & CPR_INT_MID) {
+                       /* RBCPR_CTL_SW_AUTO_CONT_ACK_EN is enabled */
+                       dev_dbg(drv->dev, "IRQ occurred for Mid Flag\n");
+               } else {
+                       dev_dbg(drv->dev,
+                               "IRQ occurred for unknown flag (%#08x)\n", val);
+               }
+
+               /* Save register values for the corner */
+               cpr_corner_save(drv, drv->corner);
+       }
+
+       mutex_unlock(&drv->lock);
+
+       return ret;
+}
+
+static int cpr_enable(struct cpr_drv *drv)
+{
+       int ret;
+
+       ret = regulator_enable(drv->vdd_apc);
+       if (ret)
+               return ret;
+
+       mutex_lock(&drv->lock);
+
+       if (cpr_is_allowed(drv) && drv->corner) {
+               cpr_irq_clr(drv);
+               cpr_corner_restore(drv, drv->corner);
+               cpr_ctl_enable(drv, drv->corner);
+       }
+
+       mutex_unlock(&drv->lock);
+
+       return 0;
+}
+
+static int cpr_disable(struct cpr_drv *drv)
+{
+       mutex_lock(&drv->lock);
+
+       if (cpr_is_allowed(drv)) {
+               cpr_ctl_disable(drv);
+               cpr_irq_clr(drv);
+       }
+
+       mutex_unlock(&drv->lock);
+
+       return regulator_disable(drv->vdd_apc);
+}
+
+static int cpr_config(struct cpr_drv *drv)
+{
+       int i;
+       u32 val, gcnt;
+       struct corner *corner;
+       const struct cpr_desc *desc = drv->desc;
+
+       /* Disable interrupt and CPR */
+       cpr_write(drv, REG_RBIF_IRQ_EN(0), 0);
+       cpr_write(drv, REG_RBCPR_CTL, 0);
+
+       /* Program the default HW ceiling, floor and vlevel */
+       val = (RBIF_LIMIT_CEILING_DEFAULT & RBIF_LIMIT_CEILING_MASK)
+               << RBIF_LIMIT_CEILING_SHIFT;
+       val |= RBIF_LIMIT_FLOOR_DEFAULT & RBIF_LIMIT_FLOOR_MASK;
+       cpr_write(drv, REG_RBIF_LIMIT, val);
+       cpr_write(drv, REG_RBIF_SW_VLEVEL, RBIF_SW_VLEVEL_DEFAULT);
+
+       /*
+        * Clear the target quotient value and gate count of all
+        * ring oscillators
+        */
+       for (i = 0; i < CPR_NUM_RING_OSC; i++)
+               cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
+
+       /* Init and save gcnt */
+       gcnt = (drv->ref_clk_khz * desc->gcnt_us) / 1000;
+       gcnt = gcnt & RBCPR_GCNT_TARGET_GCNT_MASK;
+       gcnt <<= RBCPR_GCNT_TARGET_GCNT_SHIFT;
+       drv->gcnt = gcnt;
+
+       /* Program the delay count for the timer */
+       val = (drv->ref_clk_khz * desc->timer_delay_us) / 1000;
+       cpr_write(drv, REG_RBCPR_TIMER_INTERVAL, val);
+       dev_dbg(drv->dev, "Timer count: %#0x (for %d us)\n", val,
+               desc->timer_delay_us);
+
+       /* Program Consecutive Up & Down */
+       val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
+       val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
+       val |= desc->clamp_timer_interval << RBIF_TIMER_ADJ_CLAMP_INT_SHIFT;
+       cpr_write(drv, REG_RBIF_TIMER_ADJUST, val);
+
+       /* Program the control register */
+       val = desc->up_threshold << RBCPR_CTL_UP_THRESHOLD_SHIFT;
+       val |= desc->down_threshold << RBCPR_CTL_DN_THRESHOLD_SHIFT;
+       val |= RBCPR_CTL_TIMER_EN | RBCPR_CTL_COUNT_MODE;
+       val |= RBCPR_CTL_SW_AUTO_CONT_ACK_EN;
+       cpr_write(drv, REG_RBCPR_CTL, val);
+
+       for (i = 0; i < drv->num_corners; i++) {
+               corner = &drv->corners[i];
+               corner->save_ctl = val;
+               corner->save_irq = CPR_INT_DEFAULT;
+       }
+
+       cpr_irq_set(drv, CPR_INT_DEFAULT);
+
+       val = cpr_read(drv, REG_RBCPR_VERSION);
+       if (val <= RBCPR_VER_2)
+               drv->flags |= FLAGS_IGNORE_1ST_IRQ_STATUS;
+
+       return 0;
+}
+
+static int cpr_set_performance_state(struct generic_pm_domain *domain,
+                                    unsigned int state)
+{
+       struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
+       struct corner *corner, *end;
+       enum voltage_change_dir dir;
+       int ret = 0, new_uV;
+
+       mutex_lock(&drv->lock);
+
+       dev_dbg(drv->dev, "%s: setting perf state: %u (prev state: %u)\n",
+               __func__, state, cpr_get_cur_perf_state(drv));
+
+       /*
+        * Determine new corner we're going to.
+        * Remove one since lowest performance state is 1.
+        */
+       corner = drv->corners + state - 1;
+       end = &drv->corners[drv->num_corners - 1];
+       if (corner > end || corner < drv->corners) {
+               ret = -EINVAL;
+               goto unlock;
+       }
+
+       /* Determine direction */
+       if (drv->corner > corner)
+               dir = DOWN;
+       else if (drv->corner < corner)
+               dir = UP;
+       else
+               dir = NO_CHANGE;
+
+       if (cpr_is_allowed(drv))
+               new_uV = corner->last_uV;
+       else
+               new_uV = corner->uV;
+
+       if (cpr_is_allowed(drv))
+               cpr_ctl_disable(drv);
+
+       ret = cpr_scale_voltage(drv, corner, new_uV, dir);
+       if (ret)
+               goto unlock;
+
+       if (cpr_is_allowed(drv)) {
+               cpr_irq_clr(drv);
+               if (drv->corner != corner)
+                       cpr_corner_restore(drv, corner);
+               cpr_ctl_enable(drv, corner);
+       }
+
+       drv->corner = corner;
+
+unlock:
+       mutex_unlock(&drv->lock);
+
+       return ret;
+}
+
+static int cpr_read_efuse(struct device *dev, const char *cname, u32 *data)
+{
+       struct nvmem_cell *cell;
+       ssize_t len;
+       char *ret;
+       int i;
+
+       *data = 0;
+
+       cell = nvmem_cell_get(dev, cname);
+       if (IS_ERR(cell)) {
+               if (PTR_ERR(cell) != -EPROBE_DEFER)
+                       dev_err(dev, "undefined cell %s\n", cname);
+               return PTR_ERR(cell);
+       }
+
+       ret = nvmem_cell_read(cell, &len);
+       nvmem_cell_put(cell);
+       if (IS_ERR(ret)) {
+               dev_err(dev, "can't read cell %s\n", cname);
+               return PTR_ERR(ret);
+       }
+
+       for (i = 0; i < len; i++)
+               *data |= ret[i] << (8 * i);
+
+       kfree(ret);
+       dev_dbg(dev, "efuse read(%s) = %x, bytes %zd\n", cname, *data, len);
+
+       return 0;
+}
+
+static int
+cpr_populate_ring_osc_idx(struct cpr_drv *drv)
+{
+       struct fuse_corner *fuse = drv->fuse_corners;
+       struct fuse_corner *end = fuse + drv->desc->num_fuse_corners;
+       const struct cpr_fuse *fuses = drv->cpr_fuses;
+       u32 data;
+       int ret;
+
+       for (; fuse < end; fuse++, fuses++) {
+               ret = cpr_read_efuse(drv->dev, fuses->ring_osc,
+                                    &data);
+               if (ret)
+                       return ret;
+               fuse->ring_osc_idx = data;
+       }
+
+       return 0;
+}
+
+static int cpr_read_fuse_uV(const struct cpr_desc *desc,
+                           const struct fuse_corner_data *fdata,
+                           const char *init_v_efuse,
+                           int step_volt,
+                           struct cpr_drv *drv)
+{
+       int step_size_uV, steps, uV;
+       u32 bits = 0;
+       int ret;
+
+       ret = cpr_read_efuse(drv->dev, init_v_efuse, &bits);
+       if (ret)
+               return ret;
+
+       steps = bits & ~BIT(desc->cpr_fuses.init_voltage_width - 1);
+       /* Not two's complement.. instead highest bit is sign bit */
+       if (bits & BIT(desc->cpr_fuses.init_voltage_width - 1))
+               steps = -steps;
+
+       step_size_uV = desc->cpr_fuses.init_voltage_step;
+
+       uV = fdata->ref_uV + steps * step_size_uV;
+       return DIV_ROUND_UP(uV, step_volt) * step_volt;
+}
+
+static int cpr_fuse_corner_init(struct cpr_drv *drv)
+{
+       const struct cpr_desc *desc = drv->desc;
+       const struct cpr_fuse *fuses = drv->cpr_fuses;
+       const struct acc_desc *acc_desc = drv->acc_desc;
+       int i;
+       unsigned int step_volt;
+       struct fuse_corner_data *fdata;
+       struct fuse_corner *fuse, *end;
+       int uV;
+       const struct reg_sequence *accs;
+       int ret;
+
+       accs = acc_desc->settings;
+
+       step_volt = regulator_get_linear_step(drv->vdd_apc);
+       if (!step_volt)
+               return -EINVAL;
+
+       /* Populate fuse_corner members */
+       fuse = drv->fuse_corners;
+       end = &fuse[desc->num_fuse_corners - 1];
+       fdata = desc->cpr_fuses.fuse_corner_data;
+
+       for (i = 0; fuse <= end; fuse++, fuses++, i++, fdata++) {
+               /*
+                * Update SoC voltages: platforms might choose a different
+                * regulators than the one used to characterize the algorithms
+                * (ie, init_voltage_step).
+                */
+               fdata->min_uV = roundup(fdata->min_uV, step_volt);
+               fdata->max_uV = roundup(fdata->max_uV, step_volt);
+
+               /* Populate uV */
+               uV = cpr_read_fuse_uV(desc, fdata, fuses->init_voltage,
+                                     step_volt, drv);
+               if (uV < 0)
+                       return uV;
+
+               fuse->min_uV = fdata->min_uV;
+               fuse->max_uV = fdata->max_uV;
+               fuse->uV = clamp(uV, fuse->min_uV, fuse->max_uV);
+
+               if (fuse == end) {
+                       /*
+                        * Allow the highest fuse corner's PVS voltage to
+                        * define the ceiling voltage for that corner in order
+                        * to support SoC's in which variable ceiling values
+                        * are required.
+                        */
+                       end->max_uV = max(end->max_uV, end->uV);
+               }
+
+               /* Populate target quotient by scaling */
+               ret = cpr_read_efuse(drv->dev, fuses->quotient, &fuse->quot);
+               if (ret)
+                       return ret;
+
+               fuse->quot *= fdata->quot_scale;
+               fuse->quot += fdata->quot_offset;
+               fuse->quot += fdata->quot_adjust;
+               fuse->step_quot = desc->step_quot[fuse->ring_osc_idx];
+
+               /* Populate acc settings */
+               fuse->accs = accs;
+               fuse->num_accs = acc_desc->num_regs_per_fuse;
+               accs += acc_desc->num_regs_per_fuse;
+       }
+
+       /*
+        * Restrict all fuse corner PVS voltages based upon per corner
+        * ceiling and floor voltages.
+        */
+       for (fuse = drv->fuse_corners, i = 0; fuse <= end; fuse++, i++) {
+               if (fuse->uV > fuse->max_uV)
+                       fuse->uV = fuse->max_uV;
+               else if (fuse->uV < fuse->min_uV)
+                       fuse->uV = fuse->min_uV;
+
+               ret = regulator_is_supported_voltage(drv->vdd_apc,
+                                                    fuse->min_uV,
+                                                    fuse->min_uV);
+               if (!ret) {
+                       dev_err(drv->dev,
+                               "min uV: %d (fuse corner: %d) not supported by regulator\n",
+                               fuse->min_uV, i);
+                       return -EINVAL;
+               }
+
+               ret = regulator_is_supported_voltage(drv->vdd_apc,
+                                                    fuse->max_uV,
+                                                    fuse->max_uV);
+               if (!ret) {
+                       dev_err(drv->dev,
+                               "max uV: %d (fuse corner: %d) not supported by regulator\n",
+                               fuse->max_uV, i);
+                       return -EINVAL;
+               }
+
+               dev_dbg(drv->dev,
+                       "fuse corner %d: [%d %d %d] RO%hhu quot %d squot %d\n",
+                       i, fuse->min_uV, fuse->uV, fuse->max_uV,
+                       fuse->ring_osc_idx, fuse->quot, fuse->step_quot);
+       }
+
+       return 0;
+}
+
+static int cpr_calculate_scaling(const char *quot_offset,
+                                struct cpr_drv *drv,
+                                const struct fuse_corner_data *fdata,
+                                const struct corner *corner)
+{
+       u32 quot_diff = 0;
+       unsigned long freq_diff;
+       int scaling;
+       const struct fuse_corner *fuse, *prev_fuse;
+       int ret;
+
+       fuse = corner->fuse_corner;
+       prev_fuse = fuse - 1;
+
+       if (quot_offset) {
+               ret = cpr_read_efuse(drv->dev, quot_offset, &quot_diff);
+               if (ret)
+                       return ret;
+
+               quot_diff *= fdata->quot_offset_scale;
+               quot_diff += fdata->quot_offset_adjust;
+       } else {
+               quot_diff = fuse->quot - prev_fuse->quot;
+       }
+
+       freq_diff = fuse->max_freq - prev_fuse->max_freq;
+       freq_diff /= 1000000; /* Convert to MHz */
+       scaling = 1000 * quot_diff / freq_diff;
+       return min(scaling, fdata->max_quot_scale);
+}
+
+static int cpr_interpolate(const struct corner *corner, int step_volt,
+                          const struct fuse_corner_data *fdata)
+{
+       unsigned long f_high, f_low, f_diff;
+       int uV_high, uV_low, uV;
+       u64 temp, temp_limit;
+       const struct fuse_corner *fuse, *prev_fuse;
+
+       fuse = corner->fuse_corner;
+       prev_fuse = fuse - 1;
+
+       f_high = fuse->max_freq;
+       f_low = prev_fuse->max_freq;
+       uV_high = fuse->uV;
+       uV_low = prev_fuse->uV;
+       f_diff = fuse->max_freq - corner->freq;
+
+       /*
+        * Don't interpolate in the wrong direction. This could happen
+        * if the adjusted fuse voltage overlaps with the previous fuse's
+        * adjusted voltage.
+        */
+       if (f_high <= f_low || uV_high <= uV_low || f_high <= corner->freq)
+               return corner->uV;
+
+       temp = f_diff * (uV_high - uV_low);
+       do_div(temp, f_high - f_low);
+
+       /*
+        * max_volt_scale has units of uV/MHz while freq values
+        * have units of Hz.  Divide by 1000000 to convert to.
+        */
+       temp_limit = f_diff * fdata->max_volt_scale;
+       do_div(temp_limit, 1000000);
+
+       uV = uV_high - min(temp, temp_limit);
+       return roundup(uV, step_volt);
+}
+
+static unsigned int cpr_get_fuse_corner(struct dev_pm_opp *opp)
+{
+       struct device_node *np;
+       unsigned int fuse_corner = 0;
+
+       np = dev_pm_opp_get_of_node(opp);
+       if (of_property_read_u32(np, "qcom,opp-fuse-level", &fuse_corner))
+               pr_err("%s: missing 'qcom,opp-fuse-level' property\n",
+                      __func__);
+
+       of_node_put(np);
+
+       return fuse_corner;
+}
+
+static unsigned long cpr_get_opp_hz_for_req(struct dev_pm_opp *ref,
+                                           struct device *cpu_dev)
+{
+       u64 rate = 0;
+       struct device_node *ref_np;
+       struct device_node *desc_np;
+       struct device_node *child_np = NULL;
+       struct device_node *child_req_np = NULL;
+
+       desc_np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
+       if (!desc_np)
+               return 0;
+
+       ref_np = dev_pm_opp_get_of_node(ref);
+       if (!ref_np)
+               goto out_ref;
+
+       do {
+               of_node_put(child_req_np);
+               child_np = of_get_next_available_child(desc_np, child_np);
+               child_req_np = of_parse_phandle(child_np, "required-opps", 0);
+       } while (child_np && child_req_np != ref_np);
+
+       if (child_np && child_req_np == ref_np)
+               of_property_read_u64(child_np, "opp-hz", &rate);
+
+       of_node_put(child_req_np);
+       of_node_put(child_np);
+       of_node_put(ref_np);
+out_ref:
+       of_node_put(desc_np);
+
+       return (unsigned long) rate;
+}
+
+static int cpr_corner_init(struct cpr_drv *drv)
+{
+       const struct cpr_desc *desc = drv->desc;
+       const struct cpr_fuse *fuses = drv->cpr_fuses;
+       int i, level, scaling = 0;
+       unsigned int fnum, fc;
+       const char *quot_offset;
+       struct fuse_corner *fuse, *prev_fuse;
+       struct corner *corner, *end;
+       struct corner_data *cdata;
+       const struct fuse_corner_data *fdata;
+       bool apply_scaling;
+       unsigned long freq_diff, freq_diff_mhz;
+       unsigned long freq;
+       int step_volt = regulator_get_linear_step(drv->vdd_apc);
+       struct dev_pm_opp *opp;
+
+       if (!step_volt)
+               return -EINVAL;
+
+       corner = drv->corners;
+       end = &corner[drv->num_corners - 1];
+
+       cdata = devm_kcalloc(drv->dev, drv->num_corners,
+                            sizeof(struct corner_data),
+                            GFP_KERNEL);
+       if (!cdata)
+               return -ENOMEM;
+
+       /*
+        * Store maximum frequency for each fuse corner based on the frequency
+        * plan
+        */
+       for (level = 1; level <= drv->num_corners; level++) {
+               opp = dev_pm_opp_find_level_exact(&drv->pd.dev, level);
+               if (IS_ERR(opp))
+                       return -EINVAL;
+               fc = cpr_get_fuse_corner(opp);
+               if (!fc) {
+                       dev_pm_opp_put(opp);
+                       return -EINVAL;
+               }
+               fnum = fc - 1;
+               freq = cpr_get_opp_hz_for_req(opp, drv->attached_cpu_dev);
+               if (!freq) {
+                       dev_pm_opp_put(opp);
+                       return -EINVAL;
+               }
+               cdata[level - 1].fuse_corner = fnum;
+               cdata[level - 1].freq = freq;
+
+               fuse = &drv->fuse_corners[fnum];
+               dev_dbg(drv->dev, "freq: %lu level: %u fuse level: %u\n",
+                       freq, dev_pm_opp_get_level(opp) - 1, fnum);
+               if (freq > fuse->max_freq)
+                       fuse->max_freq = freq;
+               dev_pm_opp_put(opp);
+       }
+
+       /*
+        * Get the quotient adjustment scaling factor, according to:
+        *
+        * scaling = min(1000 * (QUOT(corner_N) - QUOT(corner_N-1))
+        *              / (freq(corner_N) - freq(corner_N-1)), max_factor)
+        *
+        * QUOT(corner_N):      quotient read from fuse for fuse corner N
+        * QUOT(corner_N-1):    quotient read from fuse for fuse corner (N - 1)
+        * freq(corner_N):      max frequency in MHz supported by fuse corner N
+        * freq(corner_N-1):    max frequency in MHz supported by fuse corner
+        *                       (N - 1)
+        *
+        * Then walk through the corners mapped to each fuse corner
+        * and calculate the quotient adjustment for each one using the
+        * following formula:
+        *
+        * quot_adjust = (freq_max - freq_corner) * scaling / 1000
+        *
+        * freq_max: max frequency in MHz supported by the fuse corner
+        * freq_corner: frequency in MHz corresponding to the corner
+        * scaling: calculated from above equation
+        *
+        *
+        *     +                           +
+        *     |                         v |
+        *   q |           f c           o |           f c
+        *   u |         c               l |         c
+        *   o |       f                 t |       f
+        *   t |     c                   a |     c
+        *     | c f                     g | c f
+        *     |                         e |
+        *     +---------------            +----------------
+        *       0 1 2 3 4 5 6               0 1 2 3 4 5 6
+        *          corner                      corner
+        *
+        *    c = corner
+        *    f = fuse corner
+        *
+        */
+       for (apply_scaling = false, i = 0; corner <= end; corner++, i++) {
+               fnum = cdata[i].fuse_corner;
+               fdata = &desc->cpr_fuses.fuse_corner_data[fnum];
+               quot_offset = fuses[fnum].quotient_offset;
+               fuse = &drv->fuse_corners[fnum];
+               if (fnum)
+                       prev_fuse = &drv->fuse_corners[fnum - 1];
+               else
+                       prev_fuse = NULL;
+
+               corner->fuse_corner = fuse;
+               corner->freq = cdata[i].freq;
+               corner->uV = fuse->uV;
+
+               if (prev_fuse && cdata[i - 1].freq == prev_fuse->max_freq) {
+                       scaling = cpr_calculate_scaling(quot_offset, drv,
+                                                       fdata, corner);
+                       if (scaling < 0)
+                               return scaling;
+
+                       apply_scaling = true;
+               } else if (corner->freq == fuse->max_freq) {
+                       /* This is a fuse corner; don't scale anything */
+                       apply_scaling = false;
+               }
+
+               if (apply_scaling) {
+                       freq_diff = fuse->max_freq - corner->freq;
+                       freq_diff_mhz = freq_diff / 1000000;
+                       corner->quot_adjust = scaling * freq_diff_mhz / 1000;
+
+                       corner->uV = cpr_interpolate(corner, step_volt, fdata);
+               }
+
+               corner->max_uV = fuse->max_uV;
+               corner->min_uV = fuse->min_uV;
+               corner->uV = clamp(corner->uV, corner->min_uV, corner->max_uV);
+               corner->last_uV = corner->uV;
+
+               /* Reduce the ceiling voltage if needed */
+               if (desc->reduce_to_corner_uV && corner->uV < corner->max_uV)
+                       corner->max_uV = corner->uV;
+               else if (desc->reduce_to_fuse_uV && fuse->uV < corner->max_uV)
+                       corner->max_uV = max(corner->min_uV, fuse->uV);
+
+               dev_dbg(drv->dev, "corner %d: [%d %d %d] quot %d\n", i,
+                       corner->min_uV, corner->uV, corner->max_uV,
+                       fuse->quot - corner->quot_adjust);
+       }
+
+       return 0;
+}
+
+static const struct cpr_fuse *cpr_get_fuses(struct cpr_drv *drv)
+{
+       const struct cpr_desc *desc = drv->desc;
+       struct cpr_fuse *fuses;
+       int i;
+
+       fuses = devm_kcalloc(drv->dev, desc->num_fuse_corners,
+                            sizeof(struct cpr_fuse),
+                            GFP_KERNEL);
+       if (!fuses)
+               return ERR_PTR(-ENOMEM);
+
+       for (i = 0; i < desc->num_fuse_corners; i++) {
+               char tbuf[32];
+
+               snprintf(tbuf, 32, "cpr_ring_osc%d", i + 1);
+               fuses[i].ring_osc = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
+               if (!fuses[i].ring_osc)
+                       return ERR_PTR(-ENOMEM);
+
+               snprintf(tbuf, 32, "cpr_init_voltage%d", i + 1);
+               fuses[i].init_voltage = devm_kstrdup(drv->dev, tbuf,
+                                                    GFP_KERNEL);
+               if (!fuses[i].init_voltage)
+                       return ERR_PTR(-ENOMEM);
+
+               snprintf(tbuf, 32, "cpr_quotient%d", i + 1);
+               fuses[i].quotient = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
+               if (!fuses[i].quotient)
+                       return ERR_PTR(-ENOMEM);
+
+               snprintf(tbuf, 32, "cpr_quotient_offset%d", i + 1);
+               fuses[i].quotient_offset = devm_kstrdup(drv->dev, tbuf,
+                                                       GFP_KERNEL);
+               if (!fuses[i].quotient_offset)
+                       return ERR_PTR(-ENOMEM);
+       }
+
+       return fuses;
+}
+
+static void cpr_set_loop_allowed(struct cpr_drv *drv)
+{
+       drv->loop_disabled = false;
+}
+
+static int cpr_init_parameters(struct cpr_drv *drv)
+{
+       const struct cpr_desc *desc = drv->desc;
+       struct clk *clk;
+
+       clk = clk_get(drv->dev, "ref");
+       if (IS_ERR(clk))
+               return PTR_ERR(clk);
+
+       drv->ref_clk_khz = clk_get_rate(clk) / 1000;
+       clk_put(clk);
+
+       if (desc->timer_cons_up > RBIF_TIMER_ADJ_CONS_UP_MASK ||
+           desc->timer_cons_down > RBIF_TIMER_ADJ_CONS_DOWN_MASK ||
+           desc->up_threshold > RBCPR_CTL_UP_THRESHOLD_MASK ||
+           desc->down_threshold > RBCPR_CTL_DN_THRESHOLD_MASK ||
+           desc->idle_clocks > RBCPR_STEP_QUOT_IDLE_CLK_MASK ||
+           desc->clamp_timer_interval > RBIF_TIMER_ADJ_CLAMP_INT_MASK)
+               return -EINVAL;
+
+       dev_dbg(drv->dev, "up threshold = %u, down threshold = %u\n",
+               desc->up_threshold, desc->down_threshold);
+
+       return 0;
+}
+
+static int cpr_find_initial_corner(struct cpr_drv *drv)
+{
+       unsigned long rate;
+       const struct corner *end;
+       struct corner *iter;
+       unsigned int i = 0;
+
+       if (!drv->cpu_clk) {
+               dev_err(drv->dev, "cannot get rate from NULL clk\n");
+               return -EINVAL;
+       }
+
+       end = &drv->corners[drv->num_corners - 1];
+       rate = clk_get_rate(drv->cpu_clk);
+
+       /*
+        * Some bootloaders set a CPU clock frequency that is not defined
+        * in the OPP table. When running at an unlisted frequency,
+        * cpufreq_online() will change to the OPP which has the lowest
+        * frequency, at or above the unlisted frequency.
+        * Since cpufreq_online() always "rounds up" in the case of an
+        * unlisted frequency, this function always "rounds down" in case
+        * of an unlisted frequency. That way, when cpufreq_online()
+        * triggers the first ever call to cpr_set_performance_state(),
+        * it will correctly determine the direction as UP.
+        */
+       for (iter = drv->corners; iter <= end; iter++) {
+               if (iter->freq > rate)
+                       break;
+               i++;
+               if (iter->freq == rate) {
+                       drv->corner = iter;
+                       break;
+               }
+               if (iter->freq < rate)
+                       drv->corner = iter;
+       }
+
+       if (!drv->corner) {
+               dev_err(drv->dev, "boot up corner not found\n");
+               return -EINVAL;
+       }
+
+       dev_dbg(drv->dev, "boot up perf state: %u\n", i);
+
+       return 0;
+}
+
+static const struct cpr_desc qcs404_cpr_desc = {
+       .num_fuse_corners = 3,
+       .min_diff_quot = CPR_FUSE_MIN_QUOT_DIFF,
+       .step_quot = (int []){ 25, 25, 25, },
+       .timer_delay_us = 5000,
+       .timer_cons_up = 0,
+       .timer_cons_down = 2,
+       .up_threshold = 1,
+       .down_threshold = 3,
+       .idle_clocks = 15,
+       .gcnt_us = 1,
+       .vdd_apc_step_up_limit = 1,
+       .vdd_apc_step_down_limit = 1,
+       .cpr_fuses = {
+               .init_voltage_step = 8000,
+               .init_voltage_width = 6,
+               .fuse_corner_data = (struct fuse_corner_data[]){
+                       /* fuse corner 0 */
+                       {
+                               .ref_uV = 1224000,
+                               .max_uV = 1224000,
+                               .min_uV = 1048000,
+                               .max_volt_scale = 0,
+                               .max_quot_scale = 0,
+                               .quot_offset = 0,
+                               .quot_scale = 1,
+                               .quot_adjust = 0,
+                               .quot_offset_scale = 5,
+                               .quot_offset_adjust = 0,
+                       },
+                       /* fuse corner 1 */
+                       {
+                               .ref_uV = 1288000,
+                               .max_uV = 1288000,
+                               .min_uV = 1048000,
+                               .max_volt_scale = 2000,
+                               .max_quot_scale = 1400,
+                               .quot_offset = 0,
+                               .quot_scale = 1,
+                               .quot_adjust = -20,
+                               .quot_offset_scale = 5,
+                               .quot_offset_adjust = 0,
+                       },
+                       /* fuse corner 2 */
+                       {
+                               .ref_uV = 1352000,
+                               .max_uV = 1384000,
+                               .min_uV = 1088000,
+                               .max_volt_scale = 2000,
+                               .max_quot_scale = 1400,
+                               .quot_offset = 0,
+                               .quot_scale = 1,
+                               .quot_adjust = 0,
+                               .quot_offset_scale = 5,
+                               .quot_offset_adjust = 0,
+                       },
+               },
+       },
+};
+
+static const struct acc_desc qcs404_acc_desc = {
+       .settings = (struct reg_sequence[]){
+               { 0xb120, 0x1041040 },
+               { 0xb124, 0x41 },
+               { 0xb120, 0x0 },
+               { 0xb124, 0x0 },
+               { 0xb120, 0x0 },
+               { 0xb124, 0x0 },
+       },
+       .config = (struct reg_sequence[]){
+               { 0xb138, 0xff },
+               { 0xb130, 0x5555 },
+       },
+       .num_regs_per_fuse = 2,
+};
+
+static const struct cpr_acc_desc qcs404_cpr_acc_desc = {
+       .cpr_desc = &qcs404_cpr_desc,
+       .acc_desc = &qcs404_acc_desc,
+};
+
+static unsigned int cpr_get_performance_state(struct generic_pm_domain *genpd,
+                                             struct dev_pm_opp *opp)
+{
+       return dev_pm_opp_get_level(opp);
+}
+
+static int cpr_power_off(struct generic_pm_domain *domain)
+{
+       struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
+
+       return cpr_disable(drv);
+}
+
+static int cpr_power_on(struct generic_pm_domain *domain)
+{
+       struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
+
+       return cpr_enable(drv);
+}
+
+static int cpr_pd_attach_dev(struct generic_pm_domain *domain,
+                            struct device *dev)
+{
+       struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
+       const struct acc_desc *acc_desc = drv->acc_desc;
+       int ret = 0;
+
+       mutex_lock(&drv->lock);
+
+       dev_dbg(drv->dev, "attach callback for: %s\n", dev_name(dev));
+
+       /*
+        * This driver only supports scaling voltage for a CPU cluster
+        * where all CPUs in the cluster share a single regulator.
+        * Therefore, save the struct device pointer only for the first
+        * CPU device that gets attached. There is no need to do any
+        * additional initialization when further CPUs get attached.
+        */
+       if (drv->attached_cpu_dev)
+               goto unlock;
+
+       /*
+        * cpr_scale_voltage() requires the direction (if we are changing
+        * to a higher or lower OPP). The first time
+        * cpr_set_performance_state() is called, there is no previous
+        * performance state defined. Therefore, we call
+        * cpr_find_initial_corner() that gets the CPU clock frequency
+        * set by the bootloader, so that we can determine the direction
+        * the first time cpr_set_performance_state() is called.
+        */
+       drv->cpu_clk = devm_clk_get(dev, NULL);
+       if (IS_ERR(drv->cpu_clk)) {
+               ret = PTR_ERR(drv->cpu_clk);
+               if (ret != -EPROBE_DEFER)
+                       dev_err(drv->dev, "could not get cpu clk: %d\n", ret);
+               goto unlock;
+       }
+       drv->attached_cpu_dev = dev;
+
+       dev_dbg(drv->dev, "using cpu clk from: %s\n",
+               dev_name(drv->attached_cpu_dev));
+
+       /*
+        * Everything related to (virtual) corners has to be initialized
+        * here, when attaching to the power domain, since we need to know
+        * the maximum frequency for each fuse corner, and this is only
+        * available after the cpufreq driver has attached to us.
+        * The reason for this is that we need to know the highest
+        * frequency associated with each fuse corner.
+        */
+       ret = dev_pm_opp_get_opp_count(&drv->pd.dev);
+       if (ret < 0) {
+               dev_err(drv->dev, "could not get OPP count\n");
+               goto unlock;
+       }
+       drv->num_corners = ret;
+
+       if (drv->num_corners < 2) {
+               dev_err(drv->dev, "need at least 2 OPPs to use CPR\n");
+               ret = -EINVAL;
+               goto unlock;
+       }
+
+       drv->corners = devm_kcalloc(drv->dev, drv->num_corners,
+                                   sizeof(*drv->corners),
+                                   GFP_KERNEL);
+       if (!drv->corners) {
+               ret = -ENOMEM;
+               goto unlock;
+       }
+
+       ret = cpr_corner_init(drv);
+       if (ret)
+               goto unlock;
+
+       cpr_set_loop_allowed(drv);
+
+       ret = cpr_init_parameters(drv);
+       if (ret)
+               goto unlock;
+
+       /* Configure CPR HW but keep it disabled */
+       ret = cpr_config(drv);
+       if (ret)
+               goto unlock;
+
+       ret = cpr_find_initial_corner(drv);
+       if (ret)
+               goto unlock;
+
+       if (acc_desc->config)
+               regmap_multi_reg_write(drv->tcsr, acc_desc->config,
+                                      acc_desc->num_regs_per_fuse);
+
+       /* Enable ACC if required */
+       if (acc_desc->enable_mask)
+               regmap_update_bits(drv->tcsr, acc_desc->enable_reg,
+                                  acc_desc->enable_mask,
+                                  acc_desc->enable_mask);
+
+       dev_info(drv->dev, "driver initialized with %u OPPs\n",
+                drv->num_corners);
+
+unlock:
+       mutex_unlock(&drv->lock);
+
+       return ret;
+}
+
+static int cpr_debug_info_show(struct seq_file *s, void *unused)
+{
+       u32 gcnt, ro_sel, ctl, irq_status, reg, error_steps;
+       u32 step_dn, step_up, error, error_lt0, busy;
+       struct cpr_drv *drv = s->private;
+       struct fuse_corner *fuse_corner;
+       struct corner *corner;
+
+       corner = drv->corner;
+       fuse_corner = corner->fuse_corner;
+
+       seq_printf(s, "corner, current_volt = %d uV\n",
+                      corner->last_uV);
+
+       ro_sel = fuse_corner->ring_osc_idx;
+       gcnt = cpr_read(drv, REG_RBCPR_GCNT_TARGET(ro_sel));
+       seq_printf(s, "rbcpr_gcnt_target (%u) = %#02X\n", ro_sel, gcnt);
+
+       ctl = cpr_read(drv, REG_RBCPR_CTL);
+       seq_printf(s, "rbcpr_ctl = %#02X\n", ctl);
+
+       irq_status = cpr_read(drv, REG_RBIF_IRQ_STATUS);
+       seq_printf(s, "rbcpr_irq_status = %#02X\n", irq_status);
+
+       reg = cpr_read(drv, REG_RBCPR_RESULT_0);
+       seq_printf(s, "rbcpr_result_0 = %#02X\n", reg);
+
+       step_dn = reg & 0x01;
+       step_up = (reg >> RBCPR_RESULT0_STEP_UP_SHIFT) & 0x01;
+       seq_printf(s, "  [step_dn = %u", step_dn);
+
+       seq_printf(s, ", step_up = %u", step_up);
+
+       error_steps = (reg >> RBCPR_RESULT0_ERROR_STEPS_SHIFT)
+                               & RBCPR_RESULT0_ERROR_STEPS_MASK;
+       seq_printf(s, ", error_steps = %u", error_steps);
+
+       error = (reg >> RBCPR_RESULT0_ERROR_SHIFT) & RBCPR_RESULT0_ERROR_MASK;
+       seq_printf(s, ", error = %u", error);
+
+       error_lt0 = (reg >> RBCPR_RESULT0_ERROR_LT0_SHIFT) & 0x01;
+       seq_printf(s, ", error_lt_0 = %u", error_lt0);
+
+       busy = (reg >> RBCPR_RESULT0_BUSY_SHIFT) & 0x01;
+       seq_printf(s, ", busy = %u]\n", busy);
+
+       return 0;
+}
+DEFINE_SHOW_ATTRIBUTE(cpr_debug_info);
+
+static void cpr_debugfs_init(struct cpr_drv *drv)
+{
+       drv->debugfs = debugfs_create_dir("qcom_cpr", NULL);
+
+       debugfs_create_file("debug_info", 0444, drv->debugfs,
+                           drv, &cpr_debug_info_fops);
+}
+
+static int cpr_probe(struct platform_device *pdev)
+{
+       struct resource *res;
+       struct device *dev = &pdev->dev;
+       struct cpr_drv *drv;
+       int irq, ret;
+       const struct cpr_acc_desc *data;
+       struct device_node *np;
+       u32 cpr_rev = FUSE_REVISION_UNKNOWN;
+
+       data = of_device_get_match_data(dev);
+       if (!data || !data->cpr_desc || !data->acc_desc)
+               return -EINVAL;
+
+       drv = devm_kzalloc(dev, sizeof(*drv), GFP_KERNEL);
+       if (!drv)
+               return -ENOMEM;
+       drv->dev = dev;
+       drv->desc = data->cpr_desc;
+       drv->acc_desc = data->acc_desc;
+
+       drv->fuse_corners = devm_kcalloc(dev, drv->desc->num_fuse_corners,
+                                        sizeof(*drv->fuse_corners),
+                                        GFP_KERNEL);
+       if (!drv->fuse_corners)
+               return -ENOMEM;
+
+       np = of_parse_phandle(dev->of_node, "acc-syscon", 0);
+       if (!np)
+               return -ENODEV;
+
+       drv->tcsr = syscon_node_to_regmap(np);
+       of_node_put(np);
+       if (IS_ERR(drv->tcsr))
+               return PTR_ERR(drv->tcsr);
+
+       res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+       drv->base = devm_ioremap_resource(dev, res);
+       if (IS_ERR(drv->base))
+               return PTR_ERR(drv->base);
+
+       irq = platform_get_irq(pdev, 0);
+       if (irq < 0)
+               return -EINVAL;
+
+       drv->vdd_apc = devm_regulator_get(dev, "vdd-apc");
+       if (IS_ERR(drv->vdd_apc))
+               return PTR_ERR(drv->vdd_apc);
+
+       /*
+        * Initialize fuse corners, since it simply depends
+        * on data in efuses.
+        * Everything related to (virtual) corners has to be
+        * initialized after attaching to the power domain,
+        * since it depends on the CPU's OPP table.
+        */
+       ret = cpr_read_efuse(dev, "cpr_fuse_revision", &cpr_rev);
+       if (ret)
+               return ret;
+
+       drv->cpr_fuses = cpr_get_fuses(drv);
+       if (IS_ERR(drv->cpr_fuses))
+               return PTR_ERR(drv->cpr_fuses);
+
+       ret = cpr_populate_ring_osc_idx(drv);
+       if (ret)
+               return ret;
+
+       ret = cpr_fuse_corner_init(drv);
+       if (ret)
+               return ret;
+
+       mutex_init(&drv->lock);
+
+       ret = devm_request_threaded_irq(dev, irq, NULL,
+                                       cpr_irq_handler,
+                                       IRQF_ONESHOT | IRQF_TRIGGER_RISING,
+                                       "cpr", drv);
+       if (ret)
+               return ret;
+
+       drv->pd.name = devm_kstrdup_const(dev, dev->of_node->full_name,
+                                         GFP_KERNEL);
+       if (!drv->pd.name)
+               return -EINVAL;
+
+       drv->pd.power_off = cpr_power_off;
+       drv->pd.power_on = cpr_power_on;
+       drv->pd.set_performance_state = cpr_set_performance_state;
+       drv->pd.opp_to_performance_state = cpr_get_performance_state;
+       drv->pd.attach_dev = cpr_pd_attach_dev;
+
+       ret = pm_genpd_init(&drv->pd, NULL, true);
+       if (ret)
+               return ret;
+
+       ret = of_genpd_add_provider_simple(dev->of_node, &drv->pd);
+       if (ret)
+               return ret;
+
+       platform_set_drvdata(pdev, drv);
+       cpr_debugfs_init(drv);
+
+       return 0;
+}
+
+static int cpr_remove(struct platform_device *pdev)
+{
+       struct cpr_drv *drv = platform_get_drvdata(pdev);
+
+       if (cpr_is_allowed(drv)) {
+               cpr_ctl_disable(drv);
+               cpr_irq_set(drv, 0);
+       }
+
+       of_genpd_del_provider(pdev->dev.of_node);
+       pm_genpd_remove(&drv->pd);
+
+       debugfs_remove_recursive(drv->debugfs);
+
+       return 0;
+}
+
+static const struct of_device_id cpr_match_table[] = {
+       { .compatible = "qcom,qcs404-cpr", .data = &qcs404_cpr_acc_desc },
+       { }
+};
+MODULE_DEVICE_TABLE(of, cpr_match_table);
+
+static struct platform_driver cpr_driver = {
+       .probe          = cpr_probe,
+       .remove         = cpr_remove,
+       .driver         = {
+               .name   = "qcom-cpr",
+               .of_match_table = cpr_match_table,
+       },
+};
+module_platform_driver(cpr_driver);
+
+MODULE_DESCRIPTION("Core Power Reduction (CPR) driver");
+MODULE_LICENSE("GPL v2");