intel_rps_driver_unregister(>->rps);
intel_gsc_fini(>->gsc);
+ /*
+ * If we unload the driver and wedge before the GSC worker is complete,
+ * the worker will hit an error on its submission to the GSC engine and
+ * then exit. This is hard to hit for a user, but it is reproducible
+ * with skipping selftests. The error is handled gracefully by the
+ * worker, so there are no functional issues, but we still end up with
+ * an error message in dmesg, which is something we want to avoid as
+ * this is a supported scenario. We could modify the worker to better
+ * handle a wedging occurring during its execution, but that gets
+ * complicated for a couple of reasons:
+ * - We do want the error on runtime wedging, because there are
+ * implications for subsystems outside of GT (i.e., PXP, HDCP), it's
+ * only the error on driver unload that we want to silence.
+ * - The worker is responsible for multiple submissions (GSC FW load,
+ * HuC auth, SW proxy), so all of those will have to be adapted to
+ * handle the wedged_on_fini scenario.
+ * Therefore, it's much simpler to just wait for the worker to be done
+ * before wedging on driver removal, also considering that the worker
+ * will likely already be idle in the great majority of non-selftest
+ * scenarios.
+ */
+ intel_gsc_uc_flush_work(>->uc.gsc);
+
/*
* Upon unregistering the device to prevent any new users, cancel
* all in-flight requests so that we can quickly unbind the active
int intel_gsc_uc_init(struct intel_gsc_uc *gsc);
void intel_gsc_uc_fini(struct intel_gsc_uc *gsc);
void intel_gsc_uc_suspend(struct intel_gsc_uc *gsc);
+void intel_gsc_uc_flush_work(struct intel_gsc_uc *gsc);
void intel_gsc_uc_load_start(struct intel_gsc_uc *gsc);
static inline bool intel_gsc_uc_is_supported(struct intel_gsc_uc *gsc)