Se avete una struttura dati che verrà utilizzata solo dal contesto utente,
 allora, per proteggerla, potete utilizzare un semplice mutex
 (``include/linux/mutex.h``). Questo è il caso più semplice: inizializzate il
-mutex; invocate :c:func:`mutex_lock_interruptible()` per trattenerlo e
-:c:func:`mutex_unlock()` per rilasciarlo. C'è anche :c:func:`mutex_lock()`
+mutex; invocate mutex_lock_interruptible() per trattenerlo e
+mutex_unlock() per rilasciarlo. C'è anche mutex_lock()
 ma questa dovrebbe essere evitata perché non ritorna in caso di segnali.
 
 Per esempio: ``net/netfilter/nf_sockopt.c`` permette la registrazione
-di nuove chiamate per :c:func:`setsockopt()` e :c:func:`getsockopt()`
-usando la funzione :c:func:`nf_register_sockopt()`. La registrazione e
+di nuove chiamate per setsockopt() e getsockopt()
+usando la funzione nf_register_sockopt(). La registrazione e
 la rimozione vengono eseguite solamente quando il modulo viene caricato
 o scaricato (e durante l'avvio del sistema, qui non abbiamo concorrenza),
 e la lista delle funzioni registrate viene consultata solamente quando
-:c:func:`setsockopt()` o :c:func:`getsockopt()` sono sconosciute al sistema.
+setsockopt() o getsockopt() sono sconosciute al sistema.
 In questo caso ``nf_sockopt_mutex`` è perfetto allo scopo, in particolar modo
 visto che setsockopt e getsockopt potrebbero dormire.
 
 Se un softirq condivide dati col contesto utente, avete due problemi.
 Primo, il contesto utente corrente potrebbe essere interroto da un softirq,
 e secondo, la sezione critica potrebbe essere eseguita da un altro
-processore. Questo è quando :c:func:`spin_lock_bh()`
+processore. Questo è quando spin_lock_bh()
 (``include/linux/spinlock.h``) viene utilizzato. Questo disabilita i softirq
-sul processore e trattiene il *lock*. Invece, :c:func:`spin_unlock_bh()` fa
+sul processore e trattiene il *lock*. Invece, spin_unlock_bh() fa
 l'opposto. (Il suffisso '_bh' è un residuo storico che fa riferimento al
 "Bottom Halves", il vecchio nome delle interruzioni software. In un mondo
 perfetto questa funzione si chiamerebbe 'spin_lock_softirq()').
 
-Da notare che in questo caso potete utilizzare anche :c:func:`spin_lock_irq()`
-o :c:func:`spin_lock_irqsave()`, queste fermano anche le interruzioni hardware:
+Da notare che in questo caso potete utilizzare anche spin_lock_irq()
+o spin_lock_irqsave(), queste fermano anche le interruzioni hardware:
 vedere :ref:`Contesto di interruzione hardware <it_hardirq-context>`.
 
 Questo funziona alla perfezione anche sui sistemi monoprocessore: gli spinlock
-svaniscono e questa macro diventa semplicemente :c:func:`local_bh_disable()`
+svaniscono e questa macro diventa semplicemente local_bh_disable()
 (``include/linux/interrupt.h``), la quale impedisce ai softirq d'essere
 eseguiti.
 
 ~~~~~~~~~~~~~~~~~~~~~~~~
 
 Se un altro tasklet/timer vuole condividere dati col vostro tasklet o timer,
-allora avrete bisogno entrambe di :c:func:`spin_lock()` e
-:c:func:`spin_unlock()`. Qui :c:func:`spin_lock_bh()` è inutile, siete già
+allora avrete bisogno entrambe di spin_lock() e
+spin_unlock(). Qui spin_lock_bh() è inutile, siete già
 in un tasklet ed avete la garanzia che nessun altro verrà eseguito sullo
 stesso processore.
 
 fino a questo punto nell'uso dei softirq, probabilmente tenete alla scalabilità
 delle prestazioni abbastanza da giustificarne la complessità aggiuntiva.
 
-Dovete utilizzare :c:func:`spin_lock()` e :c:func:`spin_unlock()` per
+Dovete utilizzare spin_lock() e spin_unlock() per
 proteggere i dati condivisi.
 
 Diversi Softirqs
 ~~~~~~~~~~~~~~~~
 
-Dovete utilizzare :c:func:`spin_lock()` e :c:func:`spin_unlock()` per
+Dovete utilizzare spin_lock() e spin_unlock() per
 proteggere i dati condivisi, che siano timer, tasklet, diversi softirq o
 lo stesso o altri softirq: uno qualsiasi di essi potrebbe essere in esecuzione
 su un diverso processore.
 avrete due preoccupazioni. Primo, il softirq può essere interrotto da
 un'interruzione hardware, e secondo, la sezione critica potrebbe essere
 eseguita da un'interruzione hardware su un processore diverso. Questo è il caso
-dove :c:func:`spin_lock_irq()` viene utilizzato. Disabilita le interruzioni
-sul processore che l'esegue, poi trattiene il lock. :c:func:`spin_unlock_irq()`
+dove spin_lock_irq() viene utilizzato. Disabilita le interruzioni
+sul processore che l'esegue, poi trattiene il lock. spin_unlock_irq()
 fa l'opposto.
 
-Il gestore d'interruzione hardware non usa :c:func:`spin_lock_irq()` perché
-i softirq non possono essere eseguiti quando il gestore d'interruzione hardware
-è in esecuzione: per questo si può usare :c:func:`spin_lock()`, che è un po'
+Il gestore d'interruzione hardware non ha bisogno di usare spin_lock_irq()
+perché i softirq non possono essere eseguiti quando il gestore d'interruzione
+hardware è in esecuzione: per questo si può usare spin_lock(), che è un po'
 più veloce. L'unica eccezione è quando un altro gestore d'interruzioni
-hardware utilizza lo stesso *lock*: :c:func:`spin_lock_irq()` impedirà a questo
+hardware utilizza lo stesso *lock*: spin_lock_irq() impedirà a questo
 secondo gestore di interrompere quello in esecuzione.
 
 Questo funziona alla perfezione anche sui sistemi monoprocessore: gli spinlock
-svaniscono e questa macro diventa semplicemente :c:func:`local_irq_disable()`
+svaniscono e questa macro diventa semplicemente local_irq_disable()
 (``include/asm/smp.h``), la quale impedisce a softirq/tasklet/BH d'essere
 eseguiti.
 
-:c:func:`spin_lock_irqsave()` (``include/linux/spinlock.h``) è una variante che
+spin_lock_irqsave() (``include/linux/spinlock.h``) è una variante che
 salva lo stato delle interruzioni in una variabile, questa verrà poi passata
-a :c:func:`spin_unlock_irqrestore()`. Questo significa che lo stesso codice
+a spin_unlock_irqrestore(). Questo significa che lo stesso codice
 potrà essere utilizzato in un'interruzione hardware (dove le interruzioni sono
 già disabilitate) e in un softirq (dove la disabilitazione delle interruzioni
 è richiesta).
 
 Da notare che i softirq (e quindi tasklet e timer) sono eseguiti al ritorno
-da un'interruzione hardware, quindi :c:func:`spin_lock_irq()` interrompe
+da un'interruzione hardware, quindi spin_lock_irq() interrompe
 anche questi. Tenuto conto di questo si può dire che
-:c:func:`spin_lock_irqsave()` è la funzione di sincronizzazione più generica
+spin_lock_irqsave() è la funzione di sincronizzazione più generica
 e potente.
 
 Sincronizzazione fra due gestori d'interruzioni hardware
 --------------------------------------------------------
 
 Condividere dati fra due gestori di interruzione hardware è molto raro, ma se
-succede, dovreste usare :c:func:`spin_lock_irqsave()`: è una specificità
+succede, dovreste usare spin_lock_irqsave(): è una specificità
 dell'architettura il fatto che tutte le interruzioni vengano interrotte
 quando si eseguono di gestori di interruzioni.
 
    il mutex e dormire (``copy_from_user*(`` o ``kmalloc(x,GFP_KERNEL)``).
 
 -  Altrimenti (== i dati possono essere manipolati da un'interruzione) usate
-   :c:func:`spin_lock_irqsave()` e :c:func:`spin_unlock_irqrestore()`.
+   spin_lock_irqsave() e spin_unlock_irqrestore().
 
 -  Evitate di trattenere uno spinlock per più di 5 righe di codice incluse
    le chiamate a funzione (ad eccezione di quell per l'accesso come
-   :c:func:`readb()`).
+   readb()).
 
 Tabella dei requisiti minimi
 ----------------------------
 la sincronizzazione è necessaria).
 
 Ricordatevi il suggerimento qui sopra: potete sempre usare
-:c:func:`spin_lock_irqsave()`, che è un sovrainsieme di tutte le altre funzioni
+spin_lock_irqsave(), che è un sovrainsieme di tutte le altre funzioni
 per spinlock.
 
 ============== ============= ============= ========= ========= ========= ========= ======= ======= ============== ==============
 trattenendo il *lock*. Potrete acquisire il *lock* più tardi se vi
 serve accedere ai dati protetti da questo *lock*.
 
-La funzione :c:func:`spin_trylock()` non ritenta di acquisire il *lock*,
+La funzione spin_trylock() non ritenta di acquisire il *lock*,
 se ci riesce al primo colpo ritorna un valore diverso da zero, altrimenti
 se fallisce ritorna 0. Questa funzione può essere utilizzata in un qualunque
-contesto, ma come :c:func:`spin_lock()`: dovete disabilitare i contesti che
+contesto, ma come spin_lock(): dovete disabilitare i contesti che
 potrebbero interrompervi e quindi trattenere lo spinlock.
 
-La funzione :c:func:`mutex_trylock()` invece di sospendere il vostro processo
+La funzione mutex_trylock() invece di sospendere il vostro processo
 ritorna un valore diverso da zero se è possibile trattenere il lock al primo
 colpo, altrimenti se fallisce ritorna 0. Nonostante non dorma, questa funzione
 non può essere usata in modo sicuro in contesti di interruzione hardware o
 caso è semplice dato che copiamo i dati dall'utente e non permettiamo
 mai loro di accedere direttamente agli oggetti.
 
-C'è una piccola ottimizzazione qui: nella funzione :c:func:`cache_add()`
+C'è una piccola ottimizzazione qui: nella funzione cache_add()
 impostiamo i campi dell'oggetto prima di acquisire il *lock*. Questo è
 sicuro perché nessun altro potrà accedervi finché non lo inseriremo
 nella memoria.
 Accesso dal contesto utente
 ---------------------------
 
-Ora consideriamo il caso in cui :c:func:`cache_find()` può essere invocata
+Ora consideriamo il caso in cui cache_find() può essere invocata
 dal contesto d'interruzione: sia hardware che software. Un esempio potrebbe
 essere un timer che elimina oggetti dalla memoria.
 
              return ret;
      }
 
-Da notare che :c:func:`spin_lock_irqsave()` disabiliterà le interruzioni
+Da notare che spin_lock_irqsave() disabiliterà le interruzioni
 se erano attive, altrimenti non farà niente (quando siamo già in un contesto
 d'interruzione); dunque queste funzioni possono essere chiamante in
 sicurezza da qualsiasi contesto.
 
-Sfortunatamente, :c:func:`cache_add()` invoca :c:func:`kmalloc()` con
+Sfortunatamente, cache_add() invoca kmalloc() con
 l'opzione ``GFP_KERNEL`` che è permessa solo in contesto utente. Ho supposto
-che :c:func:`cache_add()` venga chiamata dal contesto utente, altrimenti
-questa opzione deve diventare un parametro di :c:func:`cache_add()`.
+che cache_add() venga chiamata dal contesto utente, altrimenti
+questa opzione deve diventare un parametro di cache_add().
 
 Esporre gli oggetti al di fuori del file
 ----------------------------------------
 mantiene un puntatore ad un oggetto, presumibilmente si aspetta che questo
 puntatore rimanga valido. Sfortunatamente, questo è garantito solo mentre
 si trattiene il *lock*, altrimenti qualcuno potrebbe chiamare
-:c:func:`cache_delete()` o peggio, aggiungere un oggetto che riutilizza lo
+cache_delete() o peggio, aggiungere un oggetto che riutilizza lo
 stesso indirizzo.
 
 Dato che c'è un solo *lock*, non potete trattenerlo a vita: altrimenti
      }
 
 Abbiamo incapsulato il contatore di riferimenti nelle tipiche funzioni
-di 'get' e 'put'. Ora possiamo ritornare l'oggetto da :c:func:`cache_find()`
+di 'get' e 'put'. Ora possiamo ritornare l'oggetto da cache_find()
 col vantaggio che l'utente può dormire trattenendo l'oggetto (per esempio,
-:c:func:`copy_to_user()` per copiare il nome verso lo spazio utente).
+copy_to_user() per copiare il nome verso lo spazio utente).
 
 Un altro punto da notare è che ho detto che il contatore dovrebbe incrementarsi
 per ogni puntatore ad un oggetto: quindi il contatore di riferimenti è 1
 in ``include/asm/atomic.h``: queste sono garantite come atomiche su qualsiasi
 processore del sistema, quindi non sono necessari i *lock*. In questo caso è
 più semplice rispetto all'uso degli spinlock, benché l'uso degli spinlock
-sia più elegante per casi non banali. Le funzioni :c:func:`atomic_inc()` e
-:c:func:`atomic_dec_and_test()` vengono usate al posto dei tipici operatori di
+sia più elegante per casi non banali. Le funzioni atomic_inc() e
+atomic_dec_and_test() vengono usate al posto dei tipici operatori di
 incremento e decremento, e i *lock* non sono più necessari per proteggere il
 contatore stesso.
 
 -  Si può togliere static da ``cache_lock`` e dire agli utenti che devono
    trattenere il *lock* prima di modificare il nome di un oggetto.
 
--  Si può fornire una funzione :c:func:`cache_obj_rename()` che prende il
+-  Si può fornire una funzione cache_obj_rename() che prende il
    *lock* e cambia il nome per conto del chiamante; si dirà poi agli utenti
    di usare questa funzione.
 
 protetto da ``cache_lock`` piuttosto che dal *lock* dell'oggetto; questo
 perché è logicamente parte dell'infrastruttura (come
 :c:type:`struct list_head <list_head>` nell'oggetto). In questo modo,
-in :c:func:`__cache_add()`, non ho bisogno di trattenere il *lock* di ogni
+in __cache_add(), non ho bisogno di trattenere il *lock* di ogni
 oggetto mentre si cerca il meno popolare.
 
 Ho anche deciso che il campo id è immutabile, quindi non ho bisogno di
-trattenere il lock dell'oggetto quando si usa :c:func:`__cache_find()`
+trattenere il lock dell'oggetto quando si usa __cache_find()
 per leggere questo campo; il *lock* dell'oggetto è usato solo dal chiamante
 che vuole leggere o scrivere il campo name.
 
 sveglio 5 notti a parlare da solo.
 
 Un caso un pochino più complesso; immaginate d'avere una spazio condiviso
-fra un softirq ed il contesto utente. Se usate :c:func:`spin_lock()` per
+fra un softirq ed il contesto utente. Se usate spin_lock() per
 proteggerlo, il contesto utente potrebbe essere interrotto da un softirq
 mentre trattiene il lock, da qui il softirq rimarrà in attesa attiva provando
 ad acquisire il *lock* già trattenuto nel contesto utente.
             spin_unlock_bh(&list_lock);
 
 Primo o poi, questo esploderà su un sistema multiprocessore perché un
-temporizzatore potrebbe essere già partiro prima di :c:func:`spin_lock_bh()`,
-e prenderà il *lock* solo dopo :c:func:`spin_unlock_bh()`, e cercherà
+temporizzatore potrebbe essere già partiro prima di spin_lock_bh(),
+e prenderà il *lock* solo dopo spin_unlock_bh(), e cercherà
 di eliminare il suo oggetto (che però è già stato eliminato).
 
 Questo può essere evitato controllando il valore di ritorno di
-:c:func:`del_timer()`: se ritorna 1, il temporizzatore è stato già
+del_timer(): se ritorna 1, il temporizzatore è stato già
 rimosso. Se 0, significa (in questo caso) che il temporizzatore è in
 esecuzione, quindi possiamo fare come segue::
 
                     spin_unlock_bh(&list_lock);
 
 Un altro problema è l'eliminazione dei temporizzatori che si riavviano
-da soli (chiamando :c:func:`add_timer()` alla fine della loro esecuzione).
+da soli (chiamando add_timer() alla fine della loro esecuzione).
 Dato che questo è un problema abbastanza comune con una propensione
-alle corse critiche, dovreste usare :c:func:`del_timer_sync()`
+alle corse critiche, dovreste usare del_timer_sync()
 (``include/linux/timer.h``) per gestire questo caso. Questa ritorna il
 numero di volte che il temporizzatore è stato interrotto prima che
 fosse in grado di fermarlo senza che si riavviasse.
             wmb();
             list->next = new;
 
-La funzione :c:func:`wmb()` è una barriera di sincronizzazione delle
+La funzione wmb() è una barriera di sincronizzazione delle
 scritture. Questa garantisce che la prima operazione (impostare l'elemento
 ``next`` del nuovo elemento) venga completata e vista da tutti i processori
 prima che venga eseguita la seconda operazione (che sarebbe quella di mettere
 il puntatore ``next`` deve puntare al resto della lista.
 
 Fortunatamente, c'è una funzione che fa questa operazione sulle liste
-:c:type:`struct list_head <list_head>`: :c:func:`list_add_rcu()`
+:c:type:`struct list_head <list_head>`: list_add_rcu()
 (``include/linux/list.h``).
 
 Rimuovere un elemento dalla lista è anche più facile: sostituiamo il puntatore
 
             list->next = old->next;
 
-La funzione :c:func:`list_del_rcu()` (``include/linux/list.h``) fa esattamente
+La funzione list_del_rcu() (``include/linux/list.h``) fa esattamente
 questo (la versione normale corrompe il vecchio oggetto, e non vogliamo che
 accada).
 
 attraverso il puntatore ``next`` il contenuto dell'elemento successivo
 troppo presto, ma non accorgersi che il contenuto caricato è sbagliato quando
 il puntatore ``next`` viene modificato alla loro spalle. Ancora una volta
-c'è una funzione che viene in vostro aiuto :c:func:`list_for_each_entry_rcu()`
+c'è una funzione che viene in vostro aiuto list_for_each_entry_rcu()
 (``include/linux/list.h``). Ovviamente, gli scrittori possono usare
-:c:func:`list_for_each_entry()` dato che non ci possono essere due scrittori
+list_for_each_entry() dato che non ci possono essere due scrittori
 in contemporanea.
 
 Il nostro ultimo dilemma è il seguente: quando possiamo realmente distruggere
 elemento proprio ora: se eliminiamo questo elemento ed il puntatore ``next``
 cambia, il lettore salterà direttamente nella spazzatura e scoppierà. Dobbiamo
 aspettare finché tutti i lettori che stanno attraversando la lista abbiano
-finito. Utilizziamo :c:func:`call_rcu()` per registrare una funzione di
+finito. Utilizziamo call_rcu() per registrare una funzione di
 richiamo che distrugga l'oggetto quando tutti i lettori correnti hanno
 terminato. In alternative, potrebbe essere usata la funzione
-:c:func:`synchronize_rcu()` che blocca l'esecuzione finché tutti i lettori
+synchronize_rcu() che blocca l'esecuzione finché tutti i lettori
 non terminano di ispezionare la lista.
 
 Ma come fa l'RCU a sapere quando i lettori sono finiti? Il meccanismo è
 il seguente: innanzi tutto i lettori accedono alla lista solo fra la coppia
-:c:func:`rcu_read_lock()`/:c:func:`rcu_read_unlock()` che disabilita la
+rcu_read_lock()/rcu_read_unlock() che disabilita la
 prelazione così che i lettori non vengano sospesi mentre stanno leggendo
 la lista.
 
      }
 
 Da notare che i lettori modificano il campo popularity nella funzione
-:c:func:`__cache_find()`, e ora non trattiene alcun *lock*. Una soluzione
+__cache_find(), e ora non trattiene alcun *lock*. Una soluzione
 potrebbe essere quella di rendere la variabile ``atomic_t``, ma per l'uso
 che ne abbiamo fatto qui, non ci interessano queste corse critiche perché un
 risultato approssimativo è comunque accettabile, quindi non l'ho cambiato.
 
-Il risultato è che la funzione :c:func:`cache_find()` non ha bisogno di alcuna
+Il risultato è che la funzione cache_find() non ha bisogno di alcuna
 sincronizzazione con le altre funzioni, quindi è veloce su un sistema
 multi-processore tanto quanto lo sarebbe su un sistema mono-processore.
 
 
 Ora, dato che il '*lock* di lettura' di un RCU non fa altro che disabilitare
 la prelazione, un chiamante che ha sempre la prelazione disabilitata fra le
-chiamate :c:func:`cache_find()` e :c:func:`object_put()` non necessita
+chiamate cache_find() e object_put() non necessita
 di incrementare e decrementare il contatore di riferimenti. Potremmo
-esporre la funzione :c:func:`__cache_find()` dichiarandola non-static,
+esporre la funzione __cache_find() dichiarandola non-static,
 e quel chiamante potrebbe usare direttamente questa funzione.
 
 Il beneficio qui sta nel fatto che il contatore di riferimenti no
 Se questo dovesse essere troppo lento (solitamente non lo è, ma se avete
 dimostrato che lo è devvero), potreste usare un contatore per ogni processore
 e quindi non sarebbe più necessaria la mutua esclusione. Vedere
-:c:func:`DEFINE_PER_CPU()`, :c:func:`get_cpu_var()` e :c:func:`put_cpu_var()`
+DEFINE_PER_CPU(), get_cpu_var() e put_cpu_var()
 (``include/linux/percpu.h``).
 
-Il tipo di dato ``local_t``, la funzione :c:func:`cpu_local_inc()` e tutte
+Il tipo di dato ``local_t``, la funzione cpu_local_inc() e tutte
 le altre funzioni associate, sono di particolare utilità per semplici contatori
 per-processore; su alcune architetture sono anche più efficienti
 (``include/asm/local.h``).
         enable_irq(irq);
         spin_unlock(&lock);
 
-La funzione :c:func:`disable_irq()` impedisce al gestore d'interruzioni
+La funzione disable_irq() impedisce al gestore d'interruzioni
 d'essere eseguito (e aspetta che finisca nel caso fosse in esecuzione su
 un altro processore). Lo spinlock, invece, previene accessi simultanei.
 Naturalmente, questo è più lento della semplice chiamata
-:c:func:`spin_lock_irq()`, quindi ha senso solo se questo genere di accesso
+spin_lock_irq(), quindi ha senso solo se questo genere di accesso
 è estremamente raro.
 
 .. _`it_sleeping-things`:
 Quali funzioni possono essere chiamate in modo sicuro dalle interruzioni?
 =========================================================================
 
-Molte funzioni del kernel dormono (in sostanza, chiamano ``schedule()``)
+Molte funzioni del kernel dormono (in sostanza, chiamano schedule())
 direttamente od indirettamente: non potete chiamarle se trattenere uno
 spinlock o avete la prelazione disabilitata, mai. Questo significa che
 dovete necessariamente essere nel contesto utente: chiamarle da un
 
 -  Accessi allo spazio utente:
 
-   -  :c:func:`copy_from_user()`
+   -  copy_from_user()
 
-   -  :c:func:`copy_to_user()`
+   -  copy_to_user()
 
-   -  :c:func:`get_user()`
+   -  get_user()
 
-   -  :c:func:`put_user()`
+   -  put_user()
 
--  :c:func:`kmalloc(GFP_KERNEL) <kmalloc>`
+-  kmalloc(GFP_KERNEL) <kmalloc>`
 
--  :c:func:`mutex_lock_interruptible()` and
-   :c:func:`mutex_lock()`
+-  mutex_lock_interruptible() and
+   mutex_lock()
 
-   C'è anche :c:func:`mutex_trylock()` che però non dorme.
+   C'è anche mutex_trylock() che però non dorme.
    Comunque, non deve essere usata in un contesto d'interruzione dato
    che la sua implementazione non è sicura in quel contesto.
-   Anche :c:func:`mutex_unlock()` non dorme mai. Non può comunque essere
+   Anche mutex_unlock() non dorme mai. Non può comunque essere
    usata in un contesto d'interruzione perché un mutex deve essere rilasciato
    dallo stesso processo che l'ha acquisito.
 
 Alcune funzioni possono essere chiamate tranquillamente da qualsiasi
 contesto, o trattenendo un qualsiasi *lock*.
 
--  :c:func:`printk()`
+-  printk()
 
--  :c:func:`kfree()`
+-  kfree()
 
--  :c:func:`add_timer()` e :c:func:`del_timer()`
+-  add_timer() e del_timer()
 
 Riferimento per l'API dei Mutex
 ===============================
 bh
   Bottom Half: per ragioni storiche, le funzioni che contengono '_bh' nel
   loro nome ora si riferiscono a qualsiasi interruzione software; per esempio,
-  :c:func:`spin_lock_bh()` blocca qualsiasi interuzione software sul processore
+  spin_lock_bh() blocca qualsiasi interuzione software sul processore
   corrente. I *Bottom Halves* sono deprecati, e probabilmente verranno
   sostituiti dai tasklet. In un dato momento potrà esserci solo un
   *bottom half* in esecuzione.
 
 contesto d'interruzione
   Non è il contesto utente: qui si processano le interruzioni hardware e
-  software. La macro :c:func:`in_interrupt()` ritorna vero.
+  software. La macro in_interrupt() ritorna vero.
 
 contesto utente
   Il kernel che esegue qualcosa per conto di un particolare processo (per
   che hardware.
 
 interruzione hardware
-  Richiesta di interruzione hardware. :c:func:`in_irq()` ritorna vero in un
+  Richiesta di interruzione hardware. in_irq() ritorna vero in un
   gestore d'interruzioni hardware.
 
 interruzione software / softirq
-  Gestore di interruzioni software: :c:func:`in_irq()` ritorna falso;
-  :c:func:`in_softirq()` ritorna vero. I tasklet e le softirq sono entrambi
+  Gestore di interruzioni software: in_irq() ritorna falso;
+  in_softirq() ritorna vero. I tasklet e le softirq sono entrambi
   considerati 'interruzioni software'.
 
   In soldoni, un softirq è uno delle 32 interruzioni software che possono
 
 I rilasci più recenti sono stati:
 
        ======  =================
-       4.11    Aprile 30, 2017
-       4.12    Luglio 2, 2017
-       4.13    Settembre 3, 2017
-       4.14    Novembre 12, 2017
-       4.15    Gennaio 28, 2018
-       4.16    Aprile 1, 2018
+       5.0     3 marzo, 2019
+       5.1     5 maggio, 2019
+       5.2     7 luglio, 2019
+       5.3     15 settembre, 2019
+       5.4     24 novembre, 2019
+       5.5     6 gennaio, 2020
        ======  =================
 
-Ciascun rilascio 4.x è un importante rilascio del kernel con nuove
+Ciascun rilascio 5.x è un importante rilascio del kernel con nuove
 funzionalità, modifiche interne dell'API, e molto altro.  Un tipico
-rilascio 4.x contiene quasi 13,000 gruppi di modifiche con ulteriori
-modifiche a parecchie migliaia di linee di codice.  La 4.x. è pertanto la
+rilascio contiene quasi 13,000 gruppi di modifiche con ulteriori
+modifiche a parecchie migliaia di linee di codice.  La 5.x. è pertanto la
 linea di confine nello sviluppo del kernel Linux; il kernel utilizza un sistema
 di sviluppo continuo che integra costantemente nuove importanti modifiche.
 
 La finestra di inclusione resta attiva approssimativamente per due settimane.
 Al termine di questo periodo, Linus Torvald dichiarerà che la finestra è
 chiusa e rilascerà il primo degli "rc" del kernel.
-Per il kernel che è destinato ad essere 2.6.40, per esempio, il rilascio
-che emerge al termine della finestra d'inclusione si chiamerà 2.6.40-rc1.
+Per il kernel che è destinato ad essere 5.6, per esempio, il rilascio
+che emerge al termine della finestra d'inclusione si chiamerà 5.6-rc1.
 Questo rilascio indica che il momento di aggiungere nuovi componenti è
 passato, e che è iniziato il periodo di stabilizzazione del prossimo kernel.
 
 il ritmo delle modifiche rallenta col tempo.  Linus rilascia un nuovo
 kernel -rc circa una volta alla settimana; e ne usciranno circa 6 o 9 prima
 che il kernel venga considerato sufficientemente stabile e che il rilascio
-finale 2.6.x venga fatto.  A quel punto tutto il processo ricomincerà.
+finale venga fatto.  A quel punto tutto il processo ricomincerà.
 
-Esempio: ecco com'è andato il ciclo di sviluppo della versione 4.16
+Esempio: ecco com'è andato il ciclo di sviluppo della versione 5.4
 (tutte le date si collocano nel 2018)
 
 
        ==============  =======================================
-       Gennaio 28      4.15 rilascio stabile
-       Febbraio 11     4.16-rc1, finestra di inclusione chiusa
-       Febbraio 18     4.16-rc2
-       Febbraio 25     4.16-rc3
-       Marzo 4         4.16-rc4
-       Marzo 11        4.16-rc5
-       Marzo 18        4.16-rc6
-       Marzo 25        4.16-rc7
-       Aprile 1                4.17 rilascio stabile
+       15 settembre    5.3 rilascio stabile
+       30 settembre    5.4-rc1, finestra di inclusione chiusa
+       6 ottobre       5.4-rc2
+       13 ottobre      5.4-rc3
+       20 ottobre      5.4-rc4
+       27 ottobre      5.4-rc5
+       3 novembre      5.4-rc6
+       10 novembre     5.4-rc7
+       17 novembre     5.4-rc8
+       24 novembre     5.4 rilascio stabile
        ==============  =======================================
 
 In che modo gli sviluppatori decidono quando chiudere il ciclo di sviluppo e
 in un progetto di questa portata.  Arriva un punto dove ritardare il rilascio
 finale peggiora la situazione; la quantità di modifiche in attesa della
 prossima finestra di inclusione crescerà enormemente, creando ancor più
-regressioni al giro successivo.  Quindi molti kernel 4.x escono con una
+regressioni al giro successivo.  Quindi molti kernel 5.x escono con una
 manciata di regressioni delle quali, si spera, nessuna è grave.
 
 Una volta che un rilascio stabile è fatto, il suo costante mantenimento è
 affidato al "squadra stabilità", attualmente composta da Greg Kroah-Hartman.
 Questa squadra rilascia occasionalmente degli aggiornamenti relativi al
-rilascio stabile usando la numerazione 4.x.y.  Per essere presa in
+rilascio stabile usando la numerazione 5.x.y.  Per essere presa in
 considerazione per un rilascio d'aggiornamento, una modifica deve:
 (1) correggere un baco importante (2) essere già inserita nel ramo principale
 per il prossimo sviluppo del kernel.  Solitamente, passato il loro rilascio
 iniziale, i kernel ricevono aggiornamenti per più di un ciclo di sviluppo.
-Quindi, per esempio, la storia del kernel 4.13 appare così:
+Quindi, per esempio, la storia del kernel 5.2 appare così (anno 2019):
 
        ==============  ===============================
-       Settembre 3     4.13 rilascio stabile
-       Settembre 13    4.13.1
-       Settembre 20    4.13.2
-       Settembre 27    4.13.3
-       Ottobre 5       4.13.4
-       Ottobre 12      4.13.5
+       15 settembre    5.2 rilascio stabile FIXME settembre è sbagliato
+       14 luglio       5.2.1
+       21 luglio       5.2.2
+       26 luglio       5.2.3
+       28 luglio       5.2.4
+       31 luglio       5.2.5
        ...             ...
-       Novembre 24     4.13.16
+       11 ottobre      5.2.21
        ==============  ===============================
 
-La 4.13.16 fu l'aggiornamento finale per la versione 4.13.
+La 5.2.21 fu l'aggiornamento finale per la versione 5.2.
 
 Alcuni kernel sono destinati ad essere kernel a "lungo termine"; questi
 riceveranno assistenza per un lungo periodo di tempo.  Al momento in cui
 scriviamo, i manutentori dei kernel stabili a lungo termine sono:
 
-       ======  ======================  ==========================================
-       3.16    Ben Hutchings           (kernel stabile molto più a lungo termine)
-       4.1     Sasha Levin
-       4.4     Greg Kroah-Hartman      (kernel stabile molto più a lungo termine)
-       4.9     Greg Kroah-Hartman
-       4.14    Greg Kroah-Hartman
-       ======  ======================  ==========================================
+       ======  ================================  ==========================================
+       3.16    Ben Hutchings                     (kernel stabile molto più a lungo termine)
+       4.4     Greg Kroah-Hartman e Sasha Levin  (kernel stabile molto più a lungo termine)
+       4.9     Greg Kroah-Hartman e Sasha Levin
+       4.14    Greg Kroah-Hartman e Sasha Levin
+       4.19    Greg Kroah-Hartman e Sasha Levin
+       5.4i    Greg Kroah-Hartman e Sasha Levin
+       ======  ================================  ==========================================
 
 
 Questa selezione di kernel di lungo periodo sono puramente dovuti ai loro
 --------------------------------------
 
 Esiste una sola persona che può inserire le patch nel repositorio principale
-del kernel: Linus Torvalds.  Ma, di tutte le 9500 patch che entrarono nella
-versione 2.6.38 del kernel, solo 112 (circa l'1,3%) furono scelte direttamente
-da Linus in persona.  Il progetto del kernel è cresciuto fino a raggiungere
-una dimensione tale per cui un singolo sviluppatore non può controllare e
-selezionare indipendentemente ogni modifica senza essere supportato.
-La via scelta dagli sviluppatori per indirizzare tale crescita è stata quella
+del kernel: Linus Torvalds.  Ma, per esempio, di tutte le 9500 patch
+che entrarono nella versione 2.6.38 del kernel, solo 112 (circa
+l'1,3%) furono scelte direttamente da Linus in persona.  Il progetto
+del kernel è cresciuto fino a raggiungere una dimensione tale per cui
+un singolo sviluppatore non può controllare e selezionare
+indipendentemente ogni modifica senza essere supportato.  La via
+scelta dagli sviluppatori per indirizzare tale crescita è stata quella
 di utilizzare un sistema di "sottotenenti" basato sulla fiducia.
 
 Il codice base del kernel è spezzato in una serie si sottosistemi: rete,
 
 deve essere rimossa dal kernel, o aggiunta a questo documento per scoraggiarne
 l'uso.
 
+BUG() e BUG_ON()
+----------------
+Al loro posto usate WARN() e WARN_ON() per gestire le
+condizioni "impossibili" e gestitele come se fosse possibile farlo.
+Nonostante le funzioni della famiglia BUG() siano state progettate
+per asserire "situazioni impossibili" e interrompere in sicurezza un
+thread del kernel, queste si sono rivelate essere troppo rischiose
+(per esempio, in quale ordine rilasciare i *lock*? Ci sono stati che
+sono stati ripristinati?). Molto spesso l'uso di BUG()
+destabilizza il sistema o lo corrompe del tutto, il che rende
+impossibile un'attività di debug o anche solo leggere un rapporto
+circa l'errore.  Linus ha un'opinione molto critica al riguardo:
+`email 1
+<https://lore.kernel.org/lkml/CA+55aFy6jNLsywVYdGp83AMrXBo_P-pkjkphPGrO=82SPKCpLQ@mail.gmail.com/>`_,
+`email 2
+<https://lore.kernel.org/lkml/CAHk-=whDHsbK3HTOpTF=ue_o04onRwTEaK_ZoJp_fjbqq4+=Jw@mail.gmail.com/>`_
+
+Tenete presente che la famiglia di funzioni WARN() dovrebbe essere
+usato solo per situazioni che si suppone siano "impossibili".  Se
+volete avvisare gli utenti riguardo a qualcosa di possibile anche se
+indesiderato, usare le funzioni della famiglia pr_warn().  Chi
+amministra il sistema potrebbe aver attivato l'opzione sysctl
+*panic_on_warn* per essere sicuri che il sistema smetta di funzionare
+in caso si verifichino delle condizioni "inaspettate". (per esempio,
+date un'occhiata al questo `commit
+<https://git.kernel.org/linus/d4689846881d160a4d12a514e991a740bcb5d65a>`_)
+
 Calcoli codificati negli argomenti di un allocatore
 ----------------------------------------------------
 Il calcolo dinamico delle dimensioni (specialmente le moltiplicazioni) non
 
        header = kzalloc(struct_size(header, item, count), GFP_KERNEL);
 
-Per maggiori dettagli fate riferimento a :c:func:`array_size`,
-:c:func:`array3_size`, e :c:func:`struct_size`, così come la famiglia di
-funzioni :c:func:`check_add_overflow` e :c:func:`check_mul_overflow`.
+Per maggiori dettagli fate riferimento a array_size(),
+array3_size(), e struct_size(), così come la famiglia di
+funzioni check_add_overflow() e check_mul_overflow().
 
 simple_strtol(), simple_strtoll(), simple_strtoul(), simple_strtoull()
 ----------------------------------------------------------------------
-Le funzioni :c:func:`simple_strtol`, :c:func:`simple_strtoll`,
-:c:func:`simple_strtoul`, e :c:func:`simple_strtoull` ignorano volutamente
+Le funzioni simple_strtol(), simple_strtoll(),
+simple_strtoul(), e simple_strtoull() ignorano volutamente
 i possibili overflow, e questo può portare il chiamante a generare risultati
-inaspettati. Le rispettive funzioni :c:func:`kstrtol`, :c:func:`kstrtoll`,
-:c:func:`kstrtoul`, e :c:func:`kstrtoull` sono da considerarsi le corrette
+inaspettati. Le rispettive funzioni kstrtol(), kstrtoll(),
+kstrtoul(), e kstrtoull() sono da considerarsi le corrette
 sostitute; tuttavia va notato che queste richiedono che la stringa sia
 terminata con il carattere NUL o quello di nuova riga.
 
 strcpy()
 --------
-La funzione :c:func:`strcpy` non fa controlli agli estremi del buffer
+La funzione strcpy() non fa controlli agli estremi del buffer
 di destinazione. Questo può portare ad un overflow oltre i limiti del
 buffer e generare svariati tipi di malfunzionamenti. Nonostante l'opzione
 `CONFIG_FORTIFY_SOURCE=y` e svariate opzioni del compilatore aiutano
 a ridurne il rischio, non c'è alcuna buona ragione per continuare ad usare
-questa funzione. La versione sicura da usare è :c:func:`strscpy`.
+questa funzione. La versione sicura da usare è strscpy().
 
 strncpy() su stringe terminate con NUL
 --------------------------------------
-L'utilizzo di :c:func:`strncpy` non fornisce alcuna garanzia sul fatto che
+L'utilizzo di strncpy() non fornisce alcuna garanzia sul fatto che
 il buffer di destinazione verrà terminato con il carattere NUL. Questo
 potrebbe portare a diversi overflow di lettura o altri malfunzionamenti
 causati, appunto, dalla mancanza del terminatore. Questa estende la
 terminazione nel buffer di destinazione quando la stringa d'origine è più
 corta; questo potrebbe portare ad una penalizzazione delle prestazioni per
 chi usa solo stringe terminate. La versione sicura da usare è
-:c:func:`strscpy`. (chi usa :c:func:`strscpy` e necessita di estendere la
-terminazione con NUL deve aggiungere una chiamata a :c:func:`memset`)
+strscpy(). (chi usa strscpy() e necessita di estendere la
+terminazione con NUL deve aggiungere una chiamata a memset())
 
-Se il chiamate no usa stringhe terminate con NUL, allore :c:func:`strncpy()`
+Se il chiamate no usa stringhe terminate con NUL, allore strncpy()()
 può continuare ad essere usata, ma i buffer di destinazione devono essere
 marchiati con l'attributo `__nonstring <https://gcc.gnu.org/onlinedocs/gcc/Common-Variable-Attributes.html>`_
 per evitare avvisi durante la compilazione.
 
 strlcpy()
 ---------
-La funzione :c:func:`strlcpy`, per prima cosa, legge interamente il buffer di
+La funzione strlcpy(), per prima cosa, legge interamente il buffer di
 origine, magari leggendo più di quanto verrà effettivamente copiato. Questo
 è inefficiente e può portare a overflow di lettura quando la stringa non è
-terminata con NUL. La versione sicura da usare è :c:func:`strscpy`.
+terminata con NUL. La versione sicura da usare è strscpy().
+
+Segnaposto %p nella stringa di formato
+--------------------------------------
+
+Tradizionalmente, l'uso del segnaposto "%p" nella stringa di formato
+esponne un indirizzo di memoria in dmesg, proc, sysfs, eccetera.  Per
+evitare che questi indirizzi vengano sfruttati da malintenzionati,
+tutto gli usi di "%p" nel kernel rappresentano l'hash dell'indirizzo,
+rendendolo di fatto inutilizzabile.  Nuovi usi di "%p" non dovrebbero
+essere aggiunti al kernel.  Per una rappresentazione testuale di un
+indirizzo usate "%pS", l'output è migliore perché mostrerà il nome del
+simbolo.  Per tutto il resto, semplicemente non usate "%p".
+
+Parafrasando la `guida
+<https://lore.kernel.org/lkml/CA+55aFwQEd_d40g4mUCSsVRZzrFPUJt74vc6PPpb675hYNXcKw@mail.gmail.com/>`_
+di Linus:
+
+- Se il valore hash di "%p" è inutile, chiediti se il puntatore stesso
+  è importante. Forse dovrebbe essere rimosso del tutto?
+- Se credi davvero che il vero valore del puntatore sia importante,
+  perché alcuni stati del sistema o i livelli di privilegi di un
+  utente sono considerati "special"? Se pensi di poterlo giustificare
+  (in un commento e nel messaggio del commit) abbastanza bene da
+  affrontare il giudizio di Linus, allora forse potrai usare "%px",
+  assicurandosi anche di averne il permesso.
+
+Infine, sappi che un cambio in favore di "%p" con hash `non verrà
+accettato
+<https://lore.kernel.org/lkml/CA+55aFwieC1-nAs+NFq9RTwaR8ef9hWa4MjNBWL41F-8wM49eA@mail.gmail.com/>`_.
 
 Vettori a dimensione variabile (VLA)
 ------------------------------------
 dati importanti alla fine dello stack (quando il kernel è compilato senza
 `CONFIG_THREAD_INFO_IN_TASK=y`), o sovrascrivere un pezzo di memoria adiacente
 allo stack (quando il kernel è compilato senza `CONFIG_VMAP_STACK=y`).
+
+Salto implicito nell'istruzione switch-case
+-------------------------------------------
+
+Il linguaggio C permette ai casi di un'istruzione `switch` di saltare al
+prossimo caso quando l'istruzione "break" viene omessa alla fine del caso
+corrente. Tuttavia questo rende il codice ambiguo perché non è sempre ovvio se
+l'istruzione "break" viene omessa intenzionalmente o è un baco. Per esempio,
+osservando il seguente pezzo di codice non è chiaro se lo stato
+`STATE_ONE` è stato progettato apposta per eseguire anche `STATE_TWO`::
+
+  switch (value) {
+  case STATE_ONE:
+          do_something();
+  case STATE_TWO:
+          do_other();
+          break;
+  default:
+          WARN("unknown state");
+  }
+
+Dato che c'è stata una lunga lista di problemi `dovuti alla mancanza dell'istruzione
+"break" <https://cwe.mitre.org/data/definitions/484.html>`_, oggigiorno non
+permettiamo più che vi sia un "salto implicito" (*fall-through*). Per
+identificare un salto implicito intenzionale abbiamo adottato la pseudo
+parola chiave 'fallthrough' che viene espansa nell'estensione di gcc
+`__attribute__((fallthrough))` `Statement Attributes
+<https://gcc.gnu.org/onlinedocs/gcc/Statement-Attributes.html>`_.
+(Quando la sintassi C17/C18 `[[fallthrough]]` sarà più comunemente
+supportata dai compilatori C, analizzatori statici, e dagli IDE,
+allora potremo usare quella sintassi per la pseudo parola chiave)
+
+Quando la sintassi [[fallthrough]] sarà più comunemente supportata dai
+compilatori, analizzatori statici, e ambienti di sviluppo IDE,
+allora potremo usarla anche noi.
+
+Ne consegue che tutti i blocchi switch/case devono finire in uno dei seguenti
+modi:
+
+* ``break;``
+* `fallthrough;``
+* ``continue;``
+* ``goto <label>;``
+* ``return [expression];``