struct bch_fs,
                                           pd_controllers_update);
        struct bch_dev *ca;
+       s64 free = 0, fragmented = 0;
        unsigned i;
 
        for_each_member_device(ca, c, i) {
                struct bch_dev_usage stats = bch2_dev_usage_read(c, ca);
 
-               u64 free = bucket_to_sector(ca,
+               free += bucket_to_sector(ca,
                                __dev_buckets_free(ca, stats)) << 9;
                /*
                 * Bytes of internal fragmentation, which can be
                 * reclaimed by copy GC
                 */
-               s64 fragmented = (bucket_to_sector(ca,
+               fragmented += max_t(s64, 0, (bucket_to_sector(ca,
                                        stats.buckets[BCH_DATA_user] +
                                        stats.buckets[BCH_DATA_cached]) -
                                  (stats.sectors[BCH_DATA_user] +
-                                  stats.sectors[BCH_DATA_cached])) << 9;
-
-               fragmented = max(0LL, fragmented);
-
-               bch2_pd_controller_update(&ca->copygc_pd,
-                                        free, fragmented, -1);
+                                  stats.sectors[BCH_DATA_cached])) << 9);
        }
 
+       bch2_pd_controller_update(&c->copygc_pd, free, fragmented, -1);
        schedule_delayed_work(&c->pd_controllers_update,
                              c->pd_controllers_update_seconds * HZ);
 }
 void bch2_recalc_capacity(struct bch_fs *c)
 {
        struct bch_dev *ca;
-       u64 capacity = 0, reserved_sectors = 0, gc_reserve;
+       u64 capacity = 0, reserved_sectors = 0, gc_reserve, copygc_threshold = 0;
        unsigned bucket_size_max = 0;
        unsigned long ra_pages = 0;
        unsigned i, j;
 
                dev_reserve *= ca->mi.bucket_size;
 
-               ca->copygc_threshold = dev_reserve;
+               copygc_threshold += dev_reserve;
 
                capacity += bucket_to_sector(ca, ca->mi.nbuckets -
                                             ca->mi.first_bucket);
 
        reserved_sectors = min(reserved_sectors, capacity);
 
+       c->copygc_threshold = copygc_threshold;
        c->capacity = capacity - reserved_sectors;
 
        c->bucket_size_max = bucket_size_max;
        for (i = 0; i < ARRAY_SIZE(c->write_points); i++)
                bch2_writepoint_stop(c, ca, &c->write_points[i]);
 
-       bch2_writepoint_stop(c, ca, &ca->copygc_write_point);
+       bch2_writepoint_stop(c, ca, &c->copygc_write_point);
        bch2_writepoint_stop(c, ca, &c->rebalance_write_point);
        bch2_writepoint_stop(c, ca, &c->btree_write_point);
 
 
        alloc_fifo      free[RESERVE_NR];
        alloc_fifo      free_inc;
        alloc_heap      alloc_heap;
-       copygc_heap     copygc_heap;
 
        size_t btree_reserve    = DIV_ROUND_UP(BTREE_NODE_RESERVE,
                             ca->mi.bucket_size / c->opts.btree_node_size);
        size_t copygc_reserve   = max_t(size_t, 2, nbuckets >> 7);
        size_t free_inc_nr      = max(max_t(size_t, 1, nbuckets >> 12),
                                      btree_reserve * 2);
-       bool resize = ca->buckets[0] != NULL,
-            start_copygc = ca->copygc_thread != NULL;
+       bool resize = ca->buckets[0] != NULL;
        int ret = -ENOMEM;
        unsigned i;
 
        memset(&free,           0, sizeof(free));
        memset(&free_inc,       0, sizeof(free_inc));
        memset(&alloc_heap,     0, sizeof(alloc_heap));
-       memset(©gc_heap,    0, sizeof(copygc_heap));
 
        if (!(buckets           = kvpmalloc(sizeof(struct bucket_array) +
                                            nbuckets * sizeof(struct bucket),
                       copygc_reserve, GFP_KERNEL) ||
            !init_fifo(&free[RESERVE_NONE], reserve_none, GFP_KERNEL) ||
            !init_fifo(&free_inc,       free_inc_nr, GFP_KERNEL) ||
-           !init_heap(&alloc_heap,     ALLOC_SCAN_BATCH(ca) << 1, GFP_KERNEL) ||
-           !init_heap(©gc_heap,    copygc_reserve, GFP_KERNEL))
+           !init_heap(&alloc_heap,     ALLOC_SCAN_BATCH(ca) << 1, GFP_KERNEL))
                goto err;
 
        buckets->first_bucket   = ca->mi.first_bucket;
        buckets->nbuckets       = nbuckets;
 
-       bch2_copygc_stop(ca);
+       bch2_copygc_stop(c);
 
        if (resize) {
                down_write(&c->gc_lock);
        /* with gc lock held, alloc_heap can't be in use: */
        swap(ca->alloc_heap, alloc_heap);
 
-       /* and we shut down copygc: */
-       swap(ca->copygc_heap, copygc_heap);
-
        nbuckets = ca->mi.nbuckets;
 
        if (resize)
                up_write(&ca->bucket_lock);
 
-       if (start_copygc &&
-           bch2_copygc_start(c, ca))
-               bch_err(ca, "error restarting copygc thread");
-
        ret = 0;
 err:
-       free_heap(©gc_heap);
        free_heap(&alloc_heap);
        free_fifo(&free_inc);
        for (i = 0; i < RESERVE_NR; i++)
 {
        unsigned i;
 
-       free_heap(&ca->copygc_heap);
        free_heap(&ca->alloc_heap);
        free_fifo(&ca->free_inc);
        for (i = 0; i < RESERVE_NR; i++)
 
 #define COPYGC_BUCKETS_PER_ITER(ca)                                    \
        ((ca)->free[RESERVE_MOVINGGC].size / 2)
 
-/*
- * Max sectors to move per iteration: Have to take into account internal
- * fragmentation from the multiple write points for each generation:
- */
-#define COPYGC_SECTORS_PER_ITER(ca)                                    \
-       ((ca)->mi.bucket_size * COPYGC_BUCKETS_PER_ITER(ca))
-
 static inline int sectors_used_cmp(copygc_heap *heap,
                                   struct copygc_heap_entry l,
                                   struct copygc_heap_entry r)
        const struct copygc_heap_entry *l = _l;
        const struct copygc_heap_entry *r = _r;
 
-       return cmp_int(l->offset, r->offset);
+       return  cmp_int(l->dev,    r->dev) ?:
+               cmp_int(l->offset, r->offset);
 }
 
-static bool __copygc_pred(struct bch_dev *ca,
-                         struct bkey_s_c k)
+static int __copygc_pred(struct bch_fs *c, struct bkey_s_c k)
 {
-       copygc_heap *h = &ca->copygc_heap;
-       const struct bch_extent_ptr *ptr =
-               bch2_bkey_has_device(k, ca->dev_idx);
-
-       if (ptr) {
-               struct copygc_heap_entry search = { .offset = ptr->offset };
+       copygc_heap *h = &c->copygc_heap;
+       struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
+       const struct bch_extent_ptr *ptr;
+
+       bkey_for_each_ptr(ptrs, ptr) {
+               struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
+               struct copygc_heap_entry search = {
+                       .dev = ptr->dev,
+                       .offset = ptr->offset
+               };
 
                ssize_t i = eytzinger0_find_le(h->data, h->used,
                                               sizeof(h->data[0]),
 
                BUG_ON(i != j);
 #endif
-               return (i >= 0 &&
-                       ptr->offset < h->data[i].offset + ca->mi.bucket_size &&
-                       ptr->gen == h->data[i].gen);
+               if (i >= 0 &&
+                   ptr->offset < h->data[i].offset + ca->mi.bucket_size &&
+                   ptr->gen == h->data[i].gen)
+                       return ptr->dev;
        }
 
-       return false;
+       return -1;
 }
 
 static enum data_cmd copygc_pred(struct bch_fs *c, void *arg,
                                 struct bch_io_opts *io_opts,
                                 struct data_opts *data_opts)
 {
-       struct bch_dev *ca = arg;
-
-       if (!__copygc_pred(ca, k))
+       int dev_idx = __copygc_pred(c, k);
+       if (dev_idx < 0)
                return DATA_SKIP;
 
-       data_opts->target               = dev_to_target(ca->dev_idx);
+       /* XXX: use io_opts for this inode */
+       data_opts->target               = dev_to_target(dev_idx);
        data_opts->btree_insert_flags   = BTREE_INSERT_USE_RESERVE;
-       data_opts->rewrite_dev          = ca->dev_idx;
+       data_opts->rewrite_dev          = dev_idx;
        return DATA_REWRITE;
 }
 
        return ret;
 }
 
-static void bch2_copygc(struct bch_fs *c, struct bch_dev *ca)
+static void bch2_copygc(struct bch_fs *c)
 {
-       copygc_heap *h = &ca->copygc_heap;
+       copygc_heap *h = &c->copygc_heap;
        struct copygc_heap_entry e, *i;
        struct bucket_array *buckets;
        struct bch_move_stats move_stats;
        u64 sectors_to_move = 0, sectors_not_moved = 0;
+       u64 sectors_reserved = 0;
        u64 buckets_to_move, buckets_not_moved = 0;
-       size_t b;
+       struct bch_dev *ca;
+       unsigned dev_idx;
+       size_t b, heap_size = 0;
        int ret;
 
        memset(&move_stats, 0, sizeof(move_stats));
-       closure_wait_event(&c->freelist_wait, have_copygc_reserve(ca));
-
        /*
         * Find buckets with lowest sector counts, skipping completely
         * empty buckets, by building a maxheap sorted by sector count,
         */
        h->used = 0;
 
-       /*
-        * We need bucket marks to be up to date - gc can't be recalculating
-        * them:
-        */
-       down_read(&c->gc_lock);
-       down_read(&ca->bucket_lock);
-       buckets = bucket_array(ca);
-
-       for (b = buckets->first_bucket; b < buckets->nbuckets; b++) {
-               struct bucket_mark m = READ_ONCE(buckets->b[b].mark);
-               struct copygc_heap_entry e;
-
-               if (m.owned_by_allocator ||
-                   m.data_type != BCH_DATA_user ||
-                   !bucket_sectors_used(m) ||
-                   bucket_sectors_used(m) >= ca->mi.bucket_size)
-                       continue;
+       for_each_rw_member(ca, c, dev_idx)
+               heap_size += ca->mi.nbuckets >> 7;
 
-               e = (struct copygc_heap_entry) {
-                       .gen            = m.gen,
-                       .sectors        = bucket_sectors_used(m),
-                       .offset         = bucket_to_sector(ca, b),
-               };
-               heap_add_or_replace(h, e, -sectors_used_cmp, NULL);
+       if (h->size < heap_size) {
+               free_heap(&c->copygc_heap);
+               if (!init_heap(&c->copygc_heap, heap_size, GFP_KERNEL)) {
+                       bch_err(c, "error allocating copygc heap");
+                       return;
+               }
+       }
+
+       for_each_rw_member(ca, c, dev_idx) {
+               closure_wait_event(&c->freelist_wait, have_copygc_reserve(ca));
+
+               spin_lock(&ca->fs->freelist_lock);
+               sectors_reserved += fifo_used(&ca->free[RESERVE_MOVINGGC]) * ca->mi.bucket_size;
+               spin_unlock(&ca->fs->freelist_lock);
+
+               down_read(&ca->bucket_lock);
+               buckets = bucket_array(ca);
+
+               for (b = buckets->first_bucket; b < buckets->nbuckets; b++) {
+                       struct bucket_mark m = READ_ONCE(buckets->b[b].mark);
+                       struct copygc_heap_entry e;
+
+                       if (m.owned_by_allocator ||
+                           m.data_type != BCH_DATA_user ||
+                           !bucket_sectors_used(m) ||
+                           bucket_sectors_used(m) >= ca->mi.bucket_size)
+                               continue;
+
+                       e = (struct copygc_heap_entry) {
+                               .gen            = m.gen,
+                               .sectors        = bucket_sectors_used(m),
+                               .offset         = bucket_to_sector(ca, b),
+                       };
+                       heap_add_or_replace(h, e, -sectors_used_cmp, NULL);
+               }
+               up_read(&ca->bucket_lock);
        }
-       up_read(&ca->bucket_lock);
-       up_read(&c->gc_lock);
 
        for (i = h->data; i < h->data + h->used; i++)
                sectors_to_move += i->sectors;
 
-       while (sectors_to_move > COPYGC_SECTORS_PER_ITER(ca)) {
+       while (sectors_to_move > sectors_reserved) {
                BUG_ON(!heap_pop(h, e, -sectors_used_cmp, NULL));
                sectors_to_move -= e.sectors;
        }
                        sizeof(h->data[0]),
                        bucket_offset_cmp, NULL);
 
-       ret = bch2_move_data(c, &ca->copygc_pd.rate,
-                            writepoint_ptr(&ca->copygc_write_point),
+       ret = bch2_move_data(c, &c->copygc_pd.rate,
+                            writepoint_ptr(&c->copygc_write_point),
                             POS_MIN, POS_MAX,
-                            copygc_pred, ca,
+                            copygc_pred, NULL,
                             &move_stats);
 
-       down_read(&ca->bucket_lock);
-       buckets = bucket_array(ca);
-       for (i = h->data; i < h->data + h->used; i++) {
-               size_t b = sector_to_bucket(ca, i->offset);
-               struct bucket_mark m = READ_ONCE(buckets->b[b].mark);
-
-               if (i->gen == m.gen && bucket_sectors_used(m)) {
-                       sectors_not_moved += bucket_sectors_used(m);
-                       buckets_not_moved++;
+       for_each_rw_member(ca, c, dev_idx) {
+               down_read(&ca->bucket_lock);
+               buckets = bucket_array(ca);
+               for (i = h->data; i < h->data + h->used; i++) {
+                       size_t b = sector_to_bucket(ca, i->offset);
+                       struct bucket_mark m = READ_ONCE(buckets->b[b].mark);
+
+                       if (i->gen == m.gen && bucket_sectors_used(m)) {
+                               sectors_not_moved += bucket_sectors_used(m);
+                               buckets_not_moved++;
+                       }
                }
+               up_read(&ca->bucket_lock);
        }
-       up_read(&ca->bucket_lock);
 
        if (sectors_not_moved && !ret)
                bch_warn_ratelimited(c,
                         atomic64_read(&move_stats.keys_raced),
                         atomic64_read(&move_stats.sectors_raced));
 
-       trace_copygc(ca,
+       trace_copygc(c,
                     atomic64_read(&move_stats.sectors_moved), sectors_not_moved,
                     buckets_to_move, buckets_not_moved);
 }
  * often and continually reduce the amount of fragmented space as the device
  * fills up. So, we increase the threshold by half the current free space.
  */
-unsigned long bch2_copygc_wait_amount(struct bch_dev *ca)
+unsigned long bch2_copygc_wait_amount(struct bch_fs *c)
 {
-       struct bch_fs *c = ca->fs;
-       struct bch_dev_usage usage = bch2_dev_usage_read(c, ca);
-       u64 fragmented_allowed = ca->copygc_threshold +
-               ((__dev_buckets_available(ca, usage) * ca->mi.bucket_size) >> 1);
+       struct bch_dev *ca;
+       unsigned dev_idx;
+       u64 fragmented_allowed = c->copygc_threshold;
+       u64 fragmented = 0;
+
+       for_each_rw_member(ca, c, dev_idx) {
+               struct bch_dev_usage usage = bch2_dev_usage_read(c, ca);
+
+               fragmented_allowed += ((__dev_buckets_available(ca, usage) *
+                                       ca->mi.bucket_size) >> 1);
+               fragmented += usage.sectors_fragmented;
+       }
 
-       return max_t(s64, 0, fragmented_allowed - usage.sectors_fragmented);
+       return max_t(s64, 0, fragmented_allowed - fragmented);
 }
 
 static int bch2_copygc_thread(void *arg)
 {
-       struct bch_dev *ca = arg;
-       struct bch_fs *c = ca->fs;
+       struct bch_fs *c = arg;
        struct io_clock *clock = &c->io_clock[WRITE];
        unsigned long last, wait;
 
                        break;
 
                last = atomic_long_read(&clock->now);
-               wait = bch2_copygc_wait_amount(ca);
+               wait = bch2_copygc_wait_amount(c);
 
                if (wait > clock->max_slop) {
                        bch2_kthread_io_clock_wait(clock, last + wait,
                        continue;
                }
 
-               bch2_copygc(c, ca);
+               bch2_copygc(c);
        }
 
        return 0;
 }
 
-void bch2_copygc_stop(struct bch_dev *ca)
+void bch2_copygc_stop(struct bch_fs *c)
 {
-       ca->copygc_pd.rate.rate = UINT_MAX;
-       bch2_ratelimit_reset(&ca->copygc_pd.rate);
+       c->copygc_pd.rate.rate = UINT_MAX;
+       bch2_ratelimit_reset(&c->copygc_pd.rate);
 
-       if (ca->copygc_thread) {
-               kthread_stop(ca->copygc_thread);
-               put_task_struct(ca->copygc_thread);
+       if (c->copygc_thread) {
+               kthread_stop(c->copygc_thread);
+               put_task_struct(c->copygc_thread);
        }
-       ca->copygc_thread = NULL;
+       c->copygc_thread = NULL;
 }
 
-int bch2_copygc_start(struct bch_fs *c, struct bch_dev *ca)
+int bch2_copygc_start(struct bch_fs *c)
 {
        struct task_struct *t;
 
-       if (ca->copygc_thread)
+       if (c->copygc_thread)
                return 0;
 
        if (c->opts.nochanges)
        if (bch2_fs_init_fault("copygc_start"))
                return -ENOMEM;
 
-       t = kthread_create(bch2_copygc_thread, ca,
-                          "bch_copygc[%s]", ca->name);
+       t = kthread_create(bch2_copygc_thread, c,
+                          "bch_copygc[%s]", c->name);
        if (IS_ERR(t))
                return PTR_ERR(t);
 
        get_task_struct(t);
 
-       ca->copygc_thread = t;
-       wake_up_process(ca->copygc_thread);
+       c->copygc_thread = t;
+       wake_up_process(c->copygc_thread);
 
        return 0;
 }
 
-void bch2_dev_copygc_init(struct bch_dev *ca)
+void bch2_fs_copygc_init(struct bch_fs *c)
 {
-       bch2_pd_controller_init(&ca->copygc_pd);
-       ca->copygc_pd.d_term = 0;
+       bch2_pd_controller_init(&c->copygc_pd);
+       c->copygc_pd.d_term = 0;
 }