pgoff_t page_cache_prev_miss(struct address_space *mapping,
pgoff_t index, unsigned long max_scan);
-#define FGP_ACCESSED 0x00000001
-#define FGP_LOCK 0x00000002
-#define FGP_CREAT 0x00000004
-#define FGP_WRITE 0x00000008
-#define FGP_NOFS 0x00000010
-#define FGP_NOWAIT 0x00000020
-#define FGP_FOR_MMAP 0x00000040
-#define FGP_STABLE 0x00000080
+/**
+ * typedef fgf_t - Flags for getting folios from the page cache.
+ *
+ * Most users of the page cache will not need to use these flags;
+ * there are convenience functions such as filemap_get_folio() and
+ * filemap_lock_folio(). For users which need more control over exactly
+ * what is done with the folios, these flags to __filemap_get_folio()
+ * are available.
+ *
+ * * %FGP_ACCESSED - The folio will be marked accessed.
+ * * %FGP_LOCK - The folio is returned locked.
+ * * %FGP_CREAT - If no folio is present then a new folio is allocated,
+ * added to the page cache and the VM's LRU list. The folio is
+ * returned locked.
+ * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
+ * folio is already in cache. If the folio was allocated, unlock it
+ * before returning so the caller can do the same dance.
+ * * %FGP_WRITE - The folio will be written to by the caller.
+ * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
+ * * %FGP_NOWAIT - Don't block on the folio lock.
+ * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
+ * * %FGP_WRITEBEGIN - The flags to use in a filesystem write_begin()
+ * implementation.
+ */
+typedef unsigned int __bitwise fgf_t;
+
+#define FGP_ACCESSED ((__force fgf_t)0x00000001)
+#define FGP_LOCK ((__force fgf_t)0x00000002)
+#define FGP_CREAT ((__force fgf_t)0x00000004)
+#define FGP_WRITE ((__force fgf_t)0x00000008)
+#define FGP_NOFS ((__force fgf_t)0x00000010)
+#define FGP_NOWAIT ((__force fgf_t)0x00000020)
+#define FGP_FOR_MMAP ((__force fgf_t)0x00000040)
+#define FGP_STABLE ((__force fgf_t)0x00000080)
#define FGP_WRITEBEGIN (FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE)
void *filemap_get_entry(struct address_space *mapping, pgoff_t index);
struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
- int fgp_flags, gfp_t gfp);
+ fgf_t fgp_flags, gfp_t gfp);
struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
- int fgp_flags, gfp_t gfp);
+ fgf_t fgp_flags, gfp_t gfp);
/**
* filemap_get_folio - Find and get a folio.
}
static inline struct page *find_get_page_flags(struct address_space *mapping,
- pgoff_t offset, int fgp_flags)
+ pgoff_t offset, fgf_t fgp_flags)
{
return pagecache_get_page(mapping, offset, fgp_flags, 0);
}
*
* Looks up the page cache entry at @mapping & @index.
*
- * @fgp_flags can be zero or more of these flags:
- *
- * * %FGP_ACCESSED - The folio will be marked accessed.
- * * %FGP_LOCK - The folio is returned locked.
- * * %FGP_CREAT - If no page is present then a new page is allocated using
- * @gfp and added to the page cache and the VM's LRU list.
- * The page is returned locked and with an increased refcount.
- * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
- * page is already in cache. If the page was allocated, unlock it before
- * returning so the caller can do the same dance.
- * * %FGP_WRITE - The page will be written to by the caller.
- * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
- * * %FGP_NOWAIT - Don't get blocked by page lock.
- * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
- *
* If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
* if the %GFP flags specified for %FGP_CREAT are atomic.
*
- * If there is a page cache page, it is returned with an increased refcount.
+ * If this function returns a folio, it is returned with an increased refcount.
*
* Return: The found folio or an ERR_PTR() otherwise.
*/
struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
- int fgp_flags, gfp_t gfp)
+ fgf_t fgp_flags, gfp_t gfp)
{
struct folio *folio;