From: Jonathan Corbet Date: Thu, 30 Mar 2023 19:48:12 +0000 (-0600) Subject: docs: move m68k architecture documentation under Documentation/arch/ X-Git-Url: http://git.maquefel.me/?a=commitdiff_plain;h=790a6c21c111ba7dcddf762f791fb3178711b82f;p=linux.git docs: move m68k architecture documentation under Documentation/arch/ Architecture-specific documentation is being moved into Documentation/arch/ as a way of cleaning up the top-level documentation directory and making the docs hierarchy more closely match the source hierarchy. Move Documentation/m68k into arch/ and fix all in-tree references. Reviewed-by: Geert Uytterhoeven Signed-off-by: Jonathan Corbet --- diff --git a/Documentation/admin-guide/kernel-parameters.rst b/Documentation/admin-guide/kernel-parameters.rst index c833eac3fe592..6385e3b9b8797 100644 --- a/Documentation/admin-guide/kernel-parameters.rst +++ b/Documentation/admin-guide/kernel-parameters.rst @@ -131,7 +131,7 @@ parameter is applicable:: LOOP Loopback device support is enabled. M68k M68k architecture is enabled. These options have more detailed description inside of - Documentation/m68k/kernel-options.rst. + Documentation/arch/m68k/kernel-options.rst. MDA MDA console support is enabled. MIPS MIPS architecture is enabled. MOUSE Appropriate mouse support is enabled. diff --git a/Documentation/arch/index.rst b/Documentation/arch/index.rst index 6839cd46850d4..80ee310165843 100644 --- a/Documentation/arch/index.rst +++ b/Documentation/arch/index.rst @@ -14,7 +14,7 @@ implementation. ../arm64/index ia64/index ../loongarch/index - ../m68k/index + m68k/index ../mips/index nios2/index openrisc/index diff --git a/Documentation/arch/m68k/buddha-driver.rst b/Documentation/arch/m68k/buddha-driver.rst new file mode 100644 index 0000000000000..20e4014139911 --- /dev/null +++ b/Documentation/arch/m68k/buddha-driver.rst @@ -0,0 +1,209 @@ +===================================== +Amiga Buddha and Catweasel IDE Driver +===================================== + +The Amiga Buddha and Catweasel IDE Driver (part of ide.c) was written by +Geert Uytterhoeven based on the following specifications: + +------------------------------------------------------------------------ + +Register map of the Buddha IDE controller and the +Buddha-part of the Catweasel Zorro-II version + +The Autoconfiguration has been implemented just as Commodore +described in their manuals, no tricks have been used (for +example leaving some address lines out of the equations...). +If you want to configure the board yourself (for example let +a Linux kernel configure the card), look at the Commodore +Docs. Reading the nibbles should give this information:: + + Vendor number: 4626 ($1212) + product number: 0 (42 for Catweasel Z-II) + Serial number: 0 + Rom-vector: $1000 + +The card should be a Z-II board, size 64K, not for freemem +list, Rom-Vektor is valid, no second Autoconfig-board on the +same card, no space preference, supports "Shutup_forever". + +Setting the base address should be done in two steps, just +as the Amiga Kickstart does: The lower nibble of the 8-Bit +address is written to $4a, then the whole Byte is written to +$48, while it doesn't matter how often you're writing to $4a +as long as $48 is not touched. After $48 has been written, +the whole card disappears from $e8 and is mapped to the new +address just written. Make sure $4a is written before $48, +otherwise your chance is only 1:16 to find the board :-). + +The local memory-map is even active when mapped to $e8: + +============== =========================================== +$0-$7e Autokonfig-space, see Z-II docs. + +$80-$7fd reserved + +$7fe Speed-select Register: Read & Write + (description see further down) + +$800-$8ff IDE-Select 0 (Port 0, Register set 0) + +$900-$9ff IDE-Select 1 (Port 0, Register set 1) + +$a00-$aff IDE-Select 2 (Port 1, Register set 0) + +$b00-$bff IDE-Select 3 (Port 1, Register set 1) + +$c00-$cff IDE-Select 4 (Port 2, Register set 0, + Catweasel only!) + +$d00-$dff IDE-Select 5 (Port 3, Register set 1, + Catweasel only!) + +$e00-$eff local expansion port, on Catweasel Z-II the + Catweasel registers are also mapped here. + Never touch, use multidisk.device! + +$f00 read only, Byte-access: Bit 7 shows the + level of the IRQ-line of IDE port 0. + +$f01-$f3f mirror of $f00 + +$f40 read only, Byte-access: Bit 7 shows the + level of the IRQ-line of IDE port 1. + +$f41-$f7f mirror of $f40 + +$f80 read only, Byte-access: Bit 7 shows the + level of the IRQ-line of IDE port 2. + (Catweasel only!) + +$f81-$fbf mirror of $f80 + +$fc0 write-only: Writing any value to this + register enables IRQs to be passed from the + IDE ports to the Zorro bus. This mechanism + has been implemented to be compatible with + harddisks that are either defective or have + a buggy firmware and pull the IRQ line up + while starting up. If interrupts would + always be passed to the bus, the computer + might not start up. Once enabled, this flag + can not be disabled again. The level of the + flag can not be determined by software + (what for? Write to me if it's necessary!). + +$fc1-$fff mirror of $fc0 + +$1000-$ffff Buddha-Rom with offset $1000 in the rom + chip. The addresses $0 to $fff of the rom + chip cannot be read. Rom is Byte-wide and + mapped to even addresses. +============== =========================================== + +The IDE ports issue an INT2. You can read the level of the +IRQ-lines of the IDE-ports by reading from the three (two +for Buddha-only) registers $f00, $f40 and $f80. This way +more than one I/O request can be handled and you can easily +determine what driver has to serve the INT2. Buddha and +Catweasel expansion boards can issue an INT6. A separate +memory map is available for the I/O module and the sysop's +I/O module. + +The IDE ports are fed by the address lines A2 to A4, just as +the Amiga 1200 and Amiga 4000 IDE ports are. This way +existing drivers can be easily ported to Buddha. A move.l +polls two words out of the same address of IDE port since +every word is mirrored once. movem is not possible, but +it's not necessary either, because you can only speedup +68000 systems with this technique. A 68020 system with +fastmem is faster with move.l. + +If you're using the mirrored registers of the IDE-ports with +A6=1, the Buddha doesn't care about the speed that you have +selected in the speed register (see further down). With +A6=1 (for example $840 for port 0, register set 0), a 780ns +access is being made. These registers should be used for a +command access to the harddisk/CD-Rom, since command +accesses are Byte-wide and have to be made slower according +to the ATA-X3T9 manual. + +Now for the speed-register: The register is byte-wide, and +only the upper three bits are used (Bits 7 to 5). Bit 4 +must always be set to 1 to be compatible with later Buddha +versions (if I'll ever update this one). I presume that +I'll never use the lower four bits, but they have to be set +to 1 by definition. + +The values in this table have to be shifted 5 bits to the +left and or'd with $1f (this sets the lower 5 bits). + +All the timings have in common: Select and IOR/IOW rise at +the same time. IOR and IOW have a propagation delay of +about 30ns to the clocks on the Zorro bus, that's why the +values are no multiple of 71. One clock-cycle is 71ns long +(exactly 70,5 at 14,18 Mhz on PAL systems). + +value 0 (Default after reset) + 497ns Select (7 clock cycles) , IOR/IOW after 172ns (2 clock cycles) + (same timing as the Amiga 1200 does on it's IDE port without + accelerator card) + +value 1 + 639ns Select (9 clock cycles), IOR/IOW after 243ns (3 clock cycles) + +value 2 + 781ns Select (11 clock cycles), IOR/IOW after 314ns (4 clock cycles) + +value 3 + 355ns Select (5 clock cycles), IOR/IOW after 101ns (1 clock cycle) + +value 4 + 355ns Select (5 clock cycles), IOR/IOW after 172ns (2 clock cycles) + +value 5 + 355ns Select (5 clock cycles), IOR/IOW after 243ns (3 clock cycles) + +value 6 + 1065ns Select (15 clock cycles), IOR/IOW after 314ns (4 clock cycles) + +value 7 + 355ns Select, (5 clock cycles), IOR/IOW after 101ns (1 clock cycle) + +When accessing IDE registers with A6=1 (for example $84x), +the timing will always be mode 0 8-bit compatible, no matter +what you have selected in the speed register: + +781ns select, IOR/IOW after 4 clock cycles (=314ns) aktive. + +All the timings with a very short select-signal (the 355ns +fast accesses) depend on the accelerator card used in the +system: Sometimes two more clock cycles are inserted by the +bus interface, making the whole access 497ns long. This +doesn't affect the reliability of the controller nor the +performance of the card, since this doesn't happen very +often. + +All the timings are calculated and only confirmed by +measurements that allowed me to count the clock cycles. If +the system is clocked by an oscillator other than 28,37516 +Mhz (for example the NTSC-frequency 28,63636 Mhz), each +clock cycle is shortened to a bit less than 70ns (not worth +mentioning). You could think of a small performance boost +by overclocking the system, but you would either need a +multisync monitor, or a graphics card, and your internal +diskdrive would go crazy, that's why you shouldn't tune your +Amiga this way. + +Giving you the possibility to write software that is +compatible with both the Buddha and the Catweasel Z-II, The +Buddha acts just like a Catweasel Z-II with no device +connected to the third IDE-port. The IRQ-register $f80 +always shows a "no IRQ here" on the Buddha, and accesses to +the third IDE port are going into data's Nirwana on the +Buddha. + +Jens Schönfeld february 19th, 1997 + +updated may 27th, 1997 + +eMail: sysop@nostlgic.tng.oche.de diff --git a/Documentation/arch/m68k/features.rst b/Documentation/arch/m68k/features.rst new file mode 100644 index 0000000000000..5107a21194724 --- /dev/null +++ b/Documentation/arch/m68k/features.rst @@ -0,0 +1,3 @@ +.. SPDX-License-Identifier: GPL-2.0 + +.. kernel-feat:: $srctree/Documentation/features m68k diff --git a/Documentation/arch/m68k/index.rst b/Documentation/arch/m68k/index.rst new file mode 100644 index 0000000000000..0f890dbb5fe27 --- /dev/null +++ b/Documentation/arch/m68k/index.rst @@ -0,0 +1,20 @@ +.. SPDX-License-Identifier: GPL-2.0 + +================= +m68k Architecture +================= + +.. toctree:: + :maxdepth: 2 + + kernel-options + buddha-driver + + features + +.. only:: subproject and html + + Indices + ======= + + * :ref:`genindex` diff --git a/Documentation/arch/m68k/kernel-options.rst b/Documentation/arch/m68k/kernel-options.rst new file mode 100644 index 0000000000000..2008a20b43295 --- /dev/null +++ b/Documentation/arch/m68k/kernel-options.rst @@ -0,0 +1,911 @@ +=================================== +Command Line Options for Linux/m68k +=================================== + +Last Update: 2 May 1999 + +Linux/m68k version: 2.2.6 + +Author: Roman.Hodek@informatik.uni-erlangen.de (Roman Hodek) + +Update: jds@kom.auc.dk (Jes Sorensen) and faq@linux-m68k.org (Chris Lawrence) + +0) Introduction +=============== + +Often I've been asked which command line options the Linux/m68k +kernel understands, or how the exact syntax for the ... option is, or +... about the option ... . I hope, this document supplies all the +answers... + +Note that some options might be outdated, their descriptions being +incomplete or missing. Please update the information and send in the +patches. + + +1) Overview of the Kernel's Option Processing +============================================= + +The kernel knows three kinds of options on its command line: + + 1) kernel options + 2) environment settings + 3) arguments for init + +To which of these classes an argument belongs is determined as +follows: If the option is known to the kernel itself, i.e. if the name +(the part before the '=') or, in some cases, the whole argument string +is known to the kernel, it belongs to class 1. Otherwise, if the +argument contains an '=', it is of class 2, and the definition is put +into init's environment. All other arguments are passed to init as +command line options. + +This document describes the valid kernel options for Linux/m68k in +the version mentioned at the start of this file. Later revisions may +add new such options, and some may be missing in older versions. + +In general, the value (the part after the '=') of an option is a +list of values separated by commas. The interpretation of these values +is up to the driver that "owns" the option. This association of +options with drivers is also the reason that some are further +subdivided. + + +2) General Kernel Options +========================= + +2.1) root= +---------- + +:Syntax: root=/dev/ +:or: root= + +This tells the kernel which device it should mount as the root +filesystem. The device must be a block device with a valid filesystem +on it. + +The first syntax gives the device by name. These names are converted +into a major/minor number internally in the kernel in an unusual way. +Normally, this "conversion" is done by the device files in /dev, but +this isn't possible here, because the root filesystem (with /dev) +isn't mounted yet... So the kernel parses the name itself, with some +hardcoded name to number mappings. The name must always be a +combination of two or three letters, followed by a decimal number. +Valid names are:: + + /dev/ram: -> 0x0100 (initial ramdisk) + /dev/hda: -> 0x0300 (first IDE disk) + /dev/hdb: -> 0x0340 (second IDE disk) + /dev/sda: -> 0x0800 (first SCSI disk) + /dev/sdb: -> 0x0810 (second SCSI disk) + /dev/sdc: -> 0x0820 (third SCSI disk) + /dev/sdd: -> 0x0830 (forth SCSI disk) + /dev/sde: -> 0x0840 (fifth SCSI disk) + /dev/fd : -> 0x0200 (floppy disk) + +The name must be followed by a decimal number, that stands for the +partition number. Internally, the value of the number is just +added to the device number mentioned in the table above. The +exceptions are /dev/ram and /dev/fd, where /dev/ram refers to an +initial ramdisk loaded by your bootstrap program (please consult the +instructions for your bootstrap program to find out how to load an +initial ramdisk). As of kernel version 2.0.18 you must specify +/dev/ram as the root device if you want to boot from an initial +ramdisk. For the floppy devices, /dev/fd, the number stands for the +floppy drive number (there are no partitions on floppy disks). I.e., +/dev/fd0 stands for the first drive, /dev/fd1 for the second, and so +on. Since the number is just added, you can also force the disk format +by adding a number greater than 3. If you look into your /dev +directory, use can see the /dev/fd0D720 has major 2 and minor 16. You +can specify this device for the root FS by writing "root=/dev/fd16" on +the kernel command line. + +[Strange and maybe uninteresting stuff ON] + +This unusual translation of device names has some strange +consequences: If, for example, you have a symbolic link from /dev/fd +to /dev/fd0D720 as an abbreviation for floppy driver #0 in DD format, +you cannot use this name for specifying the root device, because the +kernel cannot see this symlink before mounting the root FS and it +isn't in the table above. If you use it, the root device will not be +set at all, without an error message. Another example: You cannot use a +partition on e.g. the sixth SCSI disk as the root filesystem, if you +want to specify it by name. This is, because only the devices up to +/dev/sde are in the table above, but not /dev/sdf. Although, you can +use the sixth SCSI disk for the root FS, but you have to specify the +device by number... (see below). Or, even more strange, you can use the +fact that there is no range checking of the partition number, and your +knowledge that each disk uses 16 minors, and write "root=/dev/sde17" +(for /dev/sdf1). + +[Strange and maybe uninteresting stuff OFF] + +If the device containing your root partition isn't in the table +above, you can also specify it by major and minor numbers. These are +written in hex, with no prefix and no separator between. E.g., if you +have a CD with contents appropriate as a root filesystem in the first +SCSI CD-ROM drive, you boot from it by "root=0b00". Here, hex "0b" = +decimal 11 is the major of SCSI CD-ROMs, and the minor 0 stands for +the first of these. You can find out all valid major numbers by +looking into include/linux/major.h. + +In addition to major and minor numbers, if the device containing your +root partition uses a partition table format with unique partition +identifiers, then you may use them. For instance, +"root=PARTUUID=00112233-4455-6677-8899-AABBCCDDEEFF". It is also +possible to reference another partition on the same device using a +known partition UUID as the starting point. For example, +if partition 5 of the device has the UUID of +00112233-4455-6677-8899-AABBCCDDEEFF then partition 3 may be found as +follows: + + PARTUUID=00112233-4455-6677-8899-AABBCCDDEEFF/PARTNROFF=-2 + +Authoritative information can be found in +"Documentation/admin-guide/kernel-parameters.rst". + + +2.2) ro, rw +----------- + +:Syntax: ro +:or: rw + +These two options tell the kernel whether it should mount the root +filesystem read-only or read-write. The default is read-only, except +for ramdisks, which default to read-write. + + +2.3) debug +---------- + +:Syntax: debug + +This raises the kernel log level to 10 (the default is 7). This is the +same level as set by the "dmesg" command, just that the maximum level +selectable by dmesg is 8. + + +2.4) debug= +----------- + +:Syntax: debug= + +This option causes certain kernel messages be printed to the selected +debugging device. This can aid debugging the kernel, since the +messages can be captured and analyzed on some other machine. Which +devices are possible depends on the machine type. There are no checks +for the validity of the device name. If the device isn't implemented, +nothing happens. + +Messages logged this way are in general stack dumps after kernel +memory faults or bad kernel traps, and kernel panics. To be exact: all +messages of level 0 (panic messages) and all messages printed while +the log level is 8 or more (their level doesn't matter). Before stack +dumps, the kernel sets the log level to 10 automatically. A level of +at least 8 can also be set by the "debug" command line option (see +2.3) and at run time with "dmesg -n 8". + +Devices possible for Amiga: + + - "ser": + built-in serial port; parameters: 9600bps, 8N1 + - "mem": + Save the messages to a reserved area in chip mem. After + rebooting, they can be read under AmigaOS with the tool + 'dmesg'. + +Devices possible for Atari: + + - "ser1": + ST-MFP serial port ("Modem1"); parameters: 9600bps, 8N1 + - "ser2": + SCC channel B serial port ("Modem2"); parameters: 9600bps, 8N1 + - "ser" : + default serial port + This is "ser2" for a Falcon, and "ser1" for any other machine + - "midi": + The MIDI port; parameters: 31250bps, 8N1 + - "par" : + parallel port + + The printing routine for this implements a timeout for the + case there's no printer connected (else the kernel would + lock up). The timeout is not exact, but usually a few + seconds. + + +2.6) ramdisk_size= +------------------ + +:Syntax: ramdisk_size= + +This option instructs the kernel to set up a ramdisk of the given +size in KBytes. Do not use this option if the ramdisk contents are +passed by bootstrap! In this case, the size is selected automatically +and should not be overwritten. + +The only application is for root filesystems on floppy disks, that +should be loaded into memory. To do that, select the corresponding +size of the disk as ramdisk size, and set the root device to the disk +drive (with "root="). + + +2.7) swap= + + I can't find any sign of this option in 2.2.6. + +2.8) buff= +----------- + + I can't find any sign of this option in 2.2.6. + + +3) General Device Options (Amiga and Atari) +=========================================== + +3.1) ether= +----------- + +:Syntax: ether=[[,[,[,]]]], + + is the name of a net driver, as specified in +drivers/net/Space.c in the Linux source. Most prominent are eth0, ... +eth3, sl0, ... sl3, ppp0, ..., ppp3, dummy, and lo. + +The non-ethernet drivers (sl, ppp, dummy, lo) obviously ignore the +settings by this options. Also, the existing ethernet drivers for +Linux/m68k (ariadne, a2065, hydra) don't use them because Zorro boards +are really Plug-'n-Play, so the "ether=" option is useless altogether +for Linux/m68k. + + +3.2) hd= +-------- + +:Syntax: hd=,, + +This option sets the disk geometry of an IDE disk. The first hd= +option is for the first IDE disk, the second for the second one. +(I.e., you can give this option twice.) In most cases, you won't have +to use this option, since the kernel can obtain the geometry data +itself. It exists just for the case that this fails for one of your +disks. + + +3.3) max_scsi_luns= +------------------- + +:Syntax: max_scsi_luns= + +Sets the maximum number of LUNs (logical units) of SCSI devices to +be scanned. Valid values for are between 1 and 8. Default is 8 if +"Probe all LUNs on each SCSI device" was selected during the kernel +configuration, else 1. + + +3.4) st= +-------- + +:Syntax: st=,[,[]] + +Sets several parameters of the SCSI tape driver. is +the number of 512-byte buffers reserved for tape operations for each +device. sets the number of blocks which must be filled +to start an actual write operation to the tape. Maximum value is the +total number of buffers. limits the total number of +buffers allocated for all tape devices. + + +3.5) dmasound= +-------------- + +:Syntax: dmasound=[,[,]] + +This option controls some configurations of the Linux/m68k DMA sound +driver (Amiga and Atari): is the number of buffers you want +to use (minimum 4, default 4), is the size of each +buffer in kilobytes (minimum 4, default 32) and says +how much percent of error will be tolerated when setting a frequency +(maximum 10, default 0). For example with 3% you can play 8000Hz +AU-Files on the Falcon with its hardware frequency of 8195Hz and thus +don't need to expand the sound. + + + +4) Options for Atari Only +========================= + +4.1) video= +----------- + +:Syntax: video=: + +The parameter specifies the name of the frame buffer, +eg. most atari users will want to specify `atafb` here. The + is a comma-separated list of the sub-options listed +below. + +NB: + Please notice that this option was renamed from `atavideo` to + `video` during the development of the 1.3.x kernels, thus you + might need to update your boot-scripts if upgrading to 2.x from + an 1.2.x kernel. + +NBB: + The behavior of video= was changed in 2.1.57 so the recommended + option is to specify the name of the frame buffer. + +4.1.1) Video Mode +----------------- + +This sub-option may be any of the predefined video modes, as listed +in atari/atafb.c in the Linux/m68k source tree. The kernel will +activate the given video mode at boot time and make it the default +mode, if the hardware allows. Currently defined names are: + + - stlow : 320x200x4 + - stmid, default5 : 640x200x2 + - sthigh, default4: 640x400x1 + - ttlow : 320x480x8, TT only + - ttmid, default1 : 640x480x4, TT only + - tthigh, default2: 1280x960x1, TT only + - vga2 : 640x480x1, Falcon only + - vga4 : 640x480x2, Falcon only + - vga16, default3 : 640x480x4, Falcon only + - vga256 : 640x480x8, Falcon only + - falh2 : 896x608x1, Falcon only + - falh16 : 896x608x4, Falcon only + +If no video mode is given on the command line, the kernel tries the +modes names "default" in turn, until one is possible with the +hardware in use. + +A video mode setting doesn't make sense, if the external driver is +activated by a "external:" sub-option. + +4.1.2) inverse +-------------- + +Invert the display. This affects only text consoles. +Usually, the background is chosen to be black. With this +option, you can make the background white. + +4.1.3) font +----------- + +:Syntax: font: + +Specify the font to use in text modes. Currently you can choose only +between `VGA8x8`, `VGA8x16` and `PEARL8x8`. `VGA8x8` is default, if the +vertical size of the display is less than 400 pixel rows. Otherwise, the +`VGA8x16` font is the default. + +4.1.4) `hwscroll_` +------------------ + +:Syntax: `hwscroll_` + +The number of additional lines of video memory to reserve for +speeding up the scrolling ("hardware scrolling"). Hardware scrolling +is possible only if the kernel can set the video base address in steps +fine enough. This is true for STE, MegaSTE, TT, and Falcon. It is not +possible with plain STs and graphics cards (The former because the +base address must be on a 256 byte boundary there, the latter because +the kernel doesn't know how to set the base address at all.) + +By default, is set to the number of visible text lines on the +display. Thus, the amount of video memory is doubled, compared to no +hardware scrolling. You can turn off the hardware scrolling altogether +by setting to 0. + +4.1.5) internal: +---------------- + +:Syntax: internal:;[;;;] + +This option specifies the capabilities of some extended internal video +hardware, like e.g. OverScan. and give the (extended) +dimensions of the screen. + +If your OverScan needs a black border, you have to write the last +three arguments of the "internal:". is the maximum line +length the hardware allows, the maximum number of lines. + is the offset of the visible part of the screen memory to its +physical start, in bytes. + +Often, extended interval video hardware has to be activated somehow. +For this, see the "sw_*" options below. + +4.1.6) external: +---------------- + +:Syntax: + external:;;;;[;[; + [;[;[;]]]]] + +.. I had to break this line... + +This is probably the most complicated parameter... It specifies that +you have some external video hardware (a graphics board), and how to +use it under Linux/m68k. The kernel cannot know more about the hardware +than you tell it here! The kernel also is unable to set or change any +video modes, since it doesn't know about any board internal. So, you +have to switch to that video mode before you start Linux, and cannot +switch to another mode once Linux has started. + +The first 3 parameters of this sub-option should be obvious: , + and give the dimensions of the screen and the number of +planes (depth). The depth is the logarithm to base 2 of the number +of colors possible. (Or, the other way round: The number of colors is +2^depth). + +You have to tell the kernel furthermore how the video memory is +organized. This is done by a letter as parameter: + + 'n': + "normal planes", i.e. one whole plane after another + 'i': + "interleaved planes", i.e. 16 bit of the first plane, than 16 bit + of the next, and so on... This mode is used only with the + built-in Atari video modes, I think there is no card that + supports this mode. + 'p': + "packed pixels", i.e. consecutive bits stand for all + planes of one pixel; this is the most common mode for 8 planes + (256 colors) on graphic cards + 't': + "true color" (more or less packed pixels, but without a color + lookup table); usually depth is 24 + +For monochrome modes (i.e., is 1), the letter has a +different meaning: + + 'n': + normal colors, i.e. 0=white, 1=black + 'i': + inverted colors, i.e. 0=black, 1=white + +The next important information about the video hardware is the base +address of the video memory. That is given in the parameter, +as a hexadecimal number with a "0x" prefix. You have to find out this +address in the documentation of your hardware. + +The next parameter, , tells the kernel about the size of the +video memory. If it's missing, the size is calculated from , +, and . For now, it is not useful to write a value here. +It would be used only for hardware scrolling (which isn't possible +with the external driver, because the kernel cannot set the video base +address), or for virtual resolutions under X (which the X server +doesn't support yet). So, it's currently best to leave this field +empty, either by ending the "external:" after the video address or by +writing two consecutive semicolons, if you want to give a +(it is allowed to leave this parameter empty). + +The parameter is optional. If it is not given, the kernel +cannot read or write any color registers of the video hardware, and +thus you have to set appropriate colors before you start Linux. But if +your card is somehow VGA compatible, you can tell the kernel the base +address of the VGA register set, so it can change the color lookup +table. You have to look up this address in your board's documentation. +To avoid misunderstandings: is the _base_ address, i.e. a 4k +aligned address. For read/writing the color registers, the kernel +uses the addresses vgabase+0x3c7...vgabase+0x3c9. The +parameter is written in hexadecimal with a "0x" prefix, just as +. + + is meaningful only if is specified. It tells the +kernel how wide each of the color register is, i.e. the number of bits +per single color (red/green/blue). Default is 6, another quite usual +value is 8. + +Also is used together with . It tells the kernel +about the color register model of your gfx board. Currently, the types +"vga" (which is also the default) and "mv300" (SANG MV300) are +implemented. + +Parameter is required for ProMST or ET4000 cards where +the physical linelength differs from the visible length. With ProMST, +xres_virtual must be set to 2048. For ET4000, xres_virtual depends on the +initialisation of the video-card. +If you're missing a corresponding yres_virtual: the external part is legacy, +therefore we don't support hardware-dependent functions like hardware-scroll, +panning or blanking. + +4.1.7) eclock: +-------------- + +The external pixel clock attached to the Falcon VIDEL shifter. This +currently works only with the ScreenWonder! + +4.1.8) monitorcap: +------------------- + +:Syntax: monitorcap:;;; + +This describes the capabilities of a multisync monitor. Don't use it +with a fixed-frequency monitor! For now, only the Falcon frame buffer +uses the settings of "monitorcap:". + + and are the minimum and maximum, resp., vertical frequencies +your monitor can work with, in Hz. and are the same for +the horizontal frequency, in kHz. + + The defaults are 58;62;31;32 (VGA compatible). + + The defaults for TV/SC1224/SC1435 cover both PAL and NTSC standards. + +4.1.9) keep +------------ + +If this option is given, the framebuffer device doesn't do any video +mode calculations and settings on its own. The only Atari fb device +that does this currently is the Falcon. + +What you reach with this: Settings for unknown video extensions +aren't overridden by the driver, so you can still use the mode found +when booting, when the driver doesn't know to set this mode itself. +But this also means, that you can't switch video modes anymore... + +An example where you may want to use "keep" is the ScreenBlaster for +the Falcon. + + +4.2) atamouse= +-------------- + +:Syntax: atamouse=,[] + +With this option, you can set the mouse movement reporting threshold. +This is the number of pixels of mouse movement that have to accumulate +before the IKBD sends a new mouse packet to the kernel. Higher values +reduce the mouse interrupt load and thus reduce the chance of keyboard +overruns. Lower values give a slightly faster mouse responses and +slightly better mouse tracking. + +You can set the threshold in x and y separately, but usually this is +of little practical use. If there's just one number in the option, it +is used for both dimensions. The default value is 2 for both +thresholds. + + +4.3) ataflop= +------------- + +:Syntax: ataflop=[,[,[,]]] + + The drive type may be 0, 1, or 2, for DD, HD, and ED, resp. This + setting affects how many buffers are reserved and which formats are + probed (see also below). The default is 1 (HD). Only one drive type + can be selected. If you have two disk drives, select the "better" + type. + + The second parameter tells the kernel whether to use + track buffering (1) or not (0). The default is machine-dependent: + no for the Medusa and yes for all others. + + With the two following parameters, you can change the default + steprate used for drive A and B, resp. + + +4.4) atascsi= +------------- + +:Syntax: atascsi=[,[,[,[,]]]] + +This option sets some parameters for the Atari native SCSI driver. +Generally, any number of arguments can be omitted from the end. And +for each of the numbers, a negative value means "use default". The +defaults depend on whether TT-style or Falcon-style SCSI is used. +Below, defaults are noted as n/m, where the first value refers to +TT-SCSI and the latter to Falcon-SCSI. If an illegal value is given +for one parameter, an error message is printed and that one setting is +ignored (others aren't affected). + + : + This is the maximum number of SCSI commands queued internally to the + Atari SCSI driver. A value of 1 effectively turns off the driver + internal multitasking (if it causes problems). Legal values are >= + 1. can be as high as you like, but values greater than + times the number of SCSI targets (LUNs) you have + don't make sense. Default: 16/8. + + : + Maximum number of SCSI commands issued to the driver for one + logical unit (LUN, usually one SCSI target). Legal values start + from 1. If tagged queuing (see below) is not used, values greater + than 2 don't make sense, but waste memory. Otherwise, the maximum + is the number of command tags available to the driver (currently + 32). Default: 8/1. (Note: Values > 1 seem to cause problems on a + Falcon, cause not yet known.) + + The value at a great part determines the amount of + memory SCSI reserves for itself. The formula is rather + complicated, but I can give you some hints: + + no scatter-gather: + cmd_per_lun * 232 bytes + full scatter-gather: + cmd_per_lun * approx. 17 Kbytes + + : + Size of the scatter-gather table, i.e. the number of requests + consecutive on the disk that can be merged into one SCSI command. + Legal values are between 0 and 255. Default: 255/0. Note: This + value is forced to 0 on a Falcon, since scatter-gather isn't + possible with the ST-DMA. Not using scatter-gather hurts + performance significantly. + + : + The SCSI ID to be used by the initiator (your Atari). This is + usually 7, the highest possible ID. Every ID on the SCSI bus must + be unique. Default: determined at run time: If the NV-RAM checksum + is valid, and bit 7 in byte 30 of the NV-RAM is set, the lower 3 + bits of this byte are used as the host ID. (This method is defined + by Atari and also used by some TOS HD drivers.) If the above + isn't given, the default ID is 7. (both, TT and Falcon). + + : + 0 means turn off tagged queuing support, all other values > 0 mean + use tagged queuing for targets that support it. Default: currently + off, but this may change when tagged queuing handling has been + proved to be reliable. + + Tagged queuing means that more than one command can be issued to + one LUN, and the SCSI device itself orders the requests so they + can be performed in optimal order. Not all SCSI devices support + tagged queuing (:-(). + +4.5 switches= +------------- + +:Syntax: switches= + +With this option you can switch some hardware lines that are often +used to enable/disable certain hardware extensions. Examples are +OverScan, overclocking, ... + +The is a comma-separated list of the following +items: + + ikbd: + set RTS of the keyboard ACIA high + midi: + set RTS of the MIDI ACIA high + snd6: + set bit 6 of the PSG port A + snd7: + set bit 6 of the PSG port A + +It doesn't make sense to mention a switch more than once (no +difference to only once), but you can give as many switches as you +want to enable different features. The switch lines are set as early +as possible during kernel initialization (even before determining the +present hardware.) + +All of the items can also be prefixed with `ov_`, i.e. `ov_ikbd`, +`ov_midi`, ... These options are meant for switching on an OverScan +video extension. The difference to the bare option is that the +switch-on is done after video initialization, and somehow synchronized +to the HBLANK. A speciality is that ov_ikbd and ov_midi are switched +off before rebooting, so that OverScan is disabled and TOS boots +correctly. + +If you give an option both, with and without the `ov_` prefix, the +earlier initialization (`ov_`-less) takes precedence. But the +switching-off on reset still happens in this case. + +5) Options for Amiga Only: +========================== + +5.1) video= +----------- + +:Syntax: video=: + +The parameter specifies the name of the frame buffer, valid +options are `amifb`, `cyber`, 'virge', `retz3` and `clgen`, provided +that the respective frame buffer devices have been compiled into the +kernel (or compiled as loadable modules). The behavior of the +option was changed in 2.1.57 so it is now recommended to specify this +option. + +The is a comma-separated list of the sub-options listed +below. This option is organized similar to the Atari version of the +"video"-option (4.1), but knows fewer sub-options. + +5.1.1) video mode +----------------- + +Again, similar to the video mode for the Atari (see 4.1.1). Predefined +modes depend on the used frame buffer device. + +OCS, ECS and AGA machines all use the color frame buffer. The following +predefined video modes are available: + +NTSC modes: + - ntsc : 640x200, 15 kHz, 60 Hz + - ntsc-lace : 640x400, 15 kHz, 60 Hz interlaced + +PAL modes: + - pal : 640x256, 15 kHz, 50 Hz + - pal-lace : 640x512, 15 kHz, 50 Hz interlaced + +ECS modes: + - multiscan : 640x480, 29 kHz, 57 Hz + - multiscan-lace : 640x960, 29 kHz, 57 Hz interlaced + - euro36 : 640x200, 15 kHz, 72 Hz + - euro36-lace : 640x400, 15 kHz, 72 Hz interlaced + - euro72 : 640x400, 29 kHz, 68 Hz + - euro72-lace : 640x800, 29 kHz, 68 Hz interlaced + - super72 : 800x300, 23 kHz, 70 Hz + - super72-lace : 800x600, 23 kHz, 70 Hz interlaced + - dblntsc-ff : 640x400, 27 kHz, 57 Hz + - dblntsc-lace : 640x800, 27 kHz, 57 Hz interlaced + - dblpal-ff : 640x512, 27 kHz, 47 Hz + - dblpal-lace : 640x1024, 27 kHz, 47 Hz interlaced + - dblntsc : 640x200, 27 kHz, 57 Hz doublescan + - dblpal : 640x256, 27 kHz, 47 Hz doublescan + +VGA modes: + - vga : 640x480, 31 kHz, 60 Hz + - vga70 : 640x400, 31 kHz, 70 Hz + +Please notice that the ECS and VGA modes require either an ECS or AGA +chipset, and that these modes are limited to 2-bit color for the ECS +chipset and 8-bit color for the AGA chipset. + +5.1.2) depth +------------ + +:Syntax: depth: + +Specify the number of bit-planes for the selected video-mode. + +5.1.3) inverse +-------------- + +Use inverted display (black on white). Functionally the same as the +"inverse" sub-option for the Atari. + +5.1.4) font +----------- + +:Syntax: font: + +Specify the font to use in text modes. Functionally the same as the +"font" sub-option for the Atari, except that `PEARL8x8` is used instead +of `VGA8x8` if the vertical size of the display is less than 400 pixel +rows. + +5.1.5) monitorcap: +------------------- + +:Syntax: monitorcap:;;; + +This describes the capabilities of a multisync monitor. For now, only +the color frame buffer uses the settings of "monitorcap:". + + and are the minimum and maximum, resp., vertical frequencies +your monitor can work with, in Hz. and are the same for +the horizontal frequency, in kHz. + +The defaults are 50;90;15;38 (Generic Amiga multisync monitor). + + +5.2) fd_def_df0= +---------------- + +:Syntax: fd_def_df0= + +Sets the df0 value for "silent" floppy drives. The value should be in +hexadecimal with "0x" prefix. + + +5.3) wd33c93= +------------- + +:Syntax: wd33c93= + +These options affect the A590/A2091, A3000 and GVP Series II SCSI +controllers. + +The is a comma-separated list of the sub-options listed +below. + +5.3.1) nosync +------------- + +:Syntax: nosync:bitmask + +bitmask is a byte where the 1st 7 bits correspond with the 7 +possible SCSI devices. Set a bit to prevent sync negotiation on that +device. To maintain backwards compatibility, a command-line such as +"wd33c93=255" will be automatically translated to +"wd33c93=nosync:0xff". The default is to disable sync negotiation for +all devices, eg. nosync:0xff. + +5.3.2) period +------------- + +:Syntax: period:ns + +`ns` is the minimum # of nanoseconds in a SCSI data transfer +period. Default is 500; acceptable values are 250 - 1000. + +5.3.3) disconnect +----------------- + +:Syntax: disconnect:x + +Specify x = 0 to never allow disconnects, 2 to always allow them. +x = 1 does 'adaptive' disconnects, which is the default and generally +the best choice. + +5.3.4) debug +------------ + +:Syntax: debug:x + +If `DEBUGGING_ON` is defined, x is a bit mask that causes various +types of debug output to printed - see the DB_xxx defines in +wd33c93.h. + +5.3.5) clock +------------ + +:Syntax: clock:x + +x = clock input in MHz for WD33c93 chip. Normal values would be from +8 through 20. The default value depends on your hostadapter(s), +default for the A3000 internal controller is 14, for the A2091 it's 8 +and for the GVP hostadapters it's either 8 or 14, depending on the +hostadapter and the SCSI-clock jumper present on some GVP +hostadapters. + +5.3.6) next +----------- + +No argument. Used to separate blocks of keywords when there's more +than one wd33c93-based host adapter in the system. + +5.3.7) nodma +------------ + +:Syntax: nodma:x + +If x is 1 (or if the option is just written as "nodma"), the WD33c93 +controller will not use DMA (= direct memory access) to access the +Amiga's memory. This is useful for some systems (like A3000's and +A4000's with the A3640 accelerator, revision 3.0) that have problems +using DMA to chip memory. The default is 0, i.e. to use DMA if +possible. + + +5.4) gvp11= +----------- + +:Syntax: gvp11= + +The earlier versions of the GVP driver did not handle DMA +address-mask settings correctly which made it necessary for some +people to use this option, in order to get their GVP controller +running under Linux. These problems have hopefully been solved and the +use of this option is now highly unrecommended! + +Incorrect use can lead to unpredictable behavior, so please only use +this option if you *know* what you are doing and have a reason to do +so. In any case if you experience problems and need to use this +option, please inform us about it by mailing to the Linux/68k kernel +mailing list. + +The address mask set by this option specifies which addresses are +valid for DMA with the GVP Series II SCSI controller. An address is +valid, if no bits are set except the bits that are set in the mask, +too. + +Some versions of the GVP can only DMA into a 24 bit address range, +some can address a 25 bit address range while others can use the whole +32 bit address range for DMA. The correct setting depends on your +controller and should be autodetected by the driver. An example is the +24 bit region which is specified by a mask of 0x00fffffe. diff --git a/Documentation/m68k/buddha-driver.rst b/Documentation/m68k/buddha-driver.rst deleted file mode 100644 index 20e4014139911..0000000000000 --- a/Documentation/m68k/buddha-driver.rst +++ /dev/null @@ -1,209 +0,0 @@ -===================================== -Amiga Buddha and Catweasel IDE Driver -===================================== - -The Amiga Buddha and Catweasel IDE Driver (part of ide.c) was written by -Geert Uytterhoeven based on the following specifications: - ------------------------------------------------------------------------- - -Register map of the Buddha IDE controller and the -Buddha-part of the Catweasel Zorro-II version - -The Autoconfiguration has been implemented just as Commodore -described in their manuals, no tricks have been used (for -example leaving some address lines out of the equations...). -If you want to configure the board yourself (for example let -a Linux kernel configure the card), look at the Commodore -Docs. Reading the nibbles should give this information:: - - Vendor number: 4626 ($1212) - product number: 0 (42 for Catweasel Z-II) - Serial number: 0 - Rom-vector: $1000 - -The card should be a Z-II board, size 64K, not for freemem -list, Rom-Vektor is valid, no second Autoconfig-board on the -same card, no space preference, supports "Shutup_forever". - -Setting the base address should be done in two steps, just -as the Amiga Kickstart does: The lower nibble of the 8-Bit -address is written to $4a, then the whole Byte is written to -$48, while it doesn't matter how often you're writing to $4a -as long as $48 is not touched. After $48 has been written, -the whole card disappears from $e8 and is mapped to the new -address just written. Make sure $4a is written before $48, -otherwise your chance is only 1:16 to find the board :-). - -The local memory-map is even active when mapped to $e8: - -============== =========================================== -$0-$7e Autokonfig-space, see Z-II docs. - -$80-$7fd reserved - -$7fe Speed-select Register: Read & Write - (description see further down) - -$800-$8ff IDE-Select 0 (Port 0, Register set 0) - -$900-$9ff IDE-Select 1 (Port 0, Register set 1) - -$a00-$aff IDE-Select 2 (Port 1, Register set 0) - -$b00-$bff IDE-Select 3 (Port 1, Register set 1) - -$c00-$cff IDE-Select 4 (Port 2, Register set 0, - Catweasel only!) - -$d00-$dff IDE-Select 5 (Port 3, Register set 1, - Catweasel only!) - -$e00-$eff local expansion port, on Catweasel Z-II the - Catweasel registers are also mapped here. - Never touch, use multidisk.device! - -$f00 read only, Byte-access: Bit 7 shows the - level of the IRQ-line of IDE port 0. - -$f01-$f3f mirror of $f00 - -$f40 read only, Byte-access: Bit 7 shows the - level of the IRQ-line of IDE port 1. - -$f41-$f7f mirror of $f40 - -$f80 read only, Byte-access: Bit 7 shows the - level of the IRQ-line of IDE port 2. - (Catweasel only!) - -$f81-$fbf mirror of $f80 - -$fc0 write-only: Writing any value to this - register enables IRQs to be passed from the - IDE ports to the Zorro bus. This mechanism - has been implemented to be compatible with - harddisks that are either defective or have - a buggy firmware and pull the IRQ line up - while starting up. If interrupts would - always be passed to the bus, the computer - might not start up. Once enabled, this flag - can not be disabled again. The level of the - flag can not be determined by software - (what for? Write to me if it's necessary!). - -$fc1-$fff mirror of $fc0 - -$1000-$ffff Buddha-Rom with offset $1000 in the rom - chip. The addresses $0 to $fff of the rom - chip cannot be read. Rom is Byte-wide and - mapped to even addresses. -============== =========================================== - -The IDE ports issue an INT2. You can read the level of the -IRQ-lines of the IDE-ports by reading from the three (two -for Buddha-only) registers $f00, $f40 and $f80. This way -more than one I/O request can be handled and you can easily -determine what driver has to serve the INT2. Buddha and -Catweasel expansion boards can issue an INT6. A separate -memory map is available for the I/O module and the sysop's -I/O module. - -The IDE ports are fed by the address lines A2 to A4, just as -the Amiga 1200 and Amiga 4000 IDE ports are. This way -existing drivers can be easily ported to Buddha. A move.l -polls two words out of the same address of IDE port since -every word is mirrored once. movem is not possible, but -it's not necessary either, because you can only speedup -68000 systems with this technique. A 68020 system with -fastmem is faster with move.l. - -If you're using the mirrored registers of the IDE-ports with -A6=1, the Buddha doesn't care about the speed that you have -selected in the speed register (see further down). With -A6=1 (for example $840 for port 0, register set 0), a 780ns -access is being made. These registers should be used for a -command access to the harddisk/CD-Rom, since command -accesses are Byte-wide and have to be made slower according -to the ATA-X3T9 manual. - -Now for the speed-register: The register is byte-wide, and -only the upper three bits are used (Bits 7 to 5). Bit 4 -must always be set to 1 to be compatible with later Buddha -versions (if I'll ever update this one). I presume that -I'll never use the lower four bits, but they have to be set -to 1 by definition. - -The values in this table have to be shifted 5 bits to the -left and or'd with $1f (this sets the lower 5 bits). - -All the timings have in common: Select and IOR/IOW rise at -the same time. IOR and IOW have a propagation delay of -about 30ns to the clocks on the Zorro bus, that's why the -values are no multiple of 71. One clock-cycle is 71ns long -(exactly 70,5 at 14,18 Mhz on PAL systems). - -value 0 (Default after reset) - 497ns Select (7 clock cycles) , IOR/IOW after 172ns (2 clock cycles) - (same timing as the Amiga 1200 does on it's IDE port without - accelerator card) - -value 1 - 639ns Select (9 clock cycles), IOR/IOW after 243ns (3 clock cycles) - -value 2 - 781ns Select (11 clock cycles), IOR/IOW after 314ns (4 clock cycles) - -value 3 - 355ns Select (5 clock cycles), IOR/IOW after 101ns (1 clock cycle) - -value 4 - 355ns Select (5 clock cycles), IOR/IOW after 172ns (2 clock cycles) - -value 5 - 355ns Select (5 clock cycles), IOR/IOW after 243ns (3 clock cycles) - -value 6 - 1065ns Select (15 clock cycles), IOR/IOW after 314ns (4 clock cycles) - -value 7 - 355ns Select, (5 clock cycles), IOR/IOW after 101ns (1 clock cycle) - -When accessing IDE registers with A6=1 (for example $84x), -the timing will always be mode 0 8-bit compatible, no matter -what you have selected in the speed register: - -781ns select, IOR/IOW after 4 clock cycles (=314ns) aktive. - -All the timings with a very short select-signal (the 355ns -fast accesses) depend on the accelerator card used in the -system: Sometimes two more clock cycles are inserted by the -bus interface, making the whole access 497ns long. This -doesn't affect the reliability of the controller nor the -performance of the card, since this doesn't happen very -often. - -All the timings are calculated and only confirmed by -measurements that allowed me to count the clock cycles. If -the system is clocked by an oscillator other than 28,37516 -Mhz (for example the NTSC-frequency 28,63636 Mhz), each -clock cycle is shortened to a bit less than 70ns (not worth -mentioning). You could think of a small performance boost -by overclocking the system, but you would either need a -multisync monitor, or a graphics card, and your internal -diskdrive would go crazy, that's why you shouldn't tune your -Amiga this way. - -Giving you the possibility to write software that is -compatible with both the Buddha and the Catweasel Z-II, The -Buddha acts just like a Catweasel Z-II with no device -connected to the third IDE-port. The IRQ-register $f80 -always shows a "no IRQ here" on the Buddha, and accesses to -the third IDE port are going into data's Nirwana on the -Buddha. - -Jens Schönfeld february 19th, 1997 - -updated may 27th, 1997 - -eMail: sysop@nostlgic.tng.oche.de diff --git a/Documentation/m68k/features.rst b/Documentation/m68k/features.rst deleted file mode 100644 index 5107a21194724..0000000000000 --- a/Documentation/m68k/features.rst +++ /dev/null @@ -1,3 +0,0 @@ -.. SPDX-License-Identifier: GPL-2.0 - -.. kernel-feat:: $srctree/Documentation/features m68k diff --git a/Documentation/m68k/index.rst b/Documentation/m68k/index.rst deleted file mode 100644 index 0f890dbb5fe27..0000000000000 --- a/Documentation/m68k/index.rst +++ /dev/null @@ -1,20 +0,0 @@ -.. SPDX-License-Identifier: GPL-2.0 - -================= -m68k Architecture -================= - -.. toctree:: - :maxdepth: 2 - - kernel-options - buddha-driver - - features - -.. only:: subproject and html - - Indices - ======= - - * :ref:`genindex` diff --git a/Documentation/m68k/kernel-options.rst b/Documentation/m68k/kernel-options.rst deleted file mode 100644 index 2008a20b43295..0000000000000 --- a/Documentation/m68k/kernel-options.rst +++ /dev/null @@ -1,911 +0,0 @@ -=================================== -Command Line Options for Linux/m68k -=================================== - -Last Update: 2 May 1999 - -Linux/m68k version: 2.2.6 - -Author: Roman.Hodek@informatik.uni-erlangen.de (Roman Hodek) - -Update: jds@kom.auc.dk (Jes Sorensen) and faq@linux-m68k.org (Chris Lawrence) - -0) Introduction -=============== - -Often I've been asked which command line options the Linux/m68k -kernel understands, or how the exact syntax for the ... option is, or -... about the option ... . I hope, this document supplies all the -answers... - -Note that some options might be outdated, their descriptions being -incomplete or missing. Please update the information and send in the -patches. - - -1) Overview of the Kernel's Option Processing -============================================= - -The kernel knows three kinds of options on its command line: - - 1) kernel options - 2) environment settings - 3) arguments for init - -To which of these classes an argument belongs is determined as -follows: If the option is known to the kernel itself, i.e. if the name -(the part before the '=') or, in some cases, the whole argument string -is known to the kernel, it belongs to class 1. Otherwise, if the -argument contains an '=', it is of class 2, and the definition is put -into init's environment. All other arguments are passed to init as -command line options. - -This document describes the valid kernel options for Linux/m68k in -the version mentioned at the start of this file. Later revisions may -add new such options, and some may be missing in older versions. - -In general, the value (the part after the '=') of an option is a -list of values separated by commas. The interpretation of these values -is up to the driver that "owns" the option. This association of -options with drivers is also the reason that some are further -subdivided. - - -2) General Kernel Options -========================= - -2.1) root= ----------- - -:Syntax: root=/dev/ -:or: root= - -This tells the kernel which device it should mount as the root -filesystem. The device must be a block device with a valid filesystem -on it. - -The first syntax gives the device by name. These names are converted -into a major/minor number internally in the kernel in an unusual way. -Normally, this "conversion" is done by the device files in /dev, but -this isn't possible here, because the root filesystem (with /dev) -isn't mounted yet... So the kernel parses the name itself, with some -hardcoded name to number mappings. The name must always be a -combination of two or three letters, followed by a decimal number. -Valid names are:: - - /dev/ram: -> 0x0100 (initial ramdisk) - /dev/hda: -> 0x0300 (first IDE disk) - /dev/hdb: -> 0x0340 (second IDE disk) - /dev/sda: -> 0x0800 (first SCSI disk) - /dev/sdb: -> 0x0810 (second SCSI disk) - /dev/sdc: -> 0x0820 (third SCSI disk) - /dev/sdd: -> 0x0830 (forth SCSI disk) - /dev/sde: -> 0x0840 (fifth SCSI disk) - /dev/fd : -> 0x0200 (floppy disk) - -The name must be followed by a decimal number, that stands for the -partition number. Internally, the value of the number is just -added to the device number mentioned in the table above. The -exceptions are /dev/ram and /dev/fd, where /dev/ram refers to an -initial ramdisk loaded by your bootstrap program (please consult the -instructions for your bootstrap program to find out how to load an -initial ramdisk). As of kernel version 2.0.18 you must specify -/dev/ram as the root device if you want to boot from an initial -ramdisk. For the floppy devices, /dev/fd, the number stands for the -floppy drive number (there are no partitions on floppy disks). I.e., -/dev/fd0 stands for the first drive, /dev/fd1 for the second, and so -on. Since the number is just added, you can also force the disk format -by adding a number greater than 3. If you look into your /dev -directory, use can see the /dev/fd0D720 has major 2 and minor 16. You -can specify this device for the root FS by writing "root=/dev/fd16" on -the kernel command line. - -[Strange and maybe uninteresting stuff ON] - -This unusual translation of device names has some strange -consequences: If, for example, you have a symbolic link from /dev/fd -to /dev/fd0D720 as an abbreviation for floppy driver #0 in DD format, -you cannot use this name for specifying the root device, because the -kernel cannot see this symlink before mounting the root FS and it -isn't in the table above. If you use it, the root device will not be -set at all, without an error message. Another example: You cannot use a -partition on e.g. the sixth SCSI disk as the root filesystem, if you -want to specify it by name. This is, because only the devices up to -/dev/sde are in the table above, but not /dev/sdf. Although, you can -use the sixth SCSI disk for the root FS, but you have to specify the -device by number... (see below). Or, even more strange, you can use the -fact that there is no range checking of the partition number, and your -knowledge that each disk uses 16 minors, and write "root=/dev/sde17" -(for /dev/sdf1). - -[Strange and maybe uninteresting stuff OFF] - -If the device containing your root partition isn't in the table -above, you can also specify it by major and minor numbers. These are -written in hex, with no prefix and no separator between. E.g., if you -have a CD with contents appropriate as a root filesystem in the first -SCSI CD-ROM drive, you boot from it by "root=0b00". Here, hex "0b" = -decimal 11 is the major of SCSI CD-ROMs, and the minor 0 stands for -the first of these. You can find out all valid major numbers by -looking into include/linux/major.h. - -In addition to major and minor numbers, if the device containing your -root partition uses a partition table format with unique partition -identifiers, then you may use them. For instance, -"root=PARTUUID=00112233-4455-6677-8899-AABBCCDDEEFF". It is also -possible to reference another partition on the same device using a -known partition UUID as the starting point. For example, -if partition 5 of the device has the UUID of -00112233-4455-6677-8899-AABBCCDDEEFF then partition 3 may be found as -follows: - - PARTUUID=00112233-4455-6677-8899-AABBCCDDEEFF/PARTNROFF=-2 - -Authoritative information can be found in -"Documentation/admin-guide/kernel-parameters.rst". - - -2.2) ro, rw ------------ - -:Syntax: ro -:or: rw - -These two options tell the kernel whether it should mount the root -filesystem read-only or read-write. The default is read-only, except -for ramdisks, which default to read-write. - - -2.3) debug ----------- - -:Syntax: debug - -This raises the kernel log level to 10 (the default is 7). This is the -same level as set by the "dmesg" command, just that the maximum level -selectable by dmesg is 8. - - -2.4) debug= ------------ - -:Syntax: debug= - -This option causes certain kernel messages be printed to the selected -debugging device. This can aid debugging the kernel, since the -messages can be captured and analyzed on some other machine. Which -devices are possible depends on the machine type. There are no checks -for the validity of the device name. If the device isn't implemented, -nothing happens. - -Messages logged this way are in general stack dumps after kernel -memory faults or bad kernel traps, and kernel panics. To be exact: all -messages of level 0 (panic messages) and all messages printed while -the log level is 8 or more (their level doesn't matter). Before stack -dumps, the kernel sets the log level to 10 automatically. A level of -at least 8 can also be set by the "debug" command line option (see -2.3) and at run time with "dmesg -n 8". - -Devices possible for Amiga: - - - "ser": - built-in serial port; parameters: 9600bps, 8N1 - - "mem": - Save the messages to a reserved area in chip mem. After - rebooting, they can be read under AmigaOS with the tool - 'dmesg'. - -Devices possible for Atari: - - - "ser1": - ST-MFP serial port ("Modem1"); parameters: 9600bps, 8N1 - - "ser2": - SCC channel B serial port ("Modem2"); parameters: 9600bps, 8N1 - - "ser" : - default serial port - This is "ser2" for a Falcon, and "ser1" for any other machine - - "midi": - The MIDI port; parameters: 31250bps, 8N1 - - "par" : - parallel port - - The printing routine for this implements a timeout for the - case there's no printer connected (else the kernel would - lock up). The timeout is not exact, but usually a few - seconds. - - -2.6) ramdisk_size= ------------------- - -:Syntax: ramdisk_size= - -This option instructs the kernel to set up a ramdisk of the given -size in KBytes. Do not use this option if the ramdisk contents are -passed by bootstrap! In this case, the size is selected automatically -and should not be overwritten. - -The only application is for root filesystems on floppy disks, that -should be loaded into memory. To do that, select the corresponding -size of the disk as ramdisk size, and set the root device to the disk -drive (with "root="). - - -2.7) swap= - - I can't find any sign of this option in 2.2.6. - -2.8) buff= ------------ - - I can't find any sign of this option in 2.2.6. - - -3) General Device Options (Amiga and Atari) -=========================================== - -3.1) ether= ------------ - -:Syntax: ether=[[,[,[,]]]], - - is the name of a net driver, as specified in -drivers/net/Space.c in the Linux source. Most prominent are eth0, ... -eth3, sl0, ... sl3, ppp0, ..., ppp3, dummy, and lo. - -The non-ethernet drivers (sl, ppp, dummy, lo) obviously ignore the -settings by this options. Also, the existing ethernet drivers for -Linux/m68k (ariadne, a2065, hydra) don't use them because Zorro boards -are really Plug-'n-Play, so the "ether=" option is useless altogether -for Linux/m68k. - - -3.2) hd= --------- - -:Syntax: hd=,, - -This option sets the disk geometry of an IDE disk. The first hd= -option is for the first IDE disk, the second for the second one. -(I.e., you can give this option twice.) In most cases, you won't have -to use this option, since the kernel can obtain the geometry data -itself. It exists just for the case that this fails for one of your -disks. - - -3.3) max_scsi_luns= -------------------- - -:Syntax: max_scsi_luns= - -Sets the maximum number of LUNs (logical units) of SCSI devices to -be scanned. Valid values for are between 1 and 8. Default is 8 if -"Probe all LUNs on each SCSI device" was selected during the kernel -configuration, else 1. - - -3.4) st= --------- - -:Syntax: st=,[,[]] - -Sets several parameters of the SCSI tape driver. is -the number of 512-byte buffers reserved for tape operations for each -device. sets the number of blocks which must be filled -to start an actual write operation to the tape. Maximum value is the -total number of buffers. limits the total number of -buffers allocated for all tape devices. - - -3.5) dmasound= --------------- - -:Syntax: dmasound=[,[,]] - -This option controls some configurations of the Linux/m68k DMA sound -driver (Amiga and Atari): is the number of buffers you want -to use (minimum 4, default 4), is the size of each -buffer in kilobytes (minimum 4, default 32) and says -how much percent of error will be tolerated when setting a frequency -(maximum 10, default 0). For example with 3% you can play 8000Hz -AU-Files on the Falcon with its hardware frequency of 8195Hz and thus -don't need to expand the sound. - - - -4) Options for Atari Only -========================= - -4.1) video= ------------ - -:Syntax: video=: - -The parameter specifies the name of the frame buffer, -eg. most atari users will want to specify `atafb` here. The - is a comma-separated list of the sub-options listed -below. - -NB: - Please notice that this option was renamed from `atavideo` to - `video` during the development of the 1.3.x kernels, thus you - might need to update your boot-scripts if upgrading to 2.x from - an 1.2.x kernel. - -NBB: - The behavior of video= was changed in 2.1.57 so the recommended - option is to specify the name of the frame buffer. - -4.1.1) Video Mode ------------------ - -This sub-option may be any of the predefined video modes, as listed -in atari/atafb.c in the Linux/m68k source tree. The kernel will -activate the given video mode at boot time and make it the default -mode, if the hardware allows. Currently defined names are: - - - stlow : 320x200x4 - - stmid, default5 : 640x200x2 - - sthigh, default4: 640x400x1 - - ttlow : 320x480x8, TT only - - ttmid, default1 : 640x480x4, TT only - - tthigh, default2: 1280x960x1, TT only - - vga2 : 640x480x1, Falcon only - - vga4 : 640x480x2, Falcon only - - vga16, default3 : 640x480x4, Falcon only - - vga256 : 640x480x8, Falcon only - - falh2 : 896x608x1, Falcon only - - falh16 : 896x608x4, Falcon only - -If no video mode is given on the command line, the kernel tries the -modes names "default" in turn, until one is possible with the -hardware in use. - -A video mode setting doesn't make sense, if the external driver is -activated by a "external:" sub-option. - -4.1.2) inverse --------------- - -Invert the display. This affects only text consoles. -Usually, the background is chosen to be black. With this -option, you can make the background white. - -4.1.3) font ------------ - -:Syntax: font: - -Specify the font to use in text modes. Currently you can choose only -between `VGA8x8`, `VGA8x16` and `PEARL8x8`. `VGA8x8` is default, if the -vertical size of the display is less than 400 pixel rows. Otherwise, the -`VGA8x16` font is the default. - -4.1.4) `hwscroll_` ------------------- - -:Syntax: `hwscroll_` - -The number of additional lines of video memory to reserve for -speeding up the scrolling ("hardware scrolling"). Hardware scrolling -is possible only if the kernel can set the video base address in steps -fine enough. This is true for STE, MegaSTE, TT, and Falcon. It is not -possible with plain STs and graphics cards (The former because the -base address must be on a 256 byte boundary there, the latter because -the kernel doesn't know how to set the base address at all.) - -By default, is set to the number of visible text lines on the -display. Thus, the amount of video memory is doubled, compared to no -hardware scrolling. You can turn off the hardware scrolling altogether -by setting to 0. - -4.1.5) internal: ----------------- - -:Syntax: internal:;[;;;] - -This option specifies the capabilities of some extended internal video -hardware, like e.g. OverScan. and give the (extended) -dimensions of the screen. - -If your OverScan needs a black border, you have to write the last -three arguments of the "internal:". is the maximum line -length the hardware allows, the maximum number of lines. - is the offset of the visible part of the screen memory to its -physical start, in bytes. - -Often, extended interval video hardware has to be activated somehow. -For this, see the "sw_*" options below. - -4.1.6) external: ----------------- - -:Syntax: - external:;;;;[;[; - [;[;[;]]]]] - -.. I had to break this line... - -This is probably the most complicated parameter... It specifies that -you have some external video hardware (a graphics board), and how to -use it under Linux/m68k. The kernel cannot know more about the hardware -than you tell it here! The kernel also is unable to set or change any -video modes, since it doesn't know about any board internal. So, you -have to switch to that video mode before you start Linux, and cannot -switch to another mode once Linux has started. - -The first 3 parameters of this sub-option should be obvious: , - and give the dimensions of the screen and the number of -planes (depth). The depth is the logarithm to base 2 of the number -of colors possible. (Or, the other way round: The number of colors is -2^depth). - -You have to tell the kernel furthermore how the video memory is -organized. This is done by a letter as parameter: - - 'n': - "normal planes", i.e. one whole plane after another - 'i': - "interleaved planes", i.e. 16 bit of the first plane, than 16 bit - of the next, and so on... This mode is used only with the - built-in Atari video modes, I think there is no card that - supports this mode. - 'p': - "packed pixels", i.e. consecutive bits stand for all - planes of one pixel; this is the most common mode for 8 planes - (256 colors) on graphic cards - 't': - "true color" (more or less packed pixels, but without a color - lookup table); usually depth is 24 - -For monochrome modes (i.e., is 1), the letter has a -different meaning: - - 'n': - normal colors, i.e. 0=white, 1=black - 'i': - inverted colors, i.e. 0=black, 1=white - -The next important information about the video hardware is the base -address of the video memory. That is given in the parameter, -as a hexadecimal number with a "0x" prefix. You have to find out this -address in the documentation of your hardware. - -The next parameter, , tells the kernel about the size of the -video memory. If it's missing, the size is calculated from , -, and . For now, it is not useful to write a value here. -It would be used only for hardware scrolling (which isn't possible -with the external driver, because the kernel cannot set the video base -address), or for virtual resolutions under X (which the X server -doesn't support yet). So, it's currently best to leave this field -empty, either by ending the "external:" after the video address or by -writing two consecutive semicolons, if you want to give a -(it is allowed to leave this parameter empty). - -The parameter is optional. If it is not given, the kernel -cannot read or write any color registers of the video hardware, and -thus you have to set appropriate colors before you start Linux. But if -your card is somehow VGA compatible, you can tell the kernel the base -address of the VGA register set, so it can change the color lookup -table. You have to look up this address in your board's documentation. -To avoid misunderstandings: is the _base_ address, i.e. a 4k -aligned address. For read/writing the color registers, the kernel -uses the addresses vgabase+0x3c7...vgabase+0x3c9. The -parameter is written in hexadecimal with a "0x" prefix, just as -. - - is meaningful only if is specified. It tells the -kernel how wide each of the color register is, i.e. the number of bits -per single color (red/green/blue). Default is 6, another quite usual -value is 8. - -Also is used together with . It tells the kernel -about the color register model of your gfx board. Currently, the types -"vga" (which is also the default) and "mv300" (SANG MV300) are -implemented. - -Parameter is required for ProMST or ET4000 cards where -the physical linelength differs from the visible length. With ProMST, -xres_virtual must be set to 2048. For ET4000, xres_virtual depends on the -initialisation of the video-card. -If you're missing a corresponding yres_virtual: the external part is legacy, -therefore we don't support hardware-dependent functions like hardware-scroll, -panning or blanking. - -4.1.7) eclock: --------------- - -The external pixel clock attached to the Falcon VIDEL shifter. This -currently works only with the ScreenWonder! - -4.1.8) monitorcap: -------------------- - -:Syntax: monitorcap:;;; - -This describes the capabilities of a multisync monitor. Don't use it -with a fixed-frequency monitor! For now, only the Falcon frame buffer -uses the settings of "monitorcap:". - - and are the minimum and maximum, resp., vertical frequencies -your monitor can work with, in Hz. and are the same for -the horizontal frequency, in kHz. - - The defaults are 58;62;31;32 (VGA compatible). - - The defaults for TV/SC1224/SC1435 cover both PAL and NTSC standards. - -4.1.9) keep ------------- - -If this option is given, the framebuffer device doesn't do any video -mode calculations and settings on its own. The only Atari fb device -that does this currently is the Falcon. - -What you reach with this: Settings for unknown video extensions -aren't overridden by the driver, so you can still use the mode found -when booting, when the driver doesn't know to set this mode itself. -But this also means, that you can't switch video modes anymore... - -An example where you may want to use "keep" is the ScreenBlaster for -the Falcon. - - -4.2) atamouse= --------------- - -:Syntax: atamouse=,[] - -With this option, you can set the mouse movement reporting threshold. -This is the number of pixels of mouse movement that have to accumulate -before the IKBD sends a new mouse packet to the kernel. Higher values -reduce the mouse interrupt load and thus reduce the chance of keyboard -overruns. Lower values give a slightly faster mouse responses and -slightly better mouse tracking. - -You can set the threshold in x and y separately, but usually this is -of little practical use. If there's just one number in the option, it -is used for both dimensions. The default value is 2 for both -thresholds. - - -4.3) ataflop= -------------- - -:Syntax: ataflop=[,[,[,]]] - - The drive type may be 0, 1, or 2, for DD, HD, and ED, resp. This - setting affects how many buffers are reserved and which formats are - probed (see also below). The default is 1 (HD). Only one drive type - can be selected. If you have two disk drives, select the "better" - type. - - The second parameter tells the kernel whether to use - track buffering (1) or not (0). The default is machine-dependent: - no for the Medusa and yes for all others. - - With the two following parameters, you can change the default - steprate used for drive A and B, resp. - - -4.4) atascsi= -------------- - -:Syntax: atascsi=[,[,[,[,]]]] - -This option sets some parameters for the Atari native SCSI driver. -Generally, any number of arguments can be omitted from the end. And -for each of the numbers, a negative value means "use default". The -defaults depend on whether TT-style or Falcon-style SCSI is used. -Below, defaults are noted as n/m, where the first value refers to -TT-SCSI and the latter to Falcon-SCSI. If an illegal value is given -for one parameter, an error message is printed and that one setting is -ignored (others aren't affected). - - : - This is the maximum number of SCSI commands queued internally to the - Atari SCSI driver. A value of 1 effectively turns off the driver - internal multitasking (if it causes problems). Legal values are >= - 1. can be as high as you like, but values greater than - times the number of SCSI targets (LUNs) you have - don't make sense. Default: 16/8. - - : - Maximum number of SCSI commands issued to the driver for one - logical unit (LUN, usually one SCSI target). Legal values start - from 1. If tagged queuing (see below) is not used, values greater - than 2 don't make sense, but waste memory. Otherwise, the maximum - is the number of command tags available to the driver (currently - 32). Default: 8/1. (Note: Values > 1 seem to cause problems on a - Falcon, cause not yet known.) - - The value at a great part determines the amount of - memory SCSI reserves for itself. The formula is rather - complicated, but I can give you some hints: - - no scatter-gather: - cmd_per_lun * 232 bytes - full scatter-gather: - cmd_per_lun * approx. 17 Kbytes - - : - Size of the scatter-gather table, i.e. the number of requests - consecutive on the disk that can be merged into one SCSI command. - Legal values are between 0 and 255. Default: 255/0. Note: This - value is forced to 0 on a Falcon, since scatter-gather isn't - possible with the ST-DMA. Not using scatter-gather hurts - performance significantly. - - : - The SCSI ID to be used by the initiator (your Atari). This is - usually 7, the highest possible ID. Every ID on the SCSI bus must - be unique. Default: determined at run time: If the NV-RAM checksum - is valid, and bit 7 in byte 30 of the NV-RAM is set, the lower 3 - bits of this byte are used as the host ID. (This method is defined - by Atari and also used by some TOS HD drivers.) If the above - isn't given, the default ID is 7. (both, TT and Falcon). - - : - 0 means turn off tagged queuing support, all other values > 0 mean - use tagged queuing for targets that support it. Default: currently - off, but this may change when tagged queuing handling has been - proved to be reliable. - - Tagged queuing means that more than one command can be issued to - one LUN, and the SCSI device itself orders the requests so they - can be performed in optimal order. Not all SCSI devices support - tagged queuing (:-(). - -4.5 switches= -------------- - -:Syntax: switches= - -With this option you can switch some hardware lines that are often -used to enable/disable certain hardware extensions. Examples are -OverScan, overclocking, ... - -The is a comma-separated list of the following -items: - - ikbd: - set RTS of the keyboard ACIA high - midi: - set RTS of the MIDI ACIA high - snd6: - set bit 6 of the PSG port A - snd7: - set bit 6 of the PSG port A - -It doesn't make sense to mention a switch more than once (no -difference to only once), but you can give as many switches as you -want to enable different features. The switch lines are set as early -as possible during kernel initialization (even before determining the -present hardware.) - -All of the items can also be prefixed with `ov_`, i.e. `ov_ikbd`, -`ov_midi`, ... These options are meant for switching on an OverScan -video extension. The difference to the bare option is that the -switch-on is done after video initialization, and somehow synchronized -to the HBLANK. A speciality is that ov_ikbd and ov_midi are switched -off before rebooting, so that OverScan is disabled and TOS boots -correctly. - -If you give an option both, with and without the `ov_` prefix, the -earlier initialization (`ov_`-less) takes precedence. But the -switching-off on reset still happens in this case. - -5) Options for Amiga Only: -========================== - -5.1) video= ------------ - -:Syntax: video=: - -The parameter specifies the name of the frame buffer, valid -options are `amifb`, `cyber`, 'virge', `retz3` and `clgen`, provided -that the respective frame buffer devices have been compiled into the -kernel (or compiled as loadable modules). The behavior of the -option was changed in 2.1.57 so it is now recommended to specify this -option. - -The is a comma-separated list of the sub-options listed -below. This option is organized similar to the Atari version of the -"video"-option (4.1), but knows fewer sub-options. - -5.1.1) video mode ------------------ - -Again, similar to the video mode for the Atari (see 4.1.1). Predefined -modes depend on the used frame buffer device. - -OCS, ECS and AGA machines all use the color frame buffer. The following -predefined video modes are available: - -NTSC modes: - - ntsc : 640x200, 15 kHz, 60 Hz - - ntsc-lace : 640x400, 15 kHz, 60 Hz interlaced - -PAL modes: - - pal : 640x256, 15 kHz, 50 Hz - - pal-lace : 640x512, 15 kHz, 50 Hz interlaced - -ECS modes: - - multiscan : 640x480, 29 kHz, 57 Hz - - multiscan-lace : 640x960, 29 kHz, 57 Hz interlaced - - euro36 : 640x200, 15 kHz, 72 Hz - - euro36-lace : 640x400, 15 kHz, 72 Hz interlaced - - euro72 : 640x400, 29 kHz, 68 Hz - - euro72-lace : 640x800, 29 kHz, 68 Hz interlaced - - super72 : 800x300, 23 kHz, 70 Hz - - super72-lace : 800x600, 23 kHz, 70 Hz interlaced - - dblntsc-ff : 640x400, 27 kHz, 57 Hz - - dblntsc-lace : 640x800, 27 kHz, 57 Hz interlaced - - dblpal-ff : 640x512, 27 kHz, 47 Hz - - dblpal-lace : 640x1024, 27 kHz, 47 Hz interlaced - - dblntsc : 640x200, 27 kHz, 57 Hz doublescan - - dblpal : 640x256, 27 kHz, 47 Hz doublescan - -VGA modes: - - vga : 640x480, 31 kHz, 60 Hz - - vga70 : 640x400, 31 kHz, 70 Hz - -Please notice that the ECS and VGA modes require either an ECS or AGA -chipset, and that these modes are limited to 2-bit color for the ECS -chipset and 8-bit color for the AGA chipset. - -5.1.2) depth ------------- - -:Syntax: depth: - -Specify the number of bit-planes for the selected video-mode. - -5.1.3) inverse --------------- - -Use inverted display (black on white). Functionally the same as the -"inverse" sub-option for the Atari. - -5.1.4) font ------------ - -:Syntax: font: - -Specify the font to use in text modes. Functionally the same as the -"font" sub-option for the Atari, except that `PEARL8x8` is used instead -of `VGA8x8` if the vertical size of the display is less than 400 pixel -rows. - -5.1.5) monitorcap: -------------------- - -:Syntax: monitorcap:;;; - -This describes the capabilities of a multisync monitor. For now, only -the color frame buffer uses the settings of "monitorcap:". - - and are the minimum and maximum, resp., vertical frequencies -your monitor can work with, in Hz. and are the same for -the horizontal frequency, in kHz. - -The defaults are 50;90;15;38 (Generic Amiga multisync monitor). - - -5.2) fd_def_df0= ----------------- - -:Syntax: fd_def_df0= - -Sets the df0 value for "silent" floppy drives. The value should be in -hexadecimal with "0x" prefix. - - -5.3) wd33c93= -------------- - -:Syntax: wd33c93= - -These options affect the A590/A2091, A3000 and GVP Series II SCSI -controllers. - -The is a comma-separated list of the sub-options listed -below. - -5.3.1) nosync -------------- - -:Syntax: nosync:bitmask - -bitmask is a byte where the 1st 7 bits correspond with the 7 -possible SCSI devices. Set a bit to prevent sync negotiation on that -device. To maintain backwards compatibility, a command-line such as -"wd33c93=255" will be automatically translated to -"wd33c93=nosync:0xff". The default is to disable sync negotiation for -all devices, eg. nosync:0xff. - -5.3.2) period -------------- - -:Syntax: period:ns - -`ns` is the minimum # of nanoseconds in a SCSI data transfer -period. Default is 500; acceptable values are 250 - 1000. - -5.3.3) disconnect ------------------ - -:Syntax: disconnect:x - -Specify x = 0 to never allow disconnects, 2 to always allow them. -x = 1 does 'adaptive' disconnects, which is the default and generally -the best choice. - -5.3.4) debug ------------- - -:Syntax: debug:x - -If `DEBUGGING_ON` is defined, x is a bit mask that causes various -types of debug output to printed - see the DB_xxx defines in -wd33c93.h. - -5.3.5) clock ------------- - -:Syntax: clock:x - -x = clock input in MHz for WD33c93 chip. Normal values would be from -8 through 20. The default value depends on your hostadapter(s), -default for the A3000 internal controller is 14, for the A2091 it's 8 -and for the GVP hostadapters it's either 8 or 14, depending on the -hostadapter and the SCSI-clock jumper present on some GVP -hostadapters. - -5.3.6) next ------------ - -No argument. Used to separate blocks of keywords when there's more -than one wd33c93-based host adapter in the system. - -5.3.7) nodma ------------- - -:Syntax: nodma:x - -If x is 1 (or if the option is just written as "nodma"), the WD33c93 -controller will not use DMA (= direct memory access) to access the -Amiga's memory. This is useful for some systems (like A3000's and -A4000's with the A3640 accelerator, revision 3.0) that have problems -using DMA to chip memory. The default is 0, i.e. to use DMA if -possible. - - -5.4) gvp11= ------------ - -:Syntax: gvp11= - -The earlier versions of the GVP driver did not handle DMA -address-mask settings correctly which made it necessary for some -people to use this option, in order to get their GVP controller -running under Linux. These problems have hopefully been solved and the -use of this option is now highly unrecommended! - -Incorrect use can lead to unpredictable behavior, so please only use -this option if you *know* what you are doing and have a reason to do -so. In any case if you experience problems and need to use this -option, please inform us about it by mailing to the Linux/68k kernel -mailing list. - -The address mask set by this option specifies which addresses are -valid for DMA with the GVP Series II SCSI controller. An address is -valid, if no bits are set except the bits that are set in the mask, -too. - -Some versions of the GVP can only DMA into a 24 bit address range, -some can address a 25 bit address range while others can use the whole -32 bit address range for DMA. The correct setting depends on your -controller and should be autodetected by the driver. An example is the -24 bit region which is specified by a mask of 0x00fffffe. diff --git a/arch/m68k/Kconfig.machine b/arch/m68k/Kconfig.machine index e2f961208f18b..28eebabfd34bc 100644 --- a/arch/m68k/Kconfig.machine +++ b/arch/m68k/Kconfig.machine @@ -11,7 +11,7 @@ config AMIGA help This option enables support for the Amiga series of computers. If you plan to use this kernel on an Amiga, say Y here and browse the - material available in ; otherwise say N. + material available in ; otherwise say N. config ATARI bool "Atari support" @@ -23,7 +23,7 @@ config ATARI This option enables support for the 68000-based Atari series of computers (including the TT, Falcon and Medusa). If you plan to use this kernel on an Atari, say Y here and browse the material - available in ; otherwise say N. + available in ; otherwise say N. config ATARI_KBD_CORE bool