From: Paolo Bonzini Date: Tue, 6 Oct 2020 07:05:29 +0000 (+0200) Subject: exec: split out non-softmmu-specific parts X-Git-Url: http://git.maquefel.me/?a=commitdiff_plain;h=d9f24bf57241453e078dba28d16fe3a430f06da1;p=qemu.git exec: split out non-softmmu-specific parts Over the years, most parts of exec.c that were not specific to softmmu have been moved to accel/tcg; what's left is mostly the low-level part of the memory API, which includes RAMBlock and AddressSpaceDispatch. However exec.c also hosts 4-500 lines of code for the target specific parts of the CPU QOM object, plus a few functions for user-mode emulation that do not have a better place (they are not TCG-specific so accel/tcg/user-exec.c is not a good place either). Move these parts to a new file, so that exec.c can be moved to softmmu/physmem.c. Signed-off-by: Paolo Bonzini --- diff --git a/MAINTAINERS b/MAINTAINERS index dda54f000d..7ef459a33c 100644 --- a/MAINTAINERS +++ b/MAINTAINERS @@ -117,7 +117,6 @@ R: Paolo Bonzini S: Maintained F: softmmu/cpus.c F: cpus-common.c -F: exec.c F: accel/tcg/ F: accel/stubs/tcg-stub.c F: scripts/decodetree.py @@ -1525,6 +1524,7 @@ Machine core M: Eduardo Habkost M: Marcel Apfelbaum S: Supported +F: cpu.c F: hw/core/cpu.c F: hw/core/machine-qmp-cmds.c F: hw/core/machine.c @@ -2284,8 +2284,8 @@ F: include/exec/ramblock.h F: softmmu/dma-helpers.c F: softmmu/ioport.c F: softmmu/memory.c +F: softmmu/physmem.c F: include/exec/memory-internal.h -F: exec.c F: scripts/coccinelle/memory-region-housekeeping.cocci SPICE diff --git a/cpu.c b/cpu.c new file mode 100644 index 0000000000..0be5dcb6f3 --- /dev/null +++ b/cpu.c @@ -0,0 +1,452 @@ +/* + * Target-specific parts of the CPU object + * + * Copyright (c) 2003 Fabrice Bellard + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see . + */ + +#include "qemu/osdep.h" +#include "qemu-common.h" +#include "qapi/error.h" + +#include "exec/target_page.h" +#include "hw/qdev-core.h" +#include "hw/qdev-properties.h" +#include "qemu/error-report.h" +#include "migration/vmstate.h" +#ifdef CONFIG_USER_ONLY +#include "qemu.h" +#else +#include "exec/address-spaces.h" +#endif +#include "sysemu/tcg.h" +#include "sysemu/kvm.h" +#include "sysemu/replay.h" +#include "translate-all.h" +#include "exec/log.h" + +uintptr_t qemu_host_page_size; +intptr_t qemu_host_page_mask; + +#ifndef CONFIG_USER_ONLY +static int cpu_common_post_load(void *opaque, int version_id) +{ + CPUState *cpu = opaque; + + /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the + version_id is increased. */ + cpu->interrupt_request &= ~0x01; + tlb_flush(cpu); + + /* loadvm has just updated the content of RAM, bypassing the + * usual mechanisms that ensure we flush TBs for writes to + * memory we've translated code from. So we must flush all TBs, + * which will now be stale. + */ + tb_flush(cpu); + + return 0; +} + +static int cpu_common_pre_load(void *opaque) +{ + CPUState *cpu = opaque; + + cpu->exception_index = -1; + + return 0; +} + +static bool cpu_common_exception_index_needed(void *opaque) +{ + CPUState *cpu = opaque; + + return tcg_enabled() && cpu->exception_index != -1; +} + +static const VMStateDescription vmstate_cpu_common_exception_index = { + .name = "cpu_common/exception_index", + .version_id = 1, + .minimum_version_id = 1, + .needed = cpu_common_exception_index_needed, + .fields = (VMStateField[]) { + VMSTATE_INT32(exception_index, CPUState), + VMSTATE_END_OF_LIST() + } +}; + +static bool cpu_common_crash_occurred_needed(void *opaque) +{ + CPUState *cpu = opaque; + + return cpu->crash_occurred; +} + +static const VMStateDescription vmstate_cpu_common_crash_occurred = { + .name = "cpu_common/crash_occurred", + .version_id = 1, + .minimum_version_id = 1, + .needed = cpu_common_crash_occurred_needed, + .fields = (VMStateField[]) { + VMSTATE_BOOL(crash_occurred, CPUState), + VMSTATE_END_OF_LIST() + } +}; + +const VMStateDescription vmstate_cpu_common = { + .name = "cpu_common", + .version_id = 1, + .minimum_version_id = 1, + .pre_load = cpu_common_pre_load, + .post_load = cpu_common_post_load, + .fields = (VMStateField[]) { + VMSTATE_UINT32(halted, CPUState), + VMSTATE_UINT32(interrupt_request, CPUState), + VMSTATE_END_OF_LIST() + }, + .subsections = (const VMStateDescription*[]) { + &vmstate_cpu_common_exception_index, + &vmstate_cpu_common_crash_occurred, + NULL + } +}; +#endif + +void cpu_exec_unrealizefn(CPUState *cpu) +{ + CPUClass *cc = CPU_GET_CLASS(cpu); + + tlb_destroy(cpu); + cpu_list_remove(cpu); + +#ifdef CONFIG_USER_ONLY + assert(cc->vmsd == NULL); +#else + if (cc->vmsd != NULL) { + vmstate_unregister(NULL, cc->vmsd, cpu); + } + if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { + vmstate_unregister(NULL, &vmstate_cpu_common, cpu); + } + tcg_iommu_free_notifier_list(cpu); +#endif +} + +Property cpu_common_props[] = { +#ifndef CONFIG_USER_ONLY + /* Create a memory property for softmmu CPU object, + * so users can wire up its memory. (This can't go in hw/core/cpu.c + * because that file is compiled only once for both user-mode + * and system builds.) The default if no link is set up is to use + * the system address space. + */ + DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION, + MemoryRegion *), +#endif + DEFINE_PROP_BOOL("start-powered-off", CPUState, start_powered_off, false), + DEFINE_PROP_END_OF_LIST(), +}; + +void cpu_exec_initfn(CPUState *cpu) +{ + cpu->as = NULL; + cpu->num_ases = 0; + +#ifndef CONFIG_USER_ONLY + cpu->thread_id = qemu_get_thread_id(); + cpu->memory = get_system_memory(); + object_ref(OBJECT(cpu->memory)); +#endif +} + +void cpu_exec_realizefn(CPUState *cpu, Error **errp) +{ + CPUClass *cc = CPU_GET_CLASS(cpu); + static bool tcg_target_initialized; + + cpu_list_add(cpu); + + if (tcg_enabled() && !tcg_target_initialized) { + tcg_target_initialized = true; + cc->tcg_initialize(); + } + tlb_init(cpu); + + qemu_plugin_vcpu_init_hook(cpu); + +#ifdef CONFIG_USER_ONLY + assert(cc->vmsd == NULL); +#else /* !CONFIG_USER_ONLY */ + if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { + vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu); + } + if (cc->vmsd != NULL) { + vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu); + } + + tcg_iommu_init_notifier_list(cpu); +#endif +} + +const char *parse_cpu_option(const char *cpu_option) +{ + ObjectClass *oc; + CPUClass *cc; + gchar **model_pieces; + const char *cpu_type; + + model_pieces = g_strsplit(cpu_option, ",", 2); + if (!model_pieces[0]) { + error_report("-cpu option cannot be empty"); + exit(1); + } + + oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]); + if (oc == NULL) { + error_report("unable to find CPU model '%s'", model_pieces[0]); + g_strfreev(model_pieces); + exit(EXIT_FAILURE); + } + + cpu_type = object_class_get_name(oc); + cc = CPU_CLASS(oc); + cc->parse_features(cpu_type, model_pieces[1], &error_fatal); + g_strfreev(model_pieces); + return cpu_type; +} + +#if defined(CONFIG_USER_ONLY) +void tb_invalidate_phys_addr(target_ulong addr) +{ + mmap_lock(); + tb_invalidate_phys_page_range(addr, addr + 1); + mmap_unlock(); +} + +static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) +{ + tb_invalidate_phys_addr(pc); +} +#else +void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs) +{ + ram_addr_t ram_addr; + MemoryRegion *mr; + hwaddr l = 1; + + if (!tcg_enabled()) { + return; + } + + RCU_READ_LOCK_GUARD(); + mr = address_space_translate(as, addr, &addr, &l, false, attrs); + if (!(memory_region_is_ram(mr) + || memory_region_is_romd(mr))) { + return; + } + ram_addr = memory_region_get_ram_addr(mr) + addr; + tb_invalidate_phys_page_range(ram_addr, ram_addr + 1); +} + +static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) +{ + /* + * There may not be a virtual to physical translation for the pc + * right now, but there may exist cached TB for this pc. + * Flush the whole TB cache to force re-translation of such TBs. + * This is heavyweight, but we're debugging anyway. + */ + tb_flush(cpu); +} +#endif + +/* Add a breakpoint. */ +int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, + CPUBreakpoint **breakpoint) +{ + CPUBreakpoint *bp; + + bp = g_malloc(sizeof(*bp)); + + bp->pc = pc; + bp->flags = flags; + + /* keep all GDB-injected breakpoints in front */ + if (flags & BP_GDB) { + QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); + } else { + QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); + } + + breakpoint_invalidate(cpu, pc); + + if (breakpoint) { + *breakpoint = bp; + } + return 0; +} + +/* Remove a specific breakpoint. */ +int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) +{ + CPUBreakpoint *bp; + + QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { + if (bp->pc == pc && bp->flags == flags) { + cpu_breakpoint_remove_by_ref(cpu, bp); + return 0; + } + } + return -ENOENT; +} + +/* Remove a specific breakpoint by reference. */ +void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint) +{ + QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry); + + breakpoint_invalidate(cpu, breakpoint->pc); + + g_free(breakpoint); +} + +/* Remove all matching breakpoints. */ +void cpu_breakpoint_remove_all(CPUState *cpu, int mask) +{ + CPUBreakpoint *bp, *next; + + QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { + if (bp->flags & mask) { + cpu_breakpoint_remove_by_ref(cpu, bp); + } + } +} + +/* enable or disable single step mode. EXCP_DEBUG is returned by the + CPU loop after each instruction */ +void cpu_single_step(CPUState *cpu, int enabled) +{ + if (cpu->singlestep_enabled != enabled) { + cpu->singlestep_enabled = enabled; + if (kvm_enabled()) { + kvm_update_guest_debug(cpu, 0); + } else { + /* must flush all the translated code to avoid inconsistencies */ + /* XXX: only flush what is necessary */ + tb_flush(cpu); + } + } +} + +void cpu_abort(CPUState *cpu, const char *fmt, ...) +{ + va_list ap; + va_list ap2; + + va_start(ap, fmt); + va_copy(ap2, ap); + fprintf(stderr, "qemu: fatal: "); + vfprintf(stderr, fmt, ap); + fprintf(stderr, "\n"); + cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP); + if (qemu_log_separate()) { + FILE *logfile = qemu_log_lock(); + qemu_log("qemu: fatal: "); + qemu_log_vprintf(fmt, ap2); + qemu_log("\n"); + log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); + qemu_log_flush(); + qemu_log_unlock(logfile); + qemu_log_close(); + } + va_end(ap2); + va_end(ap); + replay_finish(); +#if defined(CONFIG_USER_ONLY) + { + struct sigaction act; + sigfillset(&act.sa_mask); + act.sa_handler = SIG_DFL; + act.sa_flags = 0; + sigaction(SIGABRT, &act, NULL); + } +#endif + abort(); +} + +/* physical memory access (slow version, mainly for debug) */ +#if defined(CONFIG_USER_ONLY) +int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, + void *ptr, target_ulong len, bool is_write) +{ + int flags; + target_ulong l, page; + void * p; + uint8_t *buf = ptr; + + while (len > 0) { + page = addr & TARGET_PAGE_MASK; + l = (page + TARGET_PAGE_SIZE) - addr; + if (l > len) + l = len; + flags = page_get_flags(page); + if (!(flags & PAGE_VALID)) + return -1; + if (is_write) { + if (!(flags & PAGE_WRITE)) + return -1; + /* XXX: this code should not depend on lock_user */ + if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) + return -1; + memcpy(p, buf, l); + unlock_user(p, addr, l); + } else { + if (!(flags & PAGE_READ)) + return -1; + /* XXX: this code should not depend on lock_user */ + if (!(p = lock_user(VERIFY_READ, addr, l, 1))) + return -1; + memcpy(buf, p, l); + unlock_user(p, addr, 0); + } + len -= l; + buf += l; + addr += l; + } + return 0; +} +#endif + +bool target_words_bigendian(void) +{ +#if defined(TARGET_WORDS_BIGENDIAN) + return true; +#else + return false; +#endif +} + +void page_size_init(void) +{ + /* NOTE: we can always suppose that qemu_host_page_size >= + TARGET_PAGE_SIZE */ + if (qemu_host_page_size == 0) { + qemu_host_page_size = qemu_real_host_page_size; + } + if (qemu_host_page_size < TARGET_PAGE_SIZE) { + qemu_host_page_size = TARGET_PAGE_SIZE; + } + qemu_host_page_mask = -(intptr_t)qemu_host_page_size; +} diff --git a/exec.c b/exec.c deleted file mode 100644 index bca441f7fd..0000000000 --- a/exec.c +++ /dev/null @@ -1,4151 +0,0 @@ -/* - * Virtual page mapping - * - * Copyright (c) 2003 Fabrice Bellard - * - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with this library; if not, see . - */ - -#include "qemu/osdep.h" -#include "qemu-common.h" -#include "qapi/error.h" - -#include "qemu/cutils.h" -#include "cpu.h" -#include "exec/exec-all.h" -#include "exec/target_page.h" -#include "tcg/tcg.h" -#include "hw/qdev-core.h" -#include "hw/qdev-properties.h" -#if !defined(CONFIG_USER_ONLY) -#include "hw/boards.h" -#include "hw/xen/xen.h" -#endif -#include "sysemu/kvm.h" -#include "sysemu/sysemu.h" -#include "sysemu/tcg.h" -#include "sysemu/qtest.h" -#include "qemu/timer.h" -#include "qemu/config-file.h" -#include "qemu/error-report.h" -#include "qemu/qemu-print.h" -#if defined(CONFIG_USER_ONLY) -#include "qemu.h" -#else /* !CONFIG_USER_ONLY */ -#include "exec/memory.h" -#include "exec/ioport.h" -#include "sysemu/dma.h" -#include "sysemu/hostmem.h" -#include "sysemu/hw_accel.h" -#include "exec/address-spaces.h" -#include "sysemu/xen-mapcache.h" -#include "trace/trace-root.h" - -#ifdef CONFIG_FALLOCATE_PUNCH_HOLE -#include -#endif - -#endif -#include "qemu/rcu_queue.h" -#include "qemu/main-loop.h" -#include "translate-all.h" -#include "sysemu/replay.h" - -#include "exec/memory-internal.h" -#include "exec/ram_addr.h" -#include "exec/log.h" - -#include "qemu/pmem.h" - -#include "migration/vmstate.h" - -#include "qemu/range.h" -#ifndef _WIN32 -#include "qemu/mmap-alloc.h" -#endif - -#include "monitor/monitor.h" - -#ifdef CONFIG_LIBDAXCTL -#include -#endif - -//#define DEBUG_SUBPAGE - -#if !defined(CONFIG_USER_ONLY) -/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes - * are protected by the ramlist lock. - */ -RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; - -static MemoryRegion *system_memory; -static MemoryRegion *system_io; - -AddressSpace address_space_io; -AddressSpace address_space_memory; - -static MemoryRegion io_mem_unassigned; -#endif - -uintptr_t qemu_host_page_size; -intptr_t qemu_host_page_mask; - -#if !defined(CONFIG_USER_ONLY) - -typedef struct PhysPageEntry PhysPageEntry; - -struct PhysPageEntry { - /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ - uint32_t skip : 6; - /* index into phys_sections (!skip) or phys_map_nodes (skip) */ - uint32_t ptr : 26; -}; - -#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) - -/* Size of the L2 (and L3, etc) page tables. */ -#define ADDR_SPACE_BITS 64 - -#define P_L2_BITS 9 -#define P_L2_SIZE (1 << P_L2_BITS) - -#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) - -typedef PhysPageEntry Node[P_L2_SIZE]; - -typedef struct PhysPageMap { - struct rcu_head rcu; - - unsigned sections_nb; - unsigned sections_nb_alloc; - unsigned nodes_nb; - unsigned nodes_nb_alloc; - Node *nodes; - MemoryRegionSection *sections; -} PhysPageMap; - -struct AddressSpaceDispatch { - MemoryRegionSection *mru_section; - /* This is a multi-level map on the physical address space. - * The bottom level has pointers to MemoryRegionSections. - */ - PhysPageEntry phys_map; - PhysPageMap map; -}; - -#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) -typedef struct subpage_t { - MemoryRegion iomem; - FlatView *fv; - hwaddr base; - uint16_t sub_section[]; -} subpage_t; - -#define PHYS_SECTION_UNASSIGNED 0 - -static void io_mem_init(void); -static void memory_map_init(void); -static void tcg_log_global_after_sync(MemoryListener *listener); -static void tcg_commit(MemoryListener *listener); - -/** - * CPUAddressSpace: all the information a CPU needs about an AddressSpace - * @cpu: the CPU whose AddressSpace this is - * @as: the AddressSpace itself - * @memory_dispatch: its dispatch pointer (cached, RCU protected) - * @tcg_as_listener: listener for tracking changes to the AddressSpace - */ -struct CPUAddressSpace { - CPUState *cpu; - AddressSpace *as; - struct AddressSpaceDispatch *memory_dispatch; - MemoryListener tcg_as_listener; -}; - -struct DirtyBitmapSnapshot { - ram_addr_t start; - ram_addr_t end; - unsigned long dirty[]; -}; - -#endif - -#if !defined(CONFIG_USER_ONLY) - -static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) -{ - static unsigned alloc_hint = 16; - if (map->nodes_nb + nodes > map->nodes_nb_alloc) { - map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes); - map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); - alloc_hint = map->nodes_nb_alloc; - } -} - -static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) -{ - unsigned i; - uint32_t ret; - PhysPageEntry e; - PhysPageEntry *p; - - ret = map->nodes_nb++; - p = map->nodes[ret]; - assert(ret != PHYS_MAP_NODE_NIL); - assert(ret != map->nodes_nb_alloc); - - e.skip = leaf ? 0 : 1; - e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; - for (i = 0; i < P_L2_SIZE; ++i) { - memcpy(&p[i], &e, sizeof(e)); - } - return ret; -} - -static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, - hwaddr *index, uint64_t *nb, uint16_t leaf, - int level) -{ - PhysPageEntry *p; - hwaddr step = (hwaddr)1 << (level * P_L2_BITS); - - if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { - lp->ptr = phys_map_node_alloc(map, level == 0); - } - p = map->nodes[lp->ptr]; - lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; - - while (*nb && lp < &p[P_L2_SIZE]) { - if ((*index & (step - 1)) == 0 && *nb >= step) { - lp->skip = 0; - lp->ptr = leaf; - *index += step; - *nb -= step; - } else { - phys_page_set_level(map, lp, index, nb, leaf, level - 1); - } - ++lp; - } -} - -static void phys_page_set(AddressSpaceDispatch *d, - hwaddr index, uint64_t nb, - uint16_t leaf) -{ - /* Wildly overreserve - it doesn't matter much. */ - phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); - - phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); -} - -/* Compact a non leaf page entry. Simply detect that the entry has a single child, - * and update our entry so we can skip it and go directly to the destination. - */ -static void phys_page_compact(PhysPageEntry *lp, Node *nodes) -{ - unsigned valid_ptr = P_L2_SIZE; - int valid = 0; - PhysPageEntry *p; - int i; - - if (lp->ptr == PHYS_MAP_NODE_NIL) { - return; - } - - p = nodes[lp->ptr]; - for (i = 0; i < P_L2_SIZE; i++) { - if (p[i].ptr == PHYS_MAP_NODE_NIL) { - continue; - } - - valid_ptr = i; - valid++; - if (p[i].skip) { - phys_page_compact(&p[i], nodes); - } - } - - /* We can only compress if there's only one child. */ - if (valid != 1) { - return; - } - - assert(valid_ptr < P_L2_SIZE); - - /* Don't compress if it won't fit in the # of bits we have. */ - if (P_L2_LEVELS >= (1 << 6) && - lp->skip + p[valid_ptr].skip >= (1 << 6)) { - return; - } - - lp->ptr = p[valid_ptr].ptr; - if (!p[valid_ptr].skip) { - /* If our only child is a leaf, make this a leaf. */ - /* By design, we should have made this node a leaf to begin with so we - * should never reach here. - * But since it's so simple to handle this, let's do it just in case we - * change this rule. - */ - lp->skip = 0; - } else { - lp->skip += p[valid_ptr].skip; - } -} - -void address_space_dispatch_compact(AddressSpaceDispatch *d) -{ - if (d->phys_map.skip) { - phys_page_compact(&d->phys_map, d->map.nodes); - } -} - -static inline bool section_covers_addr(const MemoryRegionSection *section, - hwaddr addr) -{ - /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means - * the section must cover the entire address space. - */ - return int128_gethi(section->size) || - range_covers_byte(section->offset_within_address_space, - int128_getlo(section->size), addr); -} - -static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr) -{ - PhysPageEntry lp = d->phys_map, *p; - Node *nodes = d->map.nodes; - MemoryRegionSection *sections = d->map.sections; - hwaddr index = addr >> TARGET_PAGE_BITS; - int i; - - for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { - if (lp.ptr == PHYS_MAP_NODE_NIL) { - return §ions[PHYS_SECTION_UNASSIGNED]; - } - p = nodes[lp.ptr]; - lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; - } - - if (section_covers_addr(§ions[lp.ptr], addr)) { - return §ions[lp.ptr]; - } else { - return §ions[PHYS_SECTION_UNASSIGNED]; - } -} - -/* Called from RCU critical section */ -static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, - hwaddr addr, - bool resolve_subpage) -{ - MemoryRegionSection *section = qatomic_read(&d->mru_section); - subpage_t *subpage; - - if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] || - !section_covers_addr(section, addr)) { - section = phys_page_find(d, addr); - qatomic_set(&d->mru_section, section); - } - if (resolve_subpage && section->mr->subpage) { - subpage = container_of(section->mr, subpage_t, iomem); - section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; - } - return section; -} - -/* Called from RCU critical section */ -static MemoryRegionSection * -address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, - hwaddr *plen, bool resolve_subpage) -{ - MemoryRegionSection *section; - MemoryRegion *mr; - Int128 diff; - - section = address_space_lookup_region(d, addr, resolve_subpage); - /* Compute offset within MemoryRegionSection */ - addr -= section->offset_within_address_space; - - /* Compute offset within MemoryRegion */ - *xlat = addr + section->offset_within_region; - - mr = section->mr; - - /* MMIO registers can be expected to perform full-width accesses based only - * on their address, without considering adjacent registers that could - * decode to completely different MemoryRegions. When such registers - * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO - * regions overlap wildly. For this reason we cannot clamp the accesses - * here. - * - * If the length is small (as is the case for address_space_ldl/stl), - * everything works fine. If the incoming length is large, however, - * the caller really has to do the clamping through memory_access_size. - */ - if (memory_region_is_ram(mr)) { - diff = int128_sub(section->size, int128_make64(addr)); - *plen = int128_get64(int128_min(diff, int128_make64(*plen))); - } - return section; -} - -/** - * address_space_translate_iommu - translate an address through an IOMMU - * memory region and then through the target address space. - * - * @iommu_mr: the IOMMU memory region that we start the translation from - * @addr: the address to be translated through the MMU - * @xlat: the translated address offset within the destination memory region. - * It cannot be %NULL. - * @plen_out: valid read/write length of the translated address. It - * cannot be %NULL. - * @page_mask_out: page mask for the translated address. This - * should only be meaningful for IOMMU translated - * addresses, since there may be huge pages that this bit - * would tell. It can be %NULL if we don't care about it. - * @is_write: whether the translation operation is for write - * @is_mmio: whether this can be MMIO, set true if it can - * @target_as: the address space targeted by the IOMMU - * @attrs: transaction attributes - * - * This function is called from RCU critical section. It is the common - * part of flatview_do_translate and address_space_translate_cached. - */ -static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr, - hwaddr *xlat, - hwaddr *plen_out, - hwaddr *page_mask_out, - bool is_write, - bool is_mmio, - AddressSpace **target_as, - MemTxAttrs attrs) -{ - MemoryRegionSection *section; - hwaddr page_mask = (hwaddr)-1; - - do { - hwaddr addr = *xlat; - IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr); - int iommu_idx = 0; - IOMMUTLBEntry iotlb; - - if (imrc->attrs_to_index) { - iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); - } - - iotlb = imrc->translate(iommu_mr, addr, is_write ? - IOMMU_WO : IOMMU_RO, iommu_idx); - - if (!(iotlb.perm & (1 << is_write))) { - goto unassigned; - } - - addr = ((iotlb.translated_addr & ~iotlb.addr_mask) - | (addr & iotlb.addr_mask)); - page_mask &= iotlb.addr_mask; - *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1); - *target_as = iotlb.target_as; - - section = address_space_translate_internal( - address_space_to_dispatch(iotlb.target_as), addr, xlat, - plen_out, is_mmio); - - iommu_mr = memory_region_get_iommu(section->mr); - } while (unlikely(iommu_mr)); - - if (page_mask_out) { - *page_mask_out = page_mask; - } - return *section; - -unassigned: - return (MemoryRegionSection) { .mr = &io_mem_unassigned }; -} - -/** - * flatview_do_translate - translate an address in FlatView - * - * @fv: the flat view that we want to translate on - * @addr: the address to be translated in above address space - * @xlat: the translated address offset within memory region. It - * cannot be @NULL. - * @plen_out: valid read/write length of the translated address. It - * can be @NULL when we don't care about it. - * @page_mask_out: page mask for the translated address. This - * should only be meaningful for IOMMU translated - * addresses, since there may be huge pages that this bit - * would tell. It can be @NULL if we don't care about it. - * @is_write: whether the translation operation is for write - * @is_mmio: whether this can be MMIO, set true if it can - * @target_as: the address space targeted by the IOMMU - * @attrs: memory transaction attributes - * - * This function is called from RCU critical section - */ -static MemoryRegionSection flatview_do_translate(FlatView *fv, - hwaddr addr, - hwaddr *xlat, - hwaddr *plen_out, - hwaddr *page_mask_out, - bool is_write, - bool is_mmio, - AddressSpace **target_as, - MemTxAttrs attrs) -{ - MemoryRegionSection *section; - IOMMUMemoryRegion *iommu_mr; - hwaddr plen = (hwaddr)(-1); - - if (!plen_out) { - plen_out = &plen; - } - - section = address_space_translate_internal( - flatview_to_dispatch(fv), addr, xlat, - plen_out, is_mmio); - - iommu_mr = memory_region_get_iommu(section->mr); - if (unlikely(iommu_mr)) { - return address_space_translate_iommu(iommu_mr, xlat, - plen_out, page_mask_out, - is_write, is_mmio, - target_as, attrs); - } - if (page_mask_out) { - /* Not behind an IOMMU, use default page size. */ - *page_mask_out = ~TARGET_PAGE_MASK; - } - - return *section; -} - -/* Called from RCU critical section */ -IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, - bool is_write, MemTxAttrs attrs) -{ - MemoryRegionSection section; - hwaddr xlat, page_mask; - - /* - * This can never be MMIO, and we don't really care about plen, - * but page mask. - */ - section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat, - NULL, &page_mask, is_write, false, &as, - attrs); - - /* Illegal translation */ - if (section.mr == &io_mem_unassigned) { - goto iotlb_fail; - } - - /* Convert memory region offset into address space offset */ - xlat += section.offset_within_address_space - - section.offset_within_region; - - return (IOMMUTLBEntry) { - .target_as = as, - .iova = addr & ~page_mask, - .translated_addr = xlat & ~page_mask, - .addr_mask = page_mask, - /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ - .perm = IOMMU_RW, - }; - -iotlb_fail: - return (IOMMUTLBEntry) {0}; -} - -/* Called from RCU critical section */ -MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, - hwaddr *plen, bool is_write, - MemTxAttrs attrs) -{ - MemoryRegion *mr; - MemoryRegionSection section; - AddressSpace *as = NULL; - - /* This can be MMIO, so setup MMIO bit. */ - section = flatview_do_translate(fv, addr, xlat, plen, NULL, - is_write, true, &as, attrs); - mr = section.mr; - - if (xen_enabled() && memory_access_is_direct(mr, is_write)) { - hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; - *plen = MIN(page, *plen); - } - - return mr; -} - -typedef struct TCGIOMMUNotifier { - IOMMUNotifier n; - MemoryRegion *mr; - CPUState *cpu; - int iommu_idx; - bool active; -} TCGIOMMUNotifier; - -static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) -{ - TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n); - - if (!notifier->active) { - return; - } - tlb_flush(notifier->cpu); - notifier->active = false; - /* We leave the notifier struct on the list to avoid reallocating it later. - * Generally the number of IOMMUs a CPU deals with will be small. - * In any case we can't unregister the iommu notifier from a notify - * callback. - */ -} - -static void tcg_register_iommu_notifier(CPUState *cpu, - IOMMUMemoryRegion *iommu_mr, - int iommu_idx) -{ - /* Make sure this CPU has an IOMMU notifier registered for this - * IOMMU/IOMMU index combination, so that we can flush its TLB - * when the IOMMU tells us the mappings we've cached have changed. - */ - MemoryRegion *mr = MEMORY_REGION(iommu_mr); - TCGIOMMUNotifier *notifier; - int i; - - for (i = 0; i < cpu->iommu_notifiers->len; i++) { - notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); - if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) { - break; - } - } - if (i == cpu->iommu_notifiers->len) { - /* Not found, add a new entry at the end of the array */ - cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1); - notifier = g_new0(TCGIOMMUNotifier, 1); - g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier; - - notifier->mr = mr; - notifier->iommu_idx = iommu_idx; - notifier->cpu = cpu; - /* Rather than trying to register interest in the specific part - * of the iommu's address space that we've accessed and then - * expand it later as subsequent accesses touch more of it, we - * just register interest in the whole thing, on the assumption - * that iommu reconfiguration will be rare. - */ - iommu_notifier_init(¬ifier->n, - tcg_iommu_unmap_notify, - IOMMU_NOTIFIER_UNMAP, - 0, - HWADDR_MAX, - iommu_idx); - memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n, - &error_fatal); - } - - if (!notifier->active) { - notifier->active = true; - } -} - -static void tcg_iommu_free_notifier_list(CPUState *cpu) -{ - /* Destroy the CPU's notifier list */ - int i; - TCGIOMMUNotifier *notifier; - - for (i = 0; i < cpu->iommu_notifiers->len; i++) { - notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); - memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n); - g_free(notifier); - } - g_array_free(cpu->iommu_notifiers, true); -} - -/* Called from RCU critical section */ -MemoryRegionSection * -address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, - hwaddr *xlat, hwaddr *plen, - MemTxAttrs attrs, int *prot) -{ - MemoryRegionSection *section; - IOMMUMemoryRegion *iommu_mr; - IOMMUMemoryRegionClass *imrc; - IOMMUTLBEntry iotlb; - int iommu_idx; - AddressSpaceDispatch *d = - qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch); - - for (;;) { - section = address_space_translate_internal(d, addr, &addr, plen, false); - - iommu_mr = memory_region_get_iommu(section->mr); - if (!iommu_mr) { - break; - } - - imrc = memory_region_get_iommu_class_nocheck(iommu_mr); - - iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); - tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx); - /* We need all the permissions, so pass IOMMU_NONE so the IOMMU - * doesn't short-cut its translation table walk. - */ - iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx); - addr = ((iotlb.translated_addr & ~iotlb.addr_mask) - | (addr & iotlb.addr_mask)); - /* Update the caller's prot bits to remove permissions the IOMMU - * is giving us a failure response for. If we get down to no - * permissions left at all we can give up now. - */ - if (!(iotlb.perm & IOMMU_RO)) { - *prot &= ~(PAGE_READ | PAGE_EXEC); - } - if (!(iotlb.perm & IOMMU_WO)) { - *prot &= ~PAGE_WRITE; - } - - if (!*prot) { - goto translate_fail; - } - - d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as)); - } - - assert(!memory_region_is_iommu(section->mr)); - *xlat = addr; - return section; - -translate_fail: - return &d->map.sections[PHYS_SECTION_UNASSIGNED]; -} -#endif - -#if !defined(CONFIG_USER_ONLY) - -static int cpu_common_post_load(void *opaque, int version_id) -{ - CPUState *cpu = opaque; - - /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the - version_id is increased. */ - cpu->interrupt_request &= ~0x01; - tlb_flush(cpu); - - /* loadvm has just updated the content of RAM, bypassing the - * usual mechanisms that ensure we flush TBs for writes to - * memory we've translated code from. So we must flush all TBs, - * which will now be stale. - */ - tb_flush(cpu); - - return 0; -} - -static int cpu_common_pre_load(void *opaque) -{ - CPUState *cpu = opaque; - - cpu->exception_index = -1; - - return 0; -} - -static bool cpu_common_exception_index_needed(void *opaque) -{ - CPUState *cpu = opaque; - - return tcg_enabled() && cpu->exception_index != -1; -} - -static const VMStateDescription vmstate_cpu_common_exception_index = { - .name = "cpu_common/exception_index", - .version_id = 1, - .minimum_version_id = 1, - .needed = cpu_common_exception_index_needed, - .fields = (VMStateField[]) { - VMSTATE_INT32(exception_index, CPUState), - VMSTATE_END_OF_LIST() - } -}; - -static bool cpu_common_crash_occurred_needed(void *opaque) -{ - CPUState *cpu = opaque; - - return cpu->crash_occurred; -} - -static const VMStateDescription vmstate_cpu_common_crash_occurred = { - .name = "cpu_common/crash_occurred", - .version_id = 1, - .minimum_version_id = 1, - .needed = cpu_common_crash_occurred_needed, - .fields = (VMStateField[]) { - VMSTATE_BOOL(crash_occurred, CPUState), - VMSTATE_END_OF_LIST() - } -}; - -const VMStateDescription vmstate_cpu_common = { - .name = "cpu_common", - .version_id = 1, - .minimum_version_id = 1, - .pre_load = cpu_common_pre_load, - .post_load = cpu_common_post_load, - .fields = (VMStateField[]) { - VMSTATE_UINT32(halted, CPUState), - VMSTATE_UINT32(interrupt_request, CPUState), - VMSTATE_END_OF_LIST() - }, - .subsections = (const VMStateDescription*[]) { - &vmstate_cpu_common_exception_index, - &vmstate_cpu_common_crash_occurred, - NULL - } -}; - -void cpu_address_space_init(CPUState *cpu, int asidx, - const char *prefix, MemoryRegion *mr) -{ - CPUAddressSpace *newas; - AddressSpace *as = g_new0(AddressSpace, 1); - char *as_name; - - assert(mr); - as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index); - address_space_init(as, mr, as_name); - g_free(as_name); - - /* Target code should have set num_ases before calling us */ - assert(asidx < cpu->num_ases); - - if (asidx == 0) { - /* address space 0 gets the convenience alias */ - cpu->as = as; - } - - /* KVM cannot currently support multiple address spaces. */ - assert(asidx == 0 || !kvm_enabled()); - - if (!cpu->cpu_ases) { - cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); - } - - newas = &cpu->cpu_ases[asidx]; - newas->cpu = cpu; - newas->as = as; - if (tcg_enabled()) { - newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync; - newas->tcg_as_listener.commit = tcg_commit; - memory_listener_register(&newas->tcg_as_listener, as); - } -} - -AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) -{ - /* Return the AddressSpace corresponding to the specified index */ - return cpu->cpu_ases[asidx].as; -} -#endif - -void cpu_exec_unrealizefn(CPUState *cpu) -{ - CPUClass *cc = CPU_GET_CLASS(cpu); - - tlb_destroy(cpu); - cpu_list_remove(cpu); - - if (cc->vmsd != NULL) { - vmstate_unregister(NULL, cc->vmsd, cpu); - } - if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { - vmstate_unregister(NULL, &vmstate_cpu_common, cpu); - } -#ifndef CONFIG_USER_ONLY - tcg_iommu_free_notifier_list(cpu); -#endif -} - -Property cpu_common_props[] = { -#ifndef CONFIG_USER_ONLY - /* Create a memory property for softmmu CPU object, - * so users can wire up its memory. (This can't go in hw/core/cpu.c - * because that file is compiled only once for both user-mode - * and system builds.) The default if no link is set up is to use - * the system address space. - */ - DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION, - MemoryRegion *), -#endif - DEFINE_PROP_BOOL("start-powered-off", CPUState, start_powered_off, false), - DEFINE_PROP_END_OF_LIST(), -}; - -void cpu_exec_initfn(CPUState *cpu) -{ - cpu->as = NULL; - cpu->num_ases = 0; - -#ifndef CONFIG_USER_ONLY - cpu->thread_id = qemu_get_thread_id(); - cpu->memory = system_memory; - object_ref(OBJECT(cpu->memory)); -#endif -} - -void cpu_exec_realizefn(CPUState *cpu, Error **errp) -{ - CPUClass *cc = CPU_GET_CLASS(cpu); - static bool tcg_target_initialized; - - cpu_list_add(cpu); - - if (tcg_enabled() && !tcg_target_initialized) { - tcg_target_initialized = true; - cc->tcg_initialize(); - } - tlb_init(cpu); - - qemu_plugin_vcpu_init_hook(cpu); - -#ifdef CONFIG_USER_ONLY - assert(cc->vmsd == NULL); -#else /* !CONFIG_USER_ONLY */ - if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { - vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu); - } - if (cc->vmsd != NULL) { - vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu); - } - - cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *)); -#endif -} - -const char *parse_cpu_option(const char *cpu_option) -{ - ObjectClass *oc; - CPUClass *cc; - gchar **model_pieces; - const char *cpu_type; - - model_pieces = g_strsplit(cpu_option, ",", 2); - if (!model_pieces[0]) { - error_report("-cpu option cannot be empty"); - exit(1); - } - - oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]); - if (oc == NULL) { - error_report("unable to find CPU model '%s'", model_pieces[0]); - g_strfreev(model_pieces); - exit(EXIT_FAILURE); - } - - cpu_type = object_class_get_name(oc); - cc = CPU_CLASS(oc); - cc->parse_features(cpu_type, model_pieces[1], &error_fatal); - g_strfreev(model_pieces); - return cpu_type; -} - -#if defined(CONFIG_USER_ONLY) -void tb_invalidate_phys_addr(target_ulong addr) -{ - mmap_lock(); - tb_invalidate_phys_page_range(addr, addr + 1); - mmap_unlock(); -} - -static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) -{ - tb_invalidate_phys_addr(pc); -} -#else -void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs) -{ - ram_addr_t ram_addr; - MemoryRegion *mr; - hwaddr l = 1; - - if (!tcg_enabled()) { - return; - } - - RCU_READ_LOCK_GUARD(); - mr = address_space_translate(as, addr, &addr, &l, false, attrs); - if (!(memory_region_is_ram(mr) - || memory_region_is_romd(mr))) { - return; - } - ram_addr = memory_region_get_ram_addr(mr) + addr; - tb_invalidate_phys_page_range(ram_addr, ram_addr + 1); -} - -static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) -{ - /* - * There may not be a virtual to physical translation for the pc - * right now, but there may exist cached TB for this pc. - * Flush the whole TB cache to force re-translation of such TBs. - * This is heavyweight, but we're debugging anyway. - */ - tb_flush(cpu); -} -#endif - -#ifndef CONFIG_USER_ONLY -/* Add a watchpoint. */ -int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, - int flags, CPUWatchpoint **watchpoint) -{ - CPUWatchpoint *wp; - vaddr in_page; - - /* forbid ranges which are empty or run off the end of the address space */ - if (len == 0 || (addr + len - 1) < addr) { - error_report("tried to set invalid watchpoint at %" - VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); - return -EINVAL; - } - wp = g_malloc(sizeof(*wp)); - - wp->vaddr = addr; - wp->len = len; - wp->flags = flags; - - /* keep all GDB-injected watchpoints in front */ - if (flags & BP_GDB) { - QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); - } else { - QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); - } - - in_page = -(addr | TARGET_PAGE_MASK); - if (len <= in_page) { - tlb_flush_page(cpu, addr); - } else { - tlb_flush(cpu); - } - - if (watchpoint) - *watchpoint = wp; - return 0; -} - -/* Remove a specific watchpoint. */ -int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, - int flags) -{ - CPUWatchpoint *wp; - - QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { - if (addr == wp->vaddr && len == wp->len - && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { - cpu_watchpoint_remove_by_ref(cpu, wp); - return 0; - } - } - return -ENOENT; -} - -/* Remove a specific watchpoint by reference. */ -void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) -{ - QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); - - tlb_flush_page(cpu, watchpoint->vaddr); - - g_free(watchpoint); -} - -/* Remove all matching watchpoints. */ -void cpu_watchpoint_remove_all(CPUState *cpu, int mask) -{ - CPUWatchpoint *wp, *next; - - QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { - if (wp->flags & mask) { - cpu_watchpoint_remove_by_ref(cpu, wp); - } - } -} - -/* Return true if this watchpoint address matches the specified - * access (ie the address range covered by the watchpoint overlaps - * partially or completely with the address range covered by the - * access). - */ -static inline bool watchpoint_address_matches(CPUWatchpoint *wp, - vaddr addr, vaddr len) -{ - /* We know the lengths are non-zero, but a little caution is - * required to avoid errors in the case where the range ends - * exactly at the top of the address space and so addr + len - * wraps round to zero. - */ - vaddr wpend = wp->vaddr + wp->len - 1; - vaddr addrend = addr + len - 1; - - return !(addr > wpend || wp->vaddr > addrend); -} - -/* Return flags for watchpoints that match addr + prot. */ -int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len) -{ - CPUWatchpoint *wp; - int ret = 0; - - QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { - if (watchpoint_address_matches(wp, addr, len)) { - ret |= wp->flags; - } - } - return ret; -} -#endif /* !CONFIG_USER_ONLY */ - -/* Add a breakpoint. */ -int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, - CPUBreakpoint **breakpoint) -{ - CPUBreakpoint *bp; - - bp = g_malloc(sizeof(*bp)); - - bp->pc = pc; - bp->flags = flags; - - /* keep all GDB-injected breakpoints in front */ - if (flags & BP_GDB) { - QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); - } else { - QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); - } - - breakpoint_invalidate(cpu, pc); - - if (breakpoint) { - *breakpoint = bp; - } - return 0; -} - -/* Remove a specific breakpoint. */ -int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) -{ - CPUBreakpoint *bp; - - QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { - if (bp->pc == pc && bp->flags == flags) { - cpu_breakpoint_remove_by_ref(cpu, bp); - return 0; - } - } - return -ENOENT; -} - -/* Remove a specific breakpoint by reference. */ -void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint) -{ - QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry); - - breakpoint_invalidate(cpu, breakpoint->pc); - - g_free(breakpoint); -} - -/* Remove all matching breakpoints. */ -void cpu_breakpoint_remove_all(CPUState *cpu, int mask) -{ - CPUBreakpoint *bp, *next; - - QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { - if (bp->flags & mask) { - cpu_breakpoint_remove_by_ref(cpu, bp); - } - } -} - -/* enable or disable single step mode. EXCP_DEBUG is returned by the - CPU loop after each instruction */ -void cpu_single_step(CPUState *cpu, int enabled) -{ - if (cpu->singlestep_enabled != enabled) { - cpu->singlestep_enabled = enabled; - if (kvm_enabled()) { - kvm_update_guest_debug(cpu, 0); - } else { - /* must flush all the translated code to avoid inconsistencies */ - /* XXX: only flush what is necessary */ - tb_flush(cpu); - } - } -} - -void cpu_abort(CPUState *cpu, const char *fmt, ...) -{ - va_list ap; - va_list ap2; - - va_start(ap, fmt); - va_copy(ap2, ap); - fprintf(stderr, "qemu: fatal: "); - vfprintf(stderr, fmt, ap); - fprintf(stderr, "\n"); - cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP); - if (qemu_log_separate()) { - FILE *logfile = qemu_log_lock(); - qemu_log("qemu: fatal: "); - qemu_log_vprintf(fmt, ap2); - qemu_log("\n"); - log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); - qemu_log_flush(); - qemu_log_unlock(logfile); - qemu_log_close(); - } - va_end(ap2); - va_end(ap); - replay_finish(); -#if defined(CONFIG_USER_ONLY) - { - struct sigaction act; - sigfillset(&act.sa_mask); - act.sa_handler = SIG_DFL; - act.sa_flags = 0; - sigaction(SIGABRT, &act, NULL); - } -#endif - abort(); -} - -#if !defined(CONFIG_USER_ONLY) -/* Called from RCU critical section */ -static RAMBlock *qemu_get_ram_block(ram_addr_t addr) -{ - RAMBlock *block; - - block = qatomic_rcu_read(&ram_list.mru_block); - if (block && addr - block->offset < block->max_length) { - return block; - } - RAMBLOCK_FOREACH(block) { - if (addr - block->offset < block->max_length) { - goto found; - } - } - - fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); - abort(); - -found: - /* It is safe to write mru_block outside the iothread lock. This - * is what happens: - * - * mru_block = xxx - * rcu_read_unlock() - * xxx removed from list - * rcu_read_lock() - * read mru_block - * mru_block = NULL; - * call_rcu(reclaim_ramblock, xxx); - * rcu_read_unlock() - * - * qatomic_rcu_set is not needed here. The block was already published - * when it was placed into the list. Here we're just making an extra - * copy of the pointer. - */ - ram_list.mru_block = block; - return block; -} - -static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) -{ - CPUState *cpu; - ram_addr_t start1; - RAMBlock *block; - ram_addr_t end; - - assert(tcg_enabled()); - end = TARGET_PAGE_ALIGN(start + length); - start &= TARGET_PAGE_MASK; - - RCU_READ_LOCK_GUARD(); - block = qemu_get_ram_block(start); - assert(block == qemu_get_ram_block(end - 1)); - start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); - CPU_FOREACH(cpu) { - tlb_reset_dirty(cpu, start1, length); - } -} - -/* Note: start and end must be within the same ram block. */ -bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, - ram_addr_t length, - unsigned client) -{ - DirtyMemoryBlocks *blocks; - unsigned long end, page, start_page; - bool dirty = false; - RAMBlock *ramblock; - uint64_t mr_offset, mr_size; - - if (length == 0) { - return false; - } - - end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; - start_page = start >> TARGET_PAGE_BITS; - page = start_page; - - WITH_RCU_READ_LOCK_GUARD() { - blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); - ramblock = qemu_get_ram_block(start); - /* Range sanity check on the ramblock */ - assert(start >= ramblock->offset && - start + length <= ramblock->offset + ramblock->used_length); - - while (page < end) { - unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; - unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; - unsigned long num = MIN(end - page, - DIRTY_MEMORY_BLOCK_SIZE - offset); - - dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], - offset, num); - page += num; - } - - mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset; - mr_size = (end - start_page) << TARGET_PAGE_BITS; - memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size); - } - - if (dirty && tcg_enabled()) { - tlb_reset_dirty_range_all(start, length); - } - - return dirty; -} - -DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty - (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client) -{ - DirtyMemoryBlocks *blocks; - ram_addr_t start = memory_region_get_ram_addr(mr) + offset; - unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); - ram_addr_t first = QEMU_ALIGN_DOWN(start, align); - ram_addr_t last = QEMU_ALIGN_UP(start + length, align); - DirtyBitmapSnapshot *snap; - unsigned long page, end, dest; - - snap = g_malloc0(sizeof(*snap) + - ((last - first) >> (TARGET_PAGE_BITS + 3))); - snap->start = first; - snap->end = last; - - page = first >> TARGET_PAGE_BITS; - end = last >> TARGET_PAGE_BITS; - dest = 0; - - WITH_RCU_READ_LOCK_GUARD() { - blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); - - while (page < end) { - unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; - unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; - unsigned long num = MIN(end - page, - DIRTY_MEMORY_BLOCK_SIZE - offset); - - assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL))); - assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); - offset >>= BITS_PER_LEVEL; - - bitmap_copy_and_clear_atomic(snap->dirty + dest, - blocks->blocks[idx] + offset, - num); - page += num; - dest += num >> BITS_PER_LEVEL; - } - } - - if (tcg_enabled()) { - tlb_reset_dirty_range_all(start, length); - } - - memory_region_clear_dirty_bitmap(mr, offset, length); - - return snap; -} - -bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, - ram_addr_t start, - ram_addr_t length) -{ - unsigned long page, end; - - assert(start >= snap->start); - assert(start + length <= snap->end); - - end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; - page = (start - snap->start) >> TARGET_PAGE_BITS; - - while (page < end) { - if (test_bit(page, snap->dirty)) { - return true; - } - page++; - } - return false; -} - -/* Called from RCU critical section */ -hwaddr memory_region_section_get_iotlb(CPUState *cpu, - MemoryRegionSection *section) -{ - AddressSpaceDispatch *d = flatview_to_dispatch(section->fv); - return section - d->map.sections; -} -#endif /* defined(CONFIG_USER_ONLY) */ - -#if !defined(CONFIG_USER_ONLY) - -static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, - uint16_t section); -static subpage_t *subpage_init(FlatView *fv, hwaddr base); - -static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) = - qemu_anon_ram_alloc; - -/* - * Set a custom physical guest memory alloator. - * Accelerators with unusual needs may need this. Hopefully, we can - * get rid of it eventually. - */ -void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared)) -{ - phys_mem_alloc = alloc; -} - -static uint16_t phys_section_add(PhysPageMap *map, - MemoryRegionSection *section) -{ - /* The physical section number is ORed with a page-aligned - * pointer to produce the iotlb entries. Thus it should - * never overflow into the page-aligned value. - */ - assert(map->sections_nb < TARGET_PAGE_SIZE); - - if (map->sections_nb == map->sections_nb_alloc) { - map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); - map->sections = g_renew(MemoryRegionSection, map->sections, - map->sections_nb_alloc); - } - map->sections[map->sections_nb] = *section; - memory_region_ref(section->mr); - return map->sections_nb++; -} - -static void phys_section_destroy(MemoryRegion *mr) -{ - bool have_sub_page = mr->subpage; - - memory_region_unref(mr); - - if (have_sub_page) { - subpage_t *subpage = container_of(mr, subpage_t, iomem); - object_unref(OBJECT(&subpage->iomem)); - g_free(subpage); - } -} - -static void phys_sections_free(PhysPageMap *map) -{ - while (map->sections_nb > 0) { - MemoryRegionSection *section = &map->sections[--map->sections_nb]; - phys_section_destroy(section->mr); - } - g_free(map->sections); - g_free(map->nodes); -} - -static void register_subpage(FlatView *fv, MemoryRegionSection *section) -{ - AddressSpaceDispatch *d = flatview_to_dispatch(fv); - subpage_t *subpage; - hwaddr base = section->offset_within_address_space - & TARGET_PAGE_MASK; - MemoryRegionSection *existing = phys_page_find(d, base); - MemoryRegionSection subsection = { - .offset_within_address_space = base, - .size = int128_make64(TARGET_PAGE_SIZE), - }; - hwaddr start, end; - - assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); - - if (!(existing->mr->subpage)) { - subpage = subpage_init(fv, base); - subsection.fv = fv; - subsection.mr = &subpage->iomem; - phys_page_set(d, base >> TARGET_PAGE_BITS, 1, - phys_section_add(&d->map, &subsection)); - } else { - subpage = container_of(existing->mr, subpage_t, iomem); - } - start = section->offset_within_address_space & ~TARGET_PAGE_MASK; - end = start + int128_get64(section->size) - 1; - subpage_register(subpage, start, end, - phys_section_add(&d->map, section)); -} - - -static void register_multipage(FlatView *fv, - MemoryRegionSection *section) -{ - AddressSpaceDispatch *d = flatview_to_dispatch(fv); - hwaddr start_addr = section->offset_within_address_space; - uint16_t section_index = phys_section_add(&d->map, section); - uint64_t num_pages = int128_get64(int128_rshift(section->size, - TARGET_PAGE_BITS)); - - assert(num_pages); - phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); -} - -/* - * The range in *section* may look like this: - * - * |s|PPPPPPP|s| - * - * where s stands for subpage and P for page. - */ -void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section) -{ - MemoryRegionSection remain = *section; - Int128 page_size = int128_make64(TARGET_PAGE_SIZE); - - /* register first subpage */ - if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { - uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space) - - remain.offset_within_address_space; - - MemoryRegionSection now = remain; - now.size = int128_min(int128_make64(left), now.size); - register_subpage(fv, &now); - if (int128_eq(remain.size, now.size)) { - return; - } - remain.size = int128_sub(remain.size, now.size); - remain.offset_within_address_space += int128_get64(now.size); - remain.offset_within_region += int128_get64(now.size); - } - - /* register whole pages */ - if (int128_ge(remain.size, page_size)) { - MemoryRegionSection now = remain; - now.size = int128_and(now.size, int128_neg(page_size)); - register_multipage(fv, &now); - if (int128_eq(remain.size, now.size)) { - return; - } - remain.size = int128_sub(remain.size, now.size); - remain.offset_within_address_space += int128_get64(now.size); - remain.offset_within_region += int128_get64(now.size); - } - - /* register last subpage */ - register_subpage(fv, &remain); -} - -void qemu_flush_coalesced_mmio_buffer(void) -{ - if (kvm_enabled()) - kvm_flush_coalesced_mmio_buffer(); -} - -void qemu_mutex_lock_ramlist(void) -{ - qemu_mutex_lock(&ram_list.mutex); -} - -void qemu_mutex_unlock_ramlist(void) -{ - qemu_mutex_unlock(&ram_list.mutex); -} - -void ram_block_dump(Monitor *mon) -{ - RAMBlock *block; - char *psize; - - RCU_READ_LOCK_GUARD(); - monitor_printf(mon, "%24s %8s %18s %18s %18s\n", - "Block Name", "PSize", "Offset", "Used", "Total"); - RAMBLOCK_FOREACH(block) { - psize = size_to_str(block->page_size); - monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64 - " 0x%016" PRIx64 "\n", block->idstr, psize, - (uint64_t)block->offset, - (uint64_t)block->used_length, - (uint64_t)block->max_length); - g_free(psize); - } -} - -#ifdef __linux__ -/* - * FIXME TOCTTOU: this iterates over memory backends' mem-path, which - * may or may not name the same files / on the same filesystem now as - * when we actually open and map them. Iterate over the file - * descriptors instead, and use qemu_fd_getpagesize(). - */ -static int find_min_backend_pagesize(Object *obj, void *opaque) -{ - long *hpsize_min = opaque; - - if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { - HostMemoryBackend *backend = MEMORY_BACKEND(obj); - long hpsize = host_memory_backend_pagesize(backend); - - if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) { - *hpsize_min = hpsize; - } - } - - return 0; -} - -static int find_max_backend_pagesize(Object *obj, void *opaque) -{ - long *hpsize_max = opaque; - - if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { - HostMemoryBackend *backend = MEMORY_BACKEND(obj); - long hpsize = host_memory_backend_pagesize(backend); - - if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) { - *hpsize_max = hpsize; - } - } - - return 0; -} - -/* - * TODO: We assume right now that all mapped host memory backends are - * used as RAM, however some might be used for different purposes. - */ -long qemu_minrampagesize(void) -{ - long hpsize = LONG_MAX; - Object *memdev_root = object_resolve_path("/objects", NULL); - - object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize); - return hpsize; -} - -long qemu_maxrampagesize(void) -{ - long pagesize = 0; - Object *memdev_root = object_resolve_path("/objects", NULL); - - object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize); - return pagesize; -} -#else -long qemu_minrampagesize(void) -{ - return qemu_real_host_page_size; -} -long qemu_maxrampagesize(void) -{ - return qemu_real_host_page_size; -} -#endif - -#ifdef CONFIG_POSIX -static int64_t get_file_size(int fd) -{ - int64_t size; -#if defined(__linux__) - struct stat st; - - if (fstat(fd, &st) < 0) { - return -errno; - } - - /* Special handling for devdax character devices */ - if (S_ISCHR(st.st_mode)) { - g_autofree char *subsystem_path = NULL; - g_autofree char *subsystem = NULL; - - subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem", - major(st.st_rdev), minor(st.st_rdev)); - subsystem = g_file_read_link(subsystem_path, NULL); - - if (subsystem && g_str_has_suffix(subsystem, "/dax")) { - g_autofree char *size_path = NULL; - g_autofree char *size_str = NULL; - - size_path = g_strdup_printf("/sys/dev/char/%d:%d/size", - major(st.st_rdev), minor(st.st_rdev)); - - if (g_file_get_contents(size_path, &size_str, NULL, NULL)) { - return g_ascii_strtoll(size_str, NULL, 0); - } - } - } -#endif /* defined(__linux__) */ - - /* st.st_size may be zero for special files yet lseek(2) works */ - size = lseek(fd, 0, SEEK_END); - if (size < 0) { - return -errno; - } - return size; -} - -static int64_t get_file_align(int fd) -{ - int64_t align = -1; -#if defined(__linux__) && defined(CONFIG_LIBDAXCTL) - struct stat st; - - if (fstat(fd, &st) < 0) { - return -errno; - } - - /* Special handling for devdax character devices */ - if (S_ISCHR(st.st_mode)) { - g_autofree char *path = NULL; - g_autofree char *rpath = NULL; - struct daxctl_ctx *ctx; - struct daxctl_region *region; - int rc = 0; - - path = g_strdup_printf("/sys/dev/char/%d:%d", - major(st.st_rdev), minor(st.st_rdev)); - rpath = realpath(path, NULL); - - rc = daxctl_new(&ctx); - if (rc) { - return -1; - } - - daxctl_region_foreach(ctx, region) { - if (strstr(rpath, daxctl_region_get_path(region))) { - align = daxctl_region_get_align(region); - break; - } - } - daxctl_unref(ctx); - } -#endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */ - - return align; -} - -static int file_ram_open(const char *path, - const char *region_name, - bool *created, - Error **errp) -{ - char *filename; - char *sanitized_name; - char *c; - int fd = -1; - - *created = false; - for (;;) { - fd = open(path, O_RDWR); - if (fd >= 0) { - /* @path names an existing file, use it */ - break; - } - if (errno == ENOENT) { - /* @path names a file that doesn't exist, create it */ - fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); - if (fd >= 0) { - *created = true; - break; - } - } else if (errno == EISDIR) { - /* @path names a directory, create a file there */ - /* Make name safe to use with mkstemp by replacing '/' with '_'. */ - sanitized_name = g_strdup(region_name); - for (c = sanitized_name; *c != '\0'; c++) { - if (*c == '/') { - *c = '_'; - } - } - - filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, - sanitized_name); - g_free(sanitized_name); - - fd = mkstemp(filename); - if (fd >= 0) { - unlink(filename); - g_free(filename); - break; - } - g_free(filename); - } - if (errno != EEXIST && errno != EINTR) { - error_setg_errno(errp, errno, - "can't open backing store %s for guest RAM", - path); - return -1; - } - /* - * Try again on EINTR and EEXIST. The latter happens when - * something else creates the file between our two open(). - */ - } - - return fd; -} - -static void *file_ram_alloc(RAMBlock *block, - ram_addr_t memory, - int fd, - bool truncate, - Error **errp) -{ - void *area; - - block->page_size = qemu_fd_getpagesize(fd); - if (block->mr->align % block->page_size) { - error_setg(errp, "alignment 0x%" PRIx64 - " must be multiples of page size 0x%zx", - block->mr->align, block->page_size); - return NULL; - } else if (block->mr->align && !is_power_of_2(block->mr->align)) { - error_setg(errp, "alignment 0x%" PRIx64 - " must be a power of two", block->mr->align); - return NULL; - } - block->mr->align = MAX(block->page_size, block->mr->align); -#if defined(__s390x__) - if (kvm_enabled()) { - block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); - } -#endif - - if (memory < block->page_size) { - error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " - "or larger than page size 0x%zx", - memory, block->page_size); - return NULL; - } - - memory = ROUND_UP(memory, block->page_size); - - /* - * ftruncate is not supported by hugetlbfs in older - * hosts, so don't bother bailing out on errors. - * If anything goes wrong with it under other filesystems, - * mmap will fail. - * - * Do not truncate the non-empty backend file to avoid corrupting - * the existing data in the file. Disabling shrinking is not - * enough. For example, the current vNVDIMM implementation stores - * the guest NVDIMM labels at the end of the backend file. If the - * backend file is later extended, QEMU will not be able to find - * those labels. Therefore, extending the non-empty backend file - * is disabled as well. - */ - if (truncate && ftruncate(fd, memory)) { - perror("ftruncate"); - } - - area = qemu_ram_mmap(fd, memory, block->mr->align, - block->flags & RAM_SHARED, block->flags & RAM_PMEM); - if (area == MAP_FAILED) { - error_setg_errno(errp, errno, - "unable to map backing store for guest RAM"); - return NULL; - } - - block->fd = fd; - return area; -} -#endif - -/* Allocate space within the ram_addr_t space that governs the - * dirty bitmaps. - * Called with the ramlist lock held. - */ -static ram_addr_t find_ram_offset(ram_addr_t size) -{ - RAMBlock *block, *next_block; - ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; - - assert(size != 0); /* it would hand out same offset multiple times */ - - if (QLIST_EMPTY_RCU(&ram_list.blocks)) { - return 0; - } - - RAMBLOCK_FOREACH(block) { - ram_addr_t candidate, next = RAM_ADDR_MAX; - - /* Align blocks to start on a 'long' in the bitmap - * which makes the bitmap sync'ing take the fast path. - */ - candidate = block->offset + block->max_length; - candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS); - - /* Search for the closest following block - * and find the gap. - */ - RAMBLOCK_FOREACH(next_block) { - if (next_block->offset >= candidate) { - next = MIN(next, next_block->offset); - } - } - - /* If it fits remember our place and remember the size - * of gap, but keep going so that we might find a smaller - * gap to fill so avoiding fragmentation. - */ - if (next - candidate >= size && next - candidate < mingap) { - offset = candidate; - mingap = next - candidate; - } - - trace_find_ram_offset_loop(size, candidate, offset, next, mingap); - } - - if (offset == RAM_ADDR_MAX) { - fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", - (uint64_t)size); - abort(); - } - - trace_find_ram_offset(size, offset); - - return offset; -} - -static unsigned long last_ram_page(void) -{ - RAMBlock *block; - ram_addr_t last = 0; - - RCU_READ_LOCK_GUARD(); - RAMBLOCK_FOREACH(block) { - last = MAX(last, block->offset + block->max_length); - } - return last >> TARGET_PAGE_BITS; -} - -static void qemu_ram_setup_dump(void *addr, ram_addr_t size) -{ - int ret; - - /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ - if (!machine_dump_guest_core(current_machine)) { - ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); - if (ret) { - perror("qemu_madvise"); - fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " - "but dump_guest_core=off specified\n"); - } - } -} - -const char *qemu_ram_get_idstr(RAMBlock *rb) -{ - return rb->idstr; -} - -void *qemu_ram_get_host_addr(RAMBlock *rb) -{ - return rb->host; -} - -ram_addr_t qemu_ram_get_offset(RAMBlock *rb) -{ - return rb->offset; -} - -ram_addr_t qemu_ram_get_used_length(RAMBlock *rb) -{ - return rb->used_length; -} - -bool qemu_ram_is_shared(RAMBlock *rb) -{ - return rb->flags & RAM_SHARED; -} - -/* Note: Only set at the start of postcopy */ -bool qemu_ram_is_uf_zeroable(RAMBlock *rb) -{ - return rb->flags & RAM_UF_ZEROPAGE; -} - -void qemu_ram_set_uf_zeroable(RAMBlock *rb) -{ - rb->flags |= RAM_UF_ZEROPAGE; -} - -bool qemu_ram_is_migratable(RAMBlock *rb) -{ - return rb->flags & RAM_MIGRATABLE; -} - -void qemu_ram_set_migratable(RAMBlock *rb) -{ - rb->flags |= RAM_MIGRATABLE; -} - -void qemu_ram_unset_migratable(RAMBlock *rb) -{ - rb->flags &= ~RAM_MIGRATABLE; -} - -/* Called with iothread lock held. */ -void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) -{ - RAMBlock *block; - - assert(new_block); - assert(!new_block->idstr[0]); - - if (dev) { - char *id = qdev_get_dev_path(dev); - if (id) { - snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); - g_free(id); - } - } - pstrcat(new_block->idstr, sizeof(new_block->idstr), name); - - RCU_READ_LOCK_GUARD(); - RAMBLOCK_FOREACH(block) { - if (block != new_block && - !strcmp(block->idstr, new_block->idstr)) { - fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", - new_block->idstr); - abort(); - } - } -} - -/* Called with iothread lock held. */ -void qemu_ram_unset_idstr(RAMBlock *block) -{ - /* FIXME: arch_init.c assumes that this is not called throughout - * migration. Ignore the problem since hot-unplug during migration - * does not work anyway. - */ - if (block) { - memset(block->idstr, 0, sizeof(block->idstr)); - } -} - -size_t qemu_ram_pagesize(RAMBlock *rb) -{ - return rb->page_size; -} - -/* Returns the largest size of page in use */ -size_t qemu_ram_pagesize_largest(void) -{ - RAMBlock *block; - size_t largest = 0; - - RAMBLOCK_FOREACH(block) { - largest = MAX(largest, qemu_ram_pagesize(block)); - } - - return largest; -} - -static int memory_try_enable_merging(void *addr, size_t len) -{ - if (!machine_mem_merge(current_machine)) { - /* disabled by the user */ - return 0; - } - - return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); -} - -/* Only legal before guest might have detected the memory size: e.g. on - * incoming migration, or right after reset. - * - * As memory core doesn't know how is memory accessed, it is up to - * resize callback to update device state and/or add assertions to detect - * misuse, if necessary. - */ -int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) -{ - const ram_addr_t unaligned_size = newsize; - - assert(block); - - newsize = HOST_PAGE_ALIGN(newsize); - - if (block->used_length == newsize) { - /* - * We don't have to resize the ram block (which only knows aligned - * sizes), however, we have to notify if the unaligned size changed. - */ - if (unaligned_size != memory_region_size(block->mr)) { - memory_region_set_size(block->mr, unaligned_size); - if (block->resized) { - block->resized(block->idstr, unaligned_size, block->host); - } - } - return 0; - } - - if (!(block->flags & RAM_RESIZEABLE)) { - error_setg_errno(errp, EINVAL, - "Length mismatch: %s: 0x" RAM_ADDR_FMT - " in != 0x" RAM_ADDR_FMT, block->idstr, - newsize, block->used_length); - return -EINVAL; - } - - if (block->max_length < newsize) { - error_setg_errno(errp, EINVAL, - "Length too large: %s: 0x" RAM_ADDR_FMT - " > 0x" RAM_ADDR_FMT, block->idstr, - newsize, block->max_length); - return -EINVAL; - } - - cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); - block->used_length = newsize; - cpu_physical_memory_set_dirty_range(block->offset, block->used_length, - DIRTY_CLIENTS_ALL); - memory_region_set_size(block->mr, unaligned_size); - if (block->resized) { - block->resized(block->idstr, unaligned_size, block->host); - } - return 0; -} - -/* - * Trigger sync on the given ram block for range [start, start + length] - * with the backing store if one is available. - * Otherwise no-op. - * @Note: this is supposed to be a synchronous op. - */ -void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length) -{ - /* The requested range should fit in within the block range */ - g_assert((start + length) <= block->used_length); - -#ifdef CONFIG_LIBPMEM - /* The lack of support for pmem should not block the sync */ - if (ramblock_is_pmem(block)) { - void *addr = ramblock_ptr(block, start); - pmem_persist(addr, length); - return; - } -#endif - if (block->fd >= 0) { - /** - * Case there is no support for PMEM or the memory has not been - * specified as persistent (or is not one) - use the msync. - * Less optimal but still achieves the same goal - */ - void *addr = ramblock_ptr(block, start); - if (qemu_msync(addr, length, block->fd)) { - warn_report("%s: failed to sync memory range: start: " - RAM_ADDR_FMT " length: " RAM_ADDR_FMT, - __func__, start, length); - } - } -} - -/* Called with ram_list.mutex held */ -static void dirty_memory_extend(ram_addr_t old_ram_size, - ram_addr_t new_ram_size) -{ - ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, - DIRTY_MEMORY_BLOCK_SIZE); - ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, - DIRTY_MEMORY_BLOCK_SIZE); - int i; - - /* Only need to extend if block count increased */ - if (new_num_blocks <= old_num_blocks) { - return; - } - - for (i = 0; i < DIRTY_MEMORY_NUM; i++) { - DirtyMemoryBlocks *old_blocks; - DirtyMemoryBlocks *new_blocks; - int j; - - old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]); - new_blocks = g_malloc(sizeof(*new_blocks) + - sizeof(new_blocks->blocks[0]) * new_num_blocks); - - if (old_num_blocks) { - memcpy(new_blocks->blocks, old_blocks->blocks, - old_num_blocks * sizeof(old_blocks->blocks[0])); - } - - for (j = old_num_blocks; j < new_num_blocks; j++) { - new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); - } - - qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); - - if (old_blocks) { - g_free_rcu(old_blocks, rcu); - } - } -} - -static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared) -{ - RAMBlock *block; - RAMBlock *last_block = NULL; - ram_addr_t old_ram_size, new_ram_size; - Error *err = NULL; - - old_ram_size = last_ram_page(); - - qemu_mutex_lock_ramlist(); - new_block->offset = find_ram_offset(new_block->max_length); - - if (!new_block->host) { - if (xen_enabled()) { - xen_ram_alloc(new_block->offset, new_block->max_length, - new_block->mr, &err); - if (err) { - error_propagate(errp, err); - qemu_mutex_unlock_ramlist(); - return; - } - } else { - new_block->host = phys_mem_alloc(new_block->max_length, - &new_block->mr->align, shared); - if (!new_block->host) { - error_setg_errno(errp, errno, - "cannot set up guest memory '%s'", - memory_region_name(new_block->mr)); - qemu_mutex_unlock_ramlist(); - return; - } - memory_try_enable_merging(new_block->host, new_block->max_length); - } - } - - new_ram_size = MAX(old_ram_size, - (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); - if (new_ram_size > old_ram_size) { - dirty_memory_extend(old_ram_size, new_ram_size); - } - /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, - * QLIST (which has an RCU-friendly variant) does not have insertion at - * tail, so save the last element in last_block. - */ - RAMBLOCK_FOREACH(block) { - last_block = block; - if (block->max_length < new_block->max_length) { - break; - } - } - if (block) { - QLIST_INSERT_BEFORE_RCU(block, new_block, next); - } else if (last_block) { - QLIST_INSERT_AFTER_RCU(last_block, new_block, next); - } else { /* list is empty */ - QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); - } - ram_list.mru_block = NULL; - - /* Write list before version */ - smp_wmb(); - ram_list.version++; - qemu_mutex_unlock_ramlist(); - - cpu_physical_memory_set_dirty_range(new_block->offset, - new_block->used_length, - DIRTY_CLIENTS_ALL); - - if (new_block->host) { - qemu_ram_setup_dump(new_block->host, new_block->max_length); - qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); - /* - * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU - * Configure it unless the machine is a qtest server, in which case - * KVM is not used and it may be forked (eg for fuzzing purposes). - */ - if (!qtest_enabled()) { - qemu_madvise(new_block->host, new_block->max_length, - QEMU_MADV_DONTFORK); - } - ram_block_notify_add(new_block->host, new_block->max_length); - } -} - -#ifdef CONFIG_POSIX -RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr, - uint32_t ram_flags, int fd, - Error **errp) -{ - RAMBlock *new_block; - Error *local_err = NULL; - int64_t file_size, file_align; - - /* Just support these ram flags by now. */ - assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0); - - if (xen_enabled()) { - error_setg(errp, "-mem-path not supported with Xen"); - return NULL; - } - - if (kvm_enabled() && !kvm_has_sync_mmu()) { - error_setg(errp, - "host lacks kvm mmu notifiers, -mem-path unsupported"); - return NULL; - } - - if (phys_mem_alloc != qemu_anon_ram_alloc) { - /* - * file_ram_alloc() needs to allocate just like - * phys_mem_alloc, but we haven't bothered to provide - * a hook there. - */ - error_setg(errp, - "-mem-path not supported with this accelerator"); - return NULL; - } - - size = HOST_PAGE_ALIGN(size); - file_size = get_file_size(fd); - if (file_size > 0 && file_size < size) { - error_setg(errp, "backing store size 0x%" PRIx64 - " does not match 'size' option 0x" RAM_ADDR_FMT, - file_size, size); - return NULL; - } - - file_align = get_file_align(fd); - if (file_align > 0 && mr && file_align > mr->align) { - error_setg(errp, "backing store align 0x%" PRIx64 - " is larger than 'align' option 0x%" PRIx64, - file_align, mr->align); - return NULL; - } - - new_block = g_malloc0(sizeof(*new_block)); - new_block->mr = mr; - new_block->used_length = size; - new_block->max_length = size; - new_block->flags = ram_flags; - new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp); - if (!new_block->host) { - g_free(new_block); - return NULL; - } - - ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED); - if (local_err) { - g_free(new_block); - error_propagate(errp, local_err); - return NULL; - } - return new_block; - -} - - -RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, - uint32_t ram_flags, const char *mem_path, - Error **errp) -{ - int fd; - bool created; - RAMBlock *block; - - fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp); - if (fd < 0) { - return NULL; - } - - block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp); - if (!block) { - if (created) { - unlink(mem_path); - } - close(fd); - return NULL; - } - - return block; -} -#endif - -static -RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, - void (*resized)(const char*, - uint64_t length, - void *host), - void *host, bool resizeable, bool share, - MemoryRegion *mr, Error **errp) -{ - RAMBlock *new_block; - Error *local_err = NULL; - - size = HOST_PAGE_ALIGN(size); - max_size = HOST_PAGE_ALIGN(max_size); - new_block = g_malloc0(sizeof(*new_block)); - new_block->mr = mr; - new_block->resized = resized; - new_block->used_length = size; - new_block->max_length = max_size; - assert(max_size >= size); - new_block->fd = -1; - new_block->page_size = qemu_real_host_page_size; - new_block->host = host; - if (host) { - new_block->flags |= RAM_PREALLOC; - } - if (resizeable) { - new_block->flags |= RAM_RESIZEABLE; - } - ram_block_add(new_block, &local_err, share); - if (local_err) { - g_free(new_block); - error_propagate(errp, local_err); - return NULL; - } - return new_block; -} - -RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, - MemoryRegion *mr, Error **errp) -{ - return qemu_ram_alloc_internal(size, size, NULL, host, false, - false, mr, errp); -} - -RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share, - MemoryRegion *mr, Error **errp) -{ - return qemu_ram_alloc_internal(size, size, NULL, NULL, false, - share, mr, errp); -} - -RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, - void (*resized)(const char*, - uint64_t length, - void *host), - MemoryRegion *mr, Error **errp) -{ - return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, - false, mr, errp); -} - -static void reclaim_ramblock(RAMBlock *block) -{ - if (block->flags & RAM_PREALLOC) { - ; - } else if (xen_enabled()) { - xen_invalidate_map_cache_entry(block->host); -#ifndef _WIN32 - } else if (block->fd >= 0) { - qemu_ram_munmap(block->fd, block->host, block->max_length); - close(block->fd); -#endif - } else { - qemu_anon_ram_free(block->host, block->max_length); - } - g_free(block); -} - -void qemu_ram_free(RAMBlock *block) -{ - if (!block) { - return; - } - - if (block->host) { - ram_block_notify_remove(block->host, block->max_length); - } - - qemu_mutex_lock_ramlist(); - QLIST_REMOVE_RCU(block, next); - ram_list.mru_block = NULL; - /* Write list before version */ - smp_wmb(); - ram_list.version++; - call_rcu(block, reclaim_ramblock, rcu); - qemu_mutex_unlock_ramlist(); -} - -#ifndef _WIN32 -void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) -{ - RAMBlock *block; - ram_addr_t offset; - int flags; - void *area, *vaddr; - - RAMBLOCK_FOREACH(block) { - offset = addr - block->offset; - if (offset < block->max_length) { - vaddr = ramblock_ptr(block, offset); - if (block->flags & RAM_PREALLOC) { - ; - } else if (xen_enabled()) { - abort(); - } else { - flags = MAP_FIXED; - if (block->fd >= 0) { - flags |= (block->flags & RAM_SHARED ? - MAP_SHARED : MAP_PRIVATE); - area = mmap(vaddr, length, PROT_READ | PROT_WRITE, - flags, block->fd, offset); - } else { - /* - * Remap needs to match alloc. Accelerators that - * set phys_mem_alloc never remap. If they did, - * we'd need a remap hook here. - */ - assert(phys_mem_alloc == qemu_anon_ram_alloc); - - flags |= MAP_PRIVATE | MAP_ANONYMOUS; - area = mmap(vaddr, length, PROT_READ | PROT_WRITE, - flags, -1, 0); - } - if (area != vaddr) { - error_report("Could not remap addr: " - RAM_ADDR_FMT "@" RAM_ADDR_FMT "", - length, addr); - exit(1); - } - memory_try_enable_merging(vaddr, length); - qemu_ram_setup_dump(vaddr, length); - } - } - } -} -#endif /* !_WIN32 */ - -/* Return a host pointer to ram allocated with qemu_ram_alloc. - * This should not be used for general purpose DMA. Use address_space_map - * or address_space_rw instead. For local memory (e.g. video ram) that the - * device owns, use memory_region_get_ram_ptr. - * - * Called within RCU critical section. - */ -void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) -{ - RAMBlock *block = ram_block; - - if (block == NULL) { - block = qemu_get_ram_block(addr); - addr -= block->offset; - } - - if (xen_enabled() && block->host == NULL) { - /* We need to check if the requested address is in the RAM - * because we don't want to map the entire memory in QEMU. - * In that case just map until the end of the page. - */ - if (block->offset == 0) { - return xen_map_cache(addr, 0, 0, false); - } - - block->host = xen_map_cache(block->offset, block->max_length, 1, false); - } - return ramblock_ptr(block, addr); -} - -/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr - * but takes a size argument. - * - * Called within RCU critical section. - */ -static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, - hwaddr *size, bool lock) -{ - RAMBlock *block = ram_block; - if (*size == 0) { - return NULL; - } - - if (block == NULL) { - block = qemu_get_ram_block(addr); - addr -= block->offset; - } - *size = MIN(*size, block->max_length - addr); - - if (xen_enabled() && block->host == NULL) { - /* We need to check if the requested address is in the RAM - * because we don't want to map the entire memory in QEMU. - * In that case just map the requested area. - */ - if (block->offset == 0) { - return xen_map_cache(addr, *size, lock, lock); - } - - block->host = xen_map_cache(block->offset, block->max_length, 1, lock); - } - - return ramblock_ptr(block, addr); -} - -/* Return the offset of a hostpointer within a ramblock */ -ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host) -{ - ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host; - assert((uintptr_t)host >= (uintptr_t)rb->host); - assert(res < rb->max_length); - - return res; -} - -/* - * Translates a host ptr back to a RAMBlock, a ram_addr and an offset - * in that RAMBlock. - * - * ptr: Host pointer to look up - * round_offset: If true round the result offset down to a page boundary - * *ram_addr: set to result ram_addr - * *offset: set to result offset within the RAMBlock - * - * Returns: RAMBlock (or NULL if not found) - * - * By the time this function returns, the returned pointer is not protected - * by RCU anymore. If the caller is not within an RCU critical section and - * does not hold the iothread lock, it must have other means of protecting the - * pointer, such as a reference to the region that includes the incoming - * ram_addr_t. - */ -RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, - ram_addr_t *offset) -{ - RAMBlock *block; - uint8_t *host = ptr; - - if (xen_enabled()) { - ram_addr_t ram_addr; - RCU_READ_LOCK_GUARD(); - ram_addr = xen_ram_addr_from_mapcache(ptr); - block = qemu_get_ram_block(ram_addr); - if (block) { - *offset = ram_addr - block->offset; - } - return block; - } - - RCU_READ_LOCK_GUARD(); - block = qatomic_rcu_read(&ram_list.mru_block); - if (block && block->host && host - block->host < block->max_length) { - goto found; - } - - RAMBLOCK_FOREACH(block) { - /* This case append when the block is not mapped. */ - if (block->host == NULL) { - continue; - } - if (host - block->host < block->max_length) { - goto found; - } - } - - return NULL; - -found: - *offset = (host - block->host); - if (round_offset) { - *offset &= TARGET_PAGE_MASK; - } - return block; -} - -/* - * Finds the named RAMBlock - * - * name: The name of RAMBlock to find - * - * Returns: RAMBlock (or NULL if not found) - */ -RAMBlock *qemu_ram_block_by_name(const char *name) -{ - RAMBlock *block; - - RAMBLOCK_FOREACH(block) { - if (!strcmp(name, block->idstr)) { - return block; - } - } - - return NULL; -} - -/* Some of the softmmu routines need to translate from a host pointer - (typically a TLB entry) back to a ram offset. */ -ram_addr_t qemu_ram_addr_from_host(void *ptr) -{ - RAMBlock *block; - ram_addr_t offset; - - block = qemu_ram_block_from_host(ptr, false, &offset); - if (!block) { - return RAM_ADDR_INVALID; - } - - return block->offset + offset; -} - -/* Generate a debug exception if a watchpoint has been hit. */ -void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, - MemTxAttrs attrs, int flags, uintptr_t ra) -{ - CPUClass *cc = CPU_GET_CLASS(cpu); - CPUWatchpoint *wp; - - assert(tcg_enabled()); - if (cpu->watchpoint_hit) { - /* - * We re-entered the check after replacing the TB. - * Now raise the debug interrupt so that it will - * trigger after the current instruction. - */ - qemu_mutex_lock_iothread(); - cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); - qemu_mutex_unlock_iothread(); - return; - } - - addr = cc->adjust_watchpoint_address(cpu, addr, len); - QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { - if (watchpoint_address_matches(wp, addr, len) - && (wp->flags & flags)) { - if (replay_running_debug()) { - /* - * Don't process the watchpoints when we are - * in a reverse debugging operation. - */ - replay_breakpoint(); - return; - } - if (flags == BP_MEM_READ) { - wp->flags |= BP_WATCHPOINT_HIT_READ; - } else { - wp->flags |= BP_WATCHPOINT_HIT_WRITE; - } - wp->hitaddr = MAX(addr, wp->vaddr); - wp->hitattrs = attrs; - if (!cpu->watchpoint_hit) { - if (wp->flags & BP_CPU && - !cc->debug_check_watchpoint(cpu, wp)) { - wp->flags &= ~BP_WATCHPOINT_HIT; - continue; - } - cpu->watchpoint_hit = wp; - - mmap_lock(); - tb_check_watchpoint(cpu, ra); - if (wp->flags & BP_STOP_BEFORE_ACCESS) { - cpu->exception_index = EXCP_DEBUG; - mmap_unlock(); - cpu_loop_exit_restore(cpu, ra); - } else { - /* Force execution of one insn next time. */ - cpu->cflags_next_tb = 1 | curr_cflags(); - mmap_unlock(); - if (ra) { - cpu_restore_state(cpu, ra, true); - } - cpu_loop_exit_noexc(cpu); - } - } - } else { - wp->flags &= ~BP_WATCHPOINT_HIT; - } - } -} - -static MemTxResult flatview_read(FlatView *fv, hwaddr addr, - MemTxAttrs attrs, void *buf, hwaddr len); -static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, - const void *buf, hwaddr len); -static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, - bool is_write, MemTxAttrs attrs); - -static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, - unsigned len, MemTxAttrs attrs) -{ - subpage_t *subpage = opaque; - uint8_t buf[8]; - MemTxResult res; - -#if defined(DEBUG_SUBPAGE) - printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, - subpage, len, addr); -#endif - res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len); - if (res) { - return res; - } - *data = ldn_p(buf, len); - return MEMTX_OK; -} - -static MemTxResult subpage_write(void *opaque, hwaddr addr, - uint64_t value, unsigned len, MemTxAttrs attrs) -{ - subpage_t *subpage = opaque; - uint8_t buf[8]; - -#if defined(DEBUG_SUBPAGE) - printf("%s: subpage %p len %u addr " TARGET_FMT_plx - " value %"PRIx64"\n", - __func__, subpage, len, addr, value); -#endif - stn_p(buf, len, value); - return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len); -} - -static bool subpage_accepts(void *opaque, hwaddr addr, - unsigned len, bool is_write, - MemTxAttrs attrs) -{ - subpage_t *subpage = opaque; -#if defined(DEBUG_SUBPAGE) - printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", - __func__, subpage, is_write ? 'w' : 'r', len, addr); -#endif - - return flatview_access_valid(subpage->fv, addr + subpage->base, - len, is_write, attrs); -} - -static const MemoryRegionOps subpage_ops = { - .read_with_attrs = subpage_read, - .write_with_attrs = subpage_write, - .impl.min_access_size = 1, - .impl.max_access_size = 8, - .valid.min_access_size = 1, - .valid.max_access_size = 8, - .valid.accepts = subpage_accepts, - .endianness = DEVICE_NATIVE_ENDIAN, -}; - -static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, - uint16_t section) -{ - int idx, eidx; - - if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) - return -1; - idx = SUBPAGE_IDX(start); - eidx = SUBPAGE_IDX(end); -#if defined(DEBUG_SUBPAGE) - printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", - __func__, mmio, start, end, idx, eidx, section); -#endif - for (; idx <= eidx; idx++) { - mmio->sub_section[idx] = section; - } - - return 0; -} - -static subpage_t *subpage_init(FlatView *fv, hwaddr base) -{ - subpage_t *mmio; - - /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */ - mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); - mmio->fv = fv; - mmio->base = base; - memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, - NULL, TARGET_PAGE_SIZE); - mmio->iomem.subpage = true; -#if defined(DEBUG_SUBPAGE) - printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, - mmio, base, TARGET_PAGE_SIZE); -#endif - - return mmio; -} - -static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr) -{ - assert(fv); - MemoryRegionSection section = { - .fv = fv, - .mr = mr, - .offset_within_address_space = 0, - .offset_within_region = 0, - .size = int128_2_64(), - }; - - return phys_section_add(map, §ion); -} - -MemoryRegionSection *iotlb_to_section(CPUState *cpu, - hwaddr index, MemTxAttrs attrs) -{ - int asidx = cpu_asidx_from_attrs(cpu, attrs); - CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; - AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch); - MemoryRegionSection *sections = d->map.sections; - - return §ions[index & ~TARGET_PAGE_MASK]; -} - -static void io_mem_init(void) -{ - memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, - NULL, UINT64_MAX); -} - -AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv) -{ - AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); - uint16_t n; - - n = dummy_section(&d->map, fv, &io_mem_unassigned); - assert(n == PHYS_SECTION_UNASSIGNED); - - d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; - - return d; -} - -void address_space_dispatch_free(AddressSpaceDispatch *d) -{ - phys_sections_free(&d->map); - g_free(d); -} - -static void do_nothing(CPUState *cpu, run_on_cpu_data d) -{ -} - -static void tcg_log_global_after_sync(MemoryListener *listener) -{ - CPUAddressSpace *cpuas; - - /* Wait for the CPU to end the current TB. This avoids the following - * incorrect race: - * - * vCPU migration - * ---------------------- ------------------------- - * TLB check -> slow path - * notdirty_mem_write - * write to RAM - * mark dirty - * clear dirty flag - * TLB check -> fast path - * read memory - * write to RAM - * - * by pushing the migration thread's memory read after the vCPU thread has - * written the memory. - */ - if (replay_mode == REPLAY_MODE_NONE) { - /* - * VGA can make calls to this function while updating the screen. - * In record/replay mode this causes a deadlock, because - * run_on_cpu waits for rr mutex. Therefore no races are possible - * in this case and no need for making run_on_cpu when - * record/replay is not enabled. - */ - cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); - run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL); - } -} - -static void tcg_commit(MemoryListener *listener) -{ - CPUAddressSpace *cpuas; - AddressSpaceDispatch *d; - - assert(tcg_enabled()); - /* since each CPU stores ram addresses in its TLB cache, we must - reset the modified entries */ - cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); - cpu_reloading_memory_map(); - /* The CPU and TLB are protected by the iothread lock. - * We reload the dispatch pointer now because cpu_reloading_memory_map() - * may have split the RCU critical section. - */ - d = address_space_to_dispatch(cpuas->as); - qatomic_rcu_set(&cpuas->memory_dispatch, d); - tlb_flush(cpuas->cpu); -} - -static void memory_map_init(void) -{ - system_memory = g_malloc(sizeof(*system_memory)); - - memory_region_init(system_memory, NULL, "system", UINT64_MAX); - address_space_init(&address_space_memory, system_memory, "memory"); - - system_io = g_malloc(sizeof(*system_io)); - memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", - 65536); - address_space_init(&address_space_io, system_io, "I/O"); -} - -MemoryRegion *get_system_memory(void) -{ - return system_memory; -} - -MemoryRegion *get_system_io(void) -{ - return system_io; -} - -#endif /* !defined(CONFIG_USER_ONLY) */ - -/* physical memory access (slow version, mainly for debug) */ -#if defined(CONFIG_USER_ONLY) -int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, - void *ptr, target_ulong len, bool is_write) -{ - int flags; - target_ulong l, page; - void * p; - uint8_t *buf = ptr; - - while (len > 0) { - page = addr & TARGET_PAGE_MASK; - l = (page + TARGET_PAGE_SIZE) - addr; - if (l > len) - l = len; - flags = page_get_flags(page); - if (!(flags & PAGE_VALID)) - return -1; - if (is_write) { - if (!(flags & PAGE_WRITE)) - return -1; - /* XXX: this code should not depend on lock_user */ - if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) - return -1; - memcpy(p, buf, l); - unlock_user(p, addr, l); - } else { - if (!(flags & PAGE_READ)) - return -1; - /* XXX: this code should not depend on lock_user */ - if (!(p = lock_user(VERIFY_READ, addr, l, 1))) - return -1; - memcpy(buf, p, l); - unlock_user(p, addr, 0); - } - len -= l; - buf += l; - addr += l; - } - return 0; -} - -#else - -static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, - hwaddr length) -{ - uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); - addr += memory_region_get_ram_addr(mr); - - /* No early return if dirty_log_mask is or becomes 0, because - * cpu_physical_memory_set_dirty_range will still call - * xen_modified_memory. - */ - if (dirty_log_mask) { - dirty_log_mask = - cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); - } - if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { - assert(tcg_enabled()); - tb_invalidate_phys_range(addr, addr + length); - dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); - } - cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); -} - -void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size) -{ - /* - * In principle this function would work on other memory region types too, - * but the ROM device use case is the only one where this operation is - * necessary. Other memory regions should use the - * address_space_read/write() APIs. - */ - assert(memory_region_is_romd(mr)); - - invalidate_and_set_dirty(mr, addr, size); -} - -static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) -{ - unsigned access_size_max = mr->ops->valid.max_access_size; - - /* Regions are assumed to support 1-4 byte accesses unless - otherwise specified. */ - if (access_size_max == 0) { - access_size_max = 4; - } - - /* Bound the maximum access by the alignment of the address. */ - if (!mr->ops->impl.unaligned) { - unsigned align_size_max = addr & -addr; - if (align_size_max != 0 && align_size_max < access_size_max) { - access_size_max = align_size_max; - } - } - - /* Don't attempt accesses larger than the maximum. */ - if (l > access_size_max) { - l = access_size_max; - } - l = pow2floor(l); - - return l; -} - -static bool prepare_mmio_access(MemoryRegion *mr) -{ - bool unlocked = !qemu_mutex_iothread_locked(); - bool release_lock = false; - - if (unlocked) { - qemu_mutex_lock_iothread(); - unlocked = false; - release_lock = true; - } - if (mr->flush_coalesced_mmio) { - if (unlocked) { - qemu_mutex_lock_iothread(); - } - qemu_flush_coalesced_mmio_buffer(); - if (unlocked) { - qemu_mutex_unlock_iothread(); - } - } - - return release_lock; -} - -/* Called within RCU critical section. */ -static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr, - MemTxAttrs attrs, - const void *ptr, - hwaddr len, hwaddr addr1, - hwaddr l, MemoryRegion *mr) -{ - uint8_t *ram_ptr; - uint64_t val; - MemTxResult result = MEMTX_OK; - bool release_lock = false; - const uint8_t *buf = ptr; - - for (;;) { - if (!memory_access_is_direct(mr, true)) { - release_lock |= prepare_mmio_access(mr); - l = memory_access_size(mr, l, addr1); - /* XXX: could force current_cpu to NULL to avoid - potential bugs */ - val = ldn_he_p(buf, l); - result |= memory_region_dispatch_write(mr, addr1, val, - size_memop(l), attrs); - } else { - /* RAM case */ - ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); - memcpy(ram_ptr, buf, l); - invalidate_and_set_dirty(mr, addr1, l); - } - - if (release_lock) { - qemu_mutex_unlock_iothread(); - release_lock = false; - } - - len -= l; - buf += l; - addr += l; - - if (!len) { - break; - } - - l = len; - mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); - } - - return result; -} - -/* Called from RCU critical section. */ -static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, - const void *buf, hwaddr len) -{ - hwaddr l; - hwaddr addr1; - MemoryRegion *mr; - MemTxResult result = MEMTX_OK; - - l = len; - mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); - result = flatview_write_continue(fv, addr, attrs, buf, len, - addr1, l, mr); - - return result; -} - -/* Called within RCU critical section. */ -MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, - MemTxAttrs attrs, void *ptr, - hwaddr len, hwaddr addr1, hwaddr l, - MemoryRegion *mr) -{ - uint8_t *ram_ptr; - uint64_t val; - MemTxResult result = MEMTX_OK; - bool release_lock = false; - uint8_t *buf = ptr; - - for (;;) { - if (!memory_access_is_direct(mr, false)) { - /* I/O case */ - release_lock |= prepare_mmio_access(mr); - l = memory_access_size(mr, l, addr1); - result |= memory_region_dispatch_read(mr, addr1, &val, - size_memop(l), attrs); - stn_he_p(buf, l, val); - } else { - /* RAM case */ - ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); - memcpy(buf, ram_ptr, l); - } - - if (release_lock) { - qemu_mutex_unlock_iothread(); - release_lock = false; - } - - len -= l; - buf += l; - addr += l; - - if (!len) { - break; - } - - l = len; - mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); - } - - return result; -} - -/* Called from RCU critical section. */ -static MemTxResult flatview_read(FlatView *fv, hwaddr addr, - MemTxAttrs attrs, void *buf, hwaddr len) -{ - hwaddr l; - hwaddr addr1; - MemoryRegion *mr; - - l = len; - mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); - return flatview_read_continue(fv, addr, attrs, buf, len, - addr1, l, mr); -} - -MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, - MemTxAttrs attrs, void *buf, hwaddr len) -{ - MemTxResult result = MEMTX_OK; - FlatView *fv; - - if (len > 0) { - RCU_READ_LOCK_GUARD(); - fv = address_space_to_flatview(as); - result = flatview_read(fv, addr, attrs, buf, len); - } - - return result; -} - -MemTxResult address_space_write(AddressSpace *as, hwaddr addr, - MemTxAttrs attrs, - const void *buf, hwaddr len) -{ - MemTxResult result = MEMTX_OK; - FlatView *fv; - - if (len > 0) { - RCU_READ_LOCK_GUARD(); - fv = address_space_to_flatview(as); - result = flatview_write(fv, addr, attrs, buf, len); - } - - return result; -} - -MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, - void *buf, hwaddr len, bool is_write) -{ - if (is_write) { - return address_space_write(as, addr, attrs, buf, len); - } else { - return address_space_read_full(as, addr, attrs, buf, len); - } -} - -void cpu_physical_memory_rw(hwaddr addr, void *buf, - hwaddr len, bool is_write) -{ - address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, - buf, len, is_write); -} - -enum write_rom_type { - WRITE_DATA, - FLUSH_CACHE, -}; - -static inline MemTxResult address_space_write_rom_internal(AddressSpace *as, - hwaddr addr, - MemTxAttrs attrs, - const void *ptr, - hwaddr len, - enum write_rom_type type) -{ - hwaddr l; - uint8_t *ram_ptr; - hwaddr addr1; - MemoryRegion *mr; - const uint8_t *buf = ptr; - - RCU_READ_LOCK_GUARD(); - while (len > 0) { - l = len; - mr = address_space_translate(as, addr, &addr1, &l, true, attrs); - - if (!(memory_region_is_ram(mr) || - memory_region_is_romd(mr))) { - l = memory_access_size(mr, l, addr1); - } else { - /* ROM/RAM case */ - ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1); - switch (type) { - case WRITE_DATA: - memcpy(ram_ptr, buf, l); - invalidate_and_set_dirty(mr, addr1, l); - break; - case FLUSH_CACHE: - flush_icache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr + l); - break; - } - } - len -= l; - buf += l; - addr += l; - } - return MEMTX_OK; -} - -/* used for ROM loading : can write in RAM and ROM */ -MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, - MemTxAttrs attrs, - const void *buf, hwaddr len) -{ - return address_space_write_rom_internal(as, addr, attrs, - buf, len, WRITE_DATA); -} - -void cpu_flush_icache_range(hwaddr start, hwaddr len) -{ - /* - * This function should do the same thing as an icache flush that was - * triggered from within the guest. For TCG we are always cache coherent, - * so there is no need to flush anything. For KVM / Xen we need to flush - * the host's instruction cache at least. - */ - if (tcg_enabled()) { - return; - } - - address_space_write_rom_internal(&address_space_memory, - start, MEMTXATTRS_UNSPECIFIED, - NULL, len, FLUSH_CACHE); -} - -typedef struct { - MemoryRegion *mr; - void *buffer; - hwaddr addr; - hwaddr len; - bool in_use; -} BounceBuffer; - -static BounceBuffer bounce; - -typedef struct MapClient { - QEMUBH *bh; - QLIST_ENTRY(MapClient) link; -} MapClient; - -QemuMutex map_client_list_lock; -static QLIST_HEAD(, MapClient) map_client_list - = QLIST_HEAD_INITIALIZER(map_client_list); - -static void cpu_unregister_map_client_do(MapClient *client) -{ - QLIST_REMOVE(client, link); - g_free(client); -} - -static void cpu_notify_map_clients_locked(void) -{ - MapClient *client; - - while (!QLIST_EMPTY(&map_client_list)) { - client = QLIST_FIRST(&map_client_list); - qemu_bh_schedule(client->bh); - cpu_unregister_map_client_do(client); - } -} - -void cpu_register_map_client(QEMUBH *bh) -{ - MapClient *client = g_malloc(sizeof(*client)); - - qemu_mutex_lock(&map_client_list_lock); - client->bh = bh; - QLIST_INSERT_HEAD(&map_client_list, client, link); - if (!qatomic_read(&bounce.in_use)) { - cpu_notify_map_clients_locked(); - } - qemu_mutex_unlock(&map_client_list_lock); -} - -void cpu_exec_init_all(void) -{ - qemu_mutex_init(&ram_list.mutex); - /* The data structures we set up here depend on knowing the page size, - * so no more changes can be made after this point. - * In an ideal world, nothing we did before we had finished the - * machine setup would care about the target page size, and we could - * do this much later, rather than requiring board models to state - * up front what their requirements are. - */ - finalize_target_page_bits(); - io_mem_init(); - memory_map_init(); - qemu_mutex_init(&map_client_list_lock); -} - -void cpu_unregister_map_client(QEMUBH *bh) -{ - MapClient *client; - - qemu_mutex_lock(&map_client_list_lock); - QLIST_FOREACH(client, &map_client_list, link) { - if (client->bh == bh) { - cpu_unregister_map_client_do(client); - break; - } - } - qemu_mutex_unlock(&map_client_list_lock); -} - -static void cpu_notify_map_clients(void) -{ - qemu_mutex_lock(&map_client_list_lock); - cpu_notify_map_clients_locked(); - qemu_mutex_unlock(&map_client_list_lock); -} - -static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, - bool is_write, MemTxAttrs attrs) -{ - MemoryRegion *mr; - hwaddr l, xlat; - - while (len > 0) { - l = len; - mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); - if (!memory_access_is_direct(mr, is_write)) { - l = memory_access_size(mr, l, addr); - if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) { - return false; - } - } - - len -= l; - addr += l; - } - return true; -} - -bool address_space_access_valid(AddressSpace *as, hwaddr addr, - hwaddr len, bool is_write, - MemTxAttrs attrs) -{ - FlatView *fv; - bool result; - - RCU_READ_LOCK_GUARD(); - fv = address_space_to_flatview(as); - result = flatview_access_valid(fv, addr, len, is_write, attrs); - return result; -} - -static hwaddr -flatview_extend_translation(FlatView *fv, hwaddr addr, - hwaddr target_len, - MemoryRegion *mr, hwaddr base, hwaddr len, - bool is_write, MemTxAttrs attrs) -{ - hwaddr done = 0; - hwaddr xlat; - MemoryRegion *this_mr; - - for (;;) { - target_len -= len; - addr += len; - done += len; - if (target_len == 0) { - return done; - } - - len = target_len; - this_mr = flatview_translate(fv, addr, &xlat, - &len, is_write, attrs); - if (this_mr != mr || xlat != base + done) { - return done; - } - } -} - -/* Map a physical memory region into a host virtual address. - * May map a subset of the requested range, given by and returned in *plen. - * May return NULL if resources needed to perform the mapping are exhausted. - * Use only for reads OR writes - not for read-modify-write operations. - * Use cpu_register_map_client() to know when retrying the map operation is - * likely to succeed. - */ -void *address_space_map(AddressSpace *as, - hwaddr addr, - hwaddr *plen, - bool is_write, - MemTxAttrs attrs) -{ - hwaddr len = *plen; - hwaddr l, xlat; - MemoryRegion *mr; - void *ptr; - FlatView *fv; - - if (len == 0) { - return NULL; - } - - l = len; - RCU_READ_LOCK_GUARD(); - fv = address_space_to_flatview(as); - mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); - - if (!memory_access_is_direct(mr, is_write)) { - if (qatomic_xchg(&bounce.in_use, true)) { - *plen = 0; - return NULL; - } - /* Avoid unbounded allocations */ - l = MIN(l, TARGET_PAGE_SIZE); - bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); - bounce.addr = addr; - bounce.len = l; - - memory_region_ref(mr); - bounce.mr = mr; - if (!is_write) { - flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED, - bounce.buffer, l); - } - - *plen = l; - return bounce.buffer; - } - - - memory_region_ref(mr); - *plen = flatview_extend_translation(fv, addr, len, mr, xlat, - l, is_write, attrs); - ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true); - - return ptr; -} - -/* Unmaps a memory region previously mapped by address_space_map(). - * Will also mark the memory as dirty if is_write is true. access_len gives - * the amount of memory that was actually read or written by the caller. - */ -void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, - bool is_write, hwaddr access_len) -{ - if (buffer != bounce.buffer) { - MemoryRegion *mr; - ram_addr_t addr1; - - mr = memory_region_from_host(buffer, &addr1); - assert(mr != NULL); - if (is_write) { - invalidate_and_set_dirty(mr, addr1, access_len); - } - if (xen_enabled()) { - xen_invalidate_map_cache_entry(buffer); - } - memory_region_unref(mr); - return; - } - if (is_write) { - address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, - bounce.buffer, access_len); - } - qemu_vfree(bounce.buffer); - bounce.buffer = NULL; - memory_region_unref(bounce.mr); - qatomic_mb_set(&bounce.in_use, false); - cpu_notify_map_clients(); -} - -void *cpu_physical_memory_map(hwaddr addr, - hwaddr *plen, - bool is_write) -{ - return address_space_map(&address_space_memory, addr, plen, is_write, - MEMTXATTRS_UNSPECIFIED); -} - -void cpu_physical_memory_unmap(void *buffer, hwaddr len, - bool is_write, hwaddr access_len) -{ - return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); -} - -#define ARG1_DECL AddressSpace *as -#define ARG1 as -#define SUFFIX -#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) -#define RCU_READ_LOCK(...) rcu_read_lock() -#define RCU_READ_UNLOCK(...) rcu_read_unlock() -#include "memory_ldst.c.inc" - -int64_t address_space_cache_init(MemoryRegionCache *cache, - AddressSpace *as, - hwaddr addr, - hwaddr len, - bool is_write) -{ - AddressSpaceDispatch *d; - hwaddr l; - MemoryRegion *mr; - - assert(len > 0); - - l = len; - cache->fv = address_space_get_flatview(as); - d = flatview_to_dispatch(cache->fv); - cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true); - - mr = cache->mrs.mr; - memory_region_ref(mr); - if (memory_access_is_direct(mr, is_write)) { - /* We don't care about the memory attributes here as we're only - * doing this if we found actual RAM, which behaves the same - * regardless of attributes; so UNSPECIFIED is fine. - */ - l = flatview_extend_translation(cache->fv, addr, len, mr, - cache->xlat, l, is_write, - MEMTXATTRS_UNSPECIFIED); - cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true); - } else { - cache->ptr = NULL; - } - - cache->len = l; - cache->is_write = is_write; - return l; -} - -void address_space_cache_invalidate(MemoryRegionCache *cache, - hwaddr addr, - hwaddr access_len) -{ - assert(cache->is_write); - if (likely(cache->ptr)) { - invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len); - } -} - -void address_space_cache_destroy(MemoryRegionCache *cache) -{ - if (!cache->mrs.mr) { - return; - } - - if (xen_enabled()) { - xen_invalidate_map_cache_entry(cache->ptr); - } - memory_region_unref(cache->mrs.mr); - flatview_unref(cache->fv); - cache->mrs.mr = NULL; - cache->fv = NULL; -} - -/* Called from RCU critical section. This function has the same - * semantics as address_space_translate, but it only works on a - * predefined range of a MemoryRegion that was mapped with - * address_space_cache_init. - */ -static inline MemoryRegion *address_space_translate_cached( - MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat, - hwaddr *plen, bool is_write, MemTxAttrs attrs) -{ - MemoryRegionSection section; - MemoryRegion *mr; - IOMMUMemoryRegion *iommu_mr; - AddressSpace *target_as; - - assert(!cache->ptr); - *xlat = addr + cache->xlat; - - mr = cache->mrs.mr; - iommu_mr = memory_region_get_iommu(mr); - if (!iommu_mr) { - /* MMIO region. */ - return mr; - } - - section = address_space_translate_iommu(iommu_mr, xlat, plen, - NULL, is_write, true, - &target_as, attrs); - return section.mr; -} - -/* Called from RCU critical section. address_space_read_cached uses this - * out of line function when the target is an MMIO or IOMMU region. - */ -MemTxResult -address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr, - void *buf, hwaddr len) -{ - hwaddr addr1, l; - MemoryRegion *mr; - - l = len; - mr = address_space_translate_cached(cache, addr, &addr1, &l, false, - MEMTXATTRS_UNSPECIFIED); - return flatview_read_continue(cache->fv, - addr, MEMTXATTRS_UNSPECIFIED, buf, len, - addr1, l, mr); -} - -/* Called from RCU critical section. address_space_write_cached uses this - * out of line function when the target is an MMIO or IOMMU region. - */ -MemTxResult -address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr, - const void *buf, hwaddr len) -{ - hwaddr addr1, l; - MemoryRegion *mr; - - l = len; - mr = address_space_translate_cached(cache, addr, &addr1, &l, true, - MEMTXATTRS_UNSPECIFIED); - return flatview_write_continue(cache->fv, - addr, MEMTXATTRS_UNSPECIFIED, buf, len, - addr1, l, mr); -} - -#define ARG1_DECL MemoryRegionCache *cache -#define ARG1 cache -#define SUFFIX _cached_slow -#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__) -#define RCU_READ_LOCK() ((void)0) -#define RCU_READ_UNLOCK() ((void)0) -#include "memory_ldst.c.inc" - -/* virtual memory access for debug (includes writing to ROM) */ -int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, - void *ptr, target_ulong len, bool is_write) -{ - hwaddr phys_addr; - target_ulong l, page; - uint8_t *buf = ptr; - - cpu_synchronize_state(cpu); - while (len > 0) { - int asidx; - MemTxAttrs attrs; - MemTxResult res; - - page = addr & TARGET_PAGE_MASK; - phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); - asidx = cpu_asidx_from_attrs(cpu, attrs); - /* if no physical page mapped, return an error */ - if (phys_addr == -1) - return -1; - l = (page + TARGET_PAGE_SIZE) - addr; - if (l > len) - l = len; - phys_addr += (addr & ~TARGET_PAGE_MASK); - if (is_write) { - res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr, - attrs, buf, l); - } else { - res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr, - attrs, buf, l); - } - if (res != MEMTX_OK) { - return -1; - } - len -= l; - buf += l; - addr += l; - } - return 0; -} - -/* - * Allows code that needs to deal with migration bitmaps etc to still be built - * target independent. - */ -size_t qemu_target_page_size(void) -{ - return TARGET_PAGE_SIZE; -} - -int qemu_target_page_bits(void) -{ - return TARGET_PAGE_BITS; -} - -int qemu_target_page_bits_min(void) -{ - return TARGET_PAGE_BITS_MIN; -} -#endif - -bool target_words_bigendian(void) -{ -#if defined(TARGET_WORDS_BIGENDIAN) - return true; -#else - return false; -#endif -} - -#ifndef CONFIG_USER_ONLY -bool cpu_physical_memory_is_io(hwaddr phys_addr) -{ - MemoryRegion*mr; - hwaddr l = 1; - bool res; - - RCU_READ_LOCK_GUARD(); - mr = address_space_translate(&address_space_memory, - phys_addr, &phys_addr, &l, false, - MEMTXATTRS_UNSPECIFIED); - - res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); - return res; -} - -int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) -{ - RAMBlock *block; - int ret = 0; - - RCU_READ_LOCK_GUARD(); - RAMBLOCK_FOREACH(block) { - ret = func(block, opaque); - if (ret) { - break; - } - } - return ret; -} - -/* - * Unmap pages of memory from start to start+length such that - * they a) read as 0, b) Trigger whatever fault mechanism - * the OS provides for postcopy. - * The pages must be unmapped by the end of the function. - * Returns: 0 on success, none-0 on failure - * - */ -int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) -{ - int ret = -1; - - uint8_t *host_startaddr = rb->host + start; - - if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) { - error_report("ram_block_discard_range: Unaligned start address: %p", - host_startaddr); - goto err; - } - - if ((start + length) <= rb->used_length) { - bool need_madvise, need_fallocate; - if (!QEMU_IS_ALIGNED(length, rb->page_size)) { - error_report("ram_block_discard_range: Unaligned length: %zx", - length); - goto err; - } - - errno = ENOTSUP; /* If we are missing MADVISE etc */ - - /* The logic here is messy; - * madvise DONTNEED fails for hugepages - * fallocate works on hugepages and shmem - */ - need_madvise = (rb->page_size == qemu_host_page_size); - need_fallocate = rb->fd != -1; - if (need_fallocate) { - /* For a file, this causes the area of the file to be zero'd - * if read, and for hugetlbfs also causes it to be unmapped - * so a userfault will trigger. - */ -#ifdef CONFIG_FALLOCATE_PUNCH_HOLE - ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, - start, length); - if (ret) { - ret = -errno; - error_report("ram_block_discard_range: Failed to fallocate " - "%s:%" PRIx64 " +%zx (%d)", - rb->idstr, start, length, ret); - goto err; - } -#else - ret = -ENOSYS; - error_report("ram_block_discard_range: fallocate not available/file" - "%s:%" PRIx64 " +%zx (%d)", - rb->idstr, start, length, ret); - goto err; -#endif - } - if (need_madvise) { - /* For normal RAM this causes it to be unmapped, - * for shared memory it causes the local mapping to disappear - * and to fall back on the file contents (which we just - * fallocate'd away). - */ -#if defined(CONFIG_MADVISE) - ret = madvise(host_startaddr, length, MADV_DONTNEED); - if (ret) { - ret = -errno; - error_report("ram_block_discard_range: Failed to discard range " - "%s:%" PRIx64 " +%zx (%d)", - rb->idstr, start, length, ret); - goto err; - } -#else - ret = -ENOSYS; - error_report("ram_block_discard_range: MADVISE not available" - "%s:%" PRIx64 " +%zx (%d)", - rb->idstr, start, length, ret); - goto err; -#endif - } - trace_ram_block_discard_range(rb->idstr, host_startaddr, length, - need_madvise, need_fallocate, ret); - } else { - error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64 - "/%zx/" RAM_ADDR_FMT")", - rb->idstr, start, length, rb->used_length); - } - -err: - return ret; -} - -bool ramblock_is_pmem(RAMBlock *rb) -{ - return rb->flags & RAM_PMEM; -} - -#endif - -void page_size_init(void) -{ - /* NOTE: we can always suppose that qemu_host_page_size >= - TARGET_PAGE_SIZE */ - if (qemu_host_page_size == 0) { - qemu_host_page_size = qemu_real_host_page_size; - } - if (qemu_host_page_size < TARGET_PAGE_SIZE) { - qemu_host_page_size = TARGET_PAGE_SIZE; - } - qemu_host_page_mask = -(intptr_t)qemu_host_page_size; -} - -#if !defined(CONFIG_USER_ONLY) - -static void mtree_print_phys_entries(int start, int end, int skip, int ptr) -{ - if (start == end - 1) { - qemu_printf("\t%3d ", start); - } else { - qemu_printf("\t%3d..%-3d ", start, end - 1); - } - qemu_printf(" skip=%d ", skip); - if (ptr == PHYS_MAP_NODE_NIL) { - qemu_printf(" ptr=NIL"); - } else if (!skip) { - qemu_printf(" ptr=#%d", ptr); - } else { - qemu_printf(" ptr=[%d]", ptr); - } - qemu_printf("\n"); -} - -#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ - int128_sub((size), int128_one())) : 0) - -void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root) -{ - int i; - - qemu_printf(" Dispatch\n"); - qemu_printf(" Physical sections\n"); - - for (i = 0; i < d->map.sections_nb; ++i) { - MemoryRegionSection *s = d->map.sections + i; - const char *names[] = { " [unassigned]", " [not dirty]", - " [ROM]", " [watch]" }; - - qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx - " %s%s%s%s%s", - i, - s->offset_within_address_space, - s->offset_within_address_space + MR_SIZE(s->mr->size), - s->mr->name ? s->mr->name : "(noname)", - i < ARRAY_SIZE(names) ? names[i] : "", - s->mr == root ? " [ROOT]" : "", - s == d->mru_section ? " [MRU]" : "", - s->mr->is_iommu ? " [iommu]" : ""); - - if (s->mr->alias) { - qemu_printf(" alias=%s", s->mr->alias->name ? - s->mr->alias->name : "noname"); - } - qemu_printf("\n"); - } - - qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n", - P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip); - for (i = 0; i < d->map.nodes_nb; ++i) { - int j, jprev; - PhysPageEntry prev; - Node *n = d->map.nodes + i; - - qemu_printf(" [%d]\n", i); - - for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) { - PhysPageEntry *pe = *n + j; - - if (pe->ptr == prev.ptr && pe->skip == prev.skip) { - continue; - } - - mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); - - jprev = j; - prev = *pe; - } - - if (jprev != ARRAY_SIZE(*n)) { - mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); - } - } -} - -/* - * If positive, discarding RAM is disabled. If negative, discarding RAM is - * required to work and cannot be disabled. - */ -static int ram_block_discard_disabled; - -int ram_block_discard_disable(bool state) -{ - int old; - - if (!state) { - qatomic_dec(&ram_block_discard_disabled); - return 0; - } - - do { - old = qatomic_read(&ram_block_discard_disabled); - if (old < 0) { - return -EBUSY; - } - } while (qatomic_cmpxchg(&ram_block_discard_disabled, - old, old + 1) != old); - return 0; -} - -int ram_block_discard_require(bool state) -{ - int old; - - if (!state) { - qatomic_inc(&ram_block_discard_disabled); - return 0; - } - - do { - old = qatomic_read(&ram_block_discard_disabled); - if (old > 0) { - return -EBUSY; - } - } while (qatomic_cmpxchg(&ram_block_discard_disabled, - old, old - 1) != old); - return 0; -} - -bool ram_block_discard_is_disabled(void) -{ - return qatomic_read(&ram_block_discard_disabled) > 0; -} - -bool ram_block_discard_is_required(void) -{ - return qatomic_read(&ram_block_discard_disabled) < 0; -} - -#endif diff --git a/include/exec/cpu-common.h b/include/exec/cpu-common.h index d5e285d2b5..19805ed6db 100644 --- a/include/exec/cpu-common.h +++ b/include/exec/cpu-common.h @@ -14,6 +14,9 @@ void cpu_list_unlock(void); void tcg_flush_softmmu_tlb(CPUState *cs); +void tcg_iommu_init_notifier_list(CPUState *cpu); +void tcg_iommu_free_notifier_list(CPUState *cpu); + #if !defined(CONFIG_USER_ONLY) enum device_endian { diff --git a/meson.build b/meson.build index a280e4cf21..26230614ba 100644 --- a/meson.build +++ b/meson.build @@ -1372,7 +1372,7 @@ common_ss.add(files('cpus-common.c')) subdir('softmmu') common_ss.add(capstone) -specific_ss.add(files('disas.c', 'exec.c', 'gdbstub.c'), capstone, libpmem, libdaxctl) +specific_ss.add(files('cpu.c', 'disas.c', 'gdbstub.c'), capstone) specific_ss.add(files('exec-vary.c')) specific_ss.add(when: 'CONFIG_TCG', if_true: files( 'fpu/softfloat.c', diff --git a/softmmu/meson.build b/softmmu/meson.build index 862ab24878..8f7210b4f0 100644 --- a/softmmu/meson.build +++ b/softmmu/meson.build @@ -3,6 +3,7 @@ specific_ss.add(when: 'CONFIG_SOFTMMU', if_true: [files( 'balloon.c', 'cpus.c', 'cpu-throttle.c', + 'physmem.c', 'ioport.c', 'memory.c', 'memory_mapping.c', @@ -19,7 +20,7 @@ softmmu_ss.add(files( 'bootdevice.c', 'dma-helpers.c', 'qdev-monitor.c', -), sdl) +), sdl, libpmem, libdaxctl) softmmu_ss.add(when: 'CONFIG_TPM', if_true: files('tpm.c')) softmmu_ss.add(when: 'CONFIG_SECCOMP', if_true: [files('qemu-seccomp.c'), seccomp]) diff --git a/softmmu/physmem.c b/softmmu/physmem.c new file mode 100644 index 0000000000..e319fb2a1e --- /dev/null +++ b/softmmu/physmem.c @@ -0,0 +1,3711 @@ +/* + * RAM allocation and memory access + * + * Copyright (c) 2003 Fabrice Bellard + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see . + */ + +#include "qemu/osdep.h" +#include "qemu-common.h" +#include "qapi/error.h" + +#include "qemu/cutils.h" +#include "cpu.h" +#include "exec/exec-all.h" +#include "exec/target_page.h" +#include "tcg/tcg.h" +#include "hw/qdev-core.h" +#include "hw/qdev-properties.h" +#include "hw/boards.h" +#include "hw/xen/xen.h" +#include "sysemu/kvm.h" +#include "sysemu/sysemu.h" +#include "sysemu/tcg.h" +#include "sysemu/qtest.h" +#include "qemu/timer.h" +#include "qemu/config-file.h" +#include "qemu/error-report.h" +#include "qemu/qemu-print.h" +#include "exec/memory.h" +#include "exec/ioport.h" +#include "sysemu/dma.h" +#include "sysemu/hostmem.h" +#include "sysemu/hw_accel.h" +#include "exec/address-spaces.h" +#include "sysemu/xen-mapcache.h" +#include "trace/trace-root.h" + +#ifdef CONFIG_FALLOCATE_PUNCH_HOLE +#include +#endif + +#include "qemu/rcu_queue.h" +#include "qemu/main-loop.h" +#include "translate-all.h" +#include "sysemu/replay.h" + +#include "exec/memory-internal.h" +#include "exec/ram_addr.h" +#include "exec/log.h" + +#include "qemu/pmem.h" + +#include "migration/vmstate.h" + +#include "qemu/range.h" +#ifndef _WIN32 +#include "qemu/mmap-alloc.h" +#endif + +#include "monitor/monitor.h" + +#ifdef CONFIG_LIBDAXCTL +#include +#endif + +//#define DEBUG_SUBPAGE + +/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes + * are protected by the ramlist lock. + */ +RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; + +static MemoryRegion *system_memory; +static MemoryRegion *system_io; + +AddressSpace address_space_io; +AddressSpace address_space_memory; + +static MemoryRegion io_mem_unassigned; + +typedef struct PhysPageEntry PhysPageEntry; + +struct PhysPageEntry { + /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ + uint32_t skip : 6; + /* index into phys_sections (!skip) or phys_map_nodes (skip) */ + uint32_t ptr : 26; +}; + +#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) + +/* Size of the L2 (and L3, etc) page tables. */ +#define ADDR_SPACE_BITS 64 + +#define P_L2_BITS 9 +#define P_L2_SIZE (1 << P_L2_BITS) + +#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) + +typedef PhysPageEntry Node[P_L2_SIZE]; + +typedef struct PhysPageMap { + struct rcu_head rcu; + + unsigned sections_nb; + unsigned sections_nb_alloc; + unsigned nodes_nb; + unsigned nodes_nb_alloc; + Node *nodes; + MemoryRegionSection *sections; +} PhysPageMap; + +struct AddressSpaceDispatch { + MemoryRegionSection *mru_section; + /* This is a multi-level map on the physical address space. + * The bottom level has pointers to MemoryRegionSections. + */ + PhysPageEntry phys_map; + PhysPageMap map; +}; + +#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) +typedef struct subpage_t { + MemoryRegion iomem; + FlatView *fv; + hwaddr base; + uint16_t sub_section[]; +} subpage_t; + +#define PHYS_SECTION_UNASSIGNED 0 + +static void io_mem_init(void); +static void memory_map_init(void); +static void tcg_log_global_after_sync(MemoryListener *listener); +static void tcg_commit(MemoryListener *listener); + +/** + * CPUAddressSpace: all the information a CPU needs about an AddressSpace + * @cpu: the CPU whose AddressSpace this is + * @as: the AddressSpace itself + * @memory_dispatch: its dispatch pointer (cached, RCU protected) + * @tcg_as_listener: listener for tracking changes to the AddressSpace + */ +struct CPUAddressSpace { + CPUState *cpu; + AddressSpace *as; + struct AddressSpaceDispatch *memory_dispatch; + MemoryListener tcg_as_listener; +}; + +struct DirtyBitmapSnapshot { + ram_addr_t start; + ram_addr_t end; + unsigned long dirty[]; +}; + +static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) +{ + static unsigned alloc_hint = 16; + if (map->nodes_nb + nodes > map->nodes_nb_alloc) { + map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes); + map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); + alloc_hint = map->nodes_nb_alloc; + } +} + +static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) +{ + unsigned i; + uint32_t ret; + PhysPageEntry e; + PhysPageEntry *p; + + ret = map->nodes_nb++; + p = map->nodes[ret]; + assert(ret != PHYS_MAP_NODE_NIL); + assert(ret != map->nodes_nb_alloc); + + e.skip = leaf ? 0 : 1; + e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; + for (i = 0; i < P_L2_SIZE; ++i) { + memcpy(&p[i], &e, sizeof(e)); + } + return ret; +} + +static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, + hwaddr *index, uint64_t *nb, uint16_t leaf, + int level) +{ + PhysPageEntry *p; + hwaddr step = (hwaddr)1 << (level * P_L2_BITS); + + if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { + lp->ptr = phys_map_node_alloc(map, level == 0); + } + p = map->nodes[lp->ptr]; + lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; + + while (*nb && lp < &p[P_L2_SIZE]) { + if ((*index & (step - 1)) == 0 && *nb >= step) { + lp->skip = 0; + lp->ptr = leaf; + *index += step; + *nb -= step; + } else { + phys_page_set_level(map, lp, index, nb, leaf, level - 1); + } + ++lp; + } +} + +static void phys_page_set(AddressSpaceDispatch *d, + hwaddr index, uint64_t nb, + uint16_t leaf) +{ + /* Wildly overreserve - it doesn't matter much. */ + phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); + + phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); +} + +/* Compact a non leaf page entry. Simply detect that the entry has a single child, + * and update our entry so we can skip it and go directly to the destination. + */ +static void phys_page_compact(PhysPageEntry *lp, Node *nodes) +{ + unsigned valid_ptr = P_L2_SIZE; + int valid = 0; + PhysPageEntry *p; + int i; + + if (lp->ptr == PHYS_MAP_NODE_NIL) { + return; + } + + p = nodes[lp->ptr]; + for (i = 0; i < P_L2_SIZE; i++) { + if (p[i].ptr == PHYS_MAP_NODE_NIL) { + continue; + } + + valid_ptr = i; + valid++; + if (p[i].skip) { + phys_page_compact(&p[i], nodes); + } + } + + /* We can only compress if there's only one child. */ + if (valid != 1) { + return; + } + + assert(valid_ptr < P_L2_SIZE); + + /* Don't compress if it won't fit in the # of bits we have. */ + if (P_L2_LEVELS >= (1 << 6) && + lp->skip + p[valid_ptr].skip >= (1 << 6)) { + return; + } + + lp->ptr = p[valid_ptr].ptr; + if (!p[valid_ptr].skip) { + /* If our only child is a leaf, make this a leaf. */ + /* By design, we should have made this node a leaf to begin with so we + * should never reach here. + * But since it's so simple to handle this, let's do it just in case we + * change this rule. + */ + lp->skip = 0; + } else { + lp->skip += p[valid_ptr].skip; + } +} + +void address_space_dispatch_compact(AddressSpaceDispatch *d) +{ + if (d->phys_map.skip) { + phys_page_compact(&d->phys_map, d->map.nodes); + } +} + +static inline bool section_covers_addr(const MemoryRegionSection *section, + hwaddr addr) +{ + /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means + * the section must cover the entire address space. + */ + return int128_gethi(section->size) || + range_covers_byte(section->offset_within_address_space, + int128_getlo(section->size), addr); +} + +static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr) +{ + PhysPageEntry lp = d->phys_map, *p; + Node *nodes = d->map.nodes; + MemoryRegionSection *sections = d->map.sections; + hwaddr index = addr >> TARGET_PAGE_BITS; + int i; + + for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { + if (lp.ptr == PHYS_MAP_NODE_NIL) { + return §ions[PHYS_SECTION_UNASSIGNED]; + } + p = nodes[lp.ptr]; + lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; + } + + if (section_covers_addr(§ions[lp.ptr], addr)) { + return §ions[lp.ptr]; + } else { + return §ions[PHYS_SECTION_UNASSIGNED]; + } +} + +/* Called from RCU critical section */ +static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, + hwaddr addr, + bool resolve_subpage) +{ + MemoryRegionSection *section = qatomic_read(&d->mru_section); + subpage_t *subpage; + + if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] || + !section_covers_addr(section, addr)) { + section = phys_page_find(d, addr); + qatomic_set(&d->mru_section, section); + } + if (resolve_subpage && section->mr->subpage) { + subpage = container_of(section->mr, subpage_t, iomem); + section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; + } + return section; +} + +/* Called from RCU critical section */ +static MemoryRegionSection * +address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, + hwaddr *plen, bool resolve_subpage) +{ + MemoryRegionSection *section; + MemoryRegion *mr; + Int128 diff; + + section = address_space_lookup_region(d, addr, resolve_subpage); + /* Compute offset within MemoryRegionSection */ + addr -= section->offset_within_address_space; + + /* Compute offset within MemoryRegion */ + *xlat = addr + section->offset_within_region; + + mr = section->mr; + + /* MMIO registers can be expected to perform full-width accesses based only + * on their address, without considering adjacent registers that could + * decode to completely different MemoryRegions. When such registers + * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO + * regions overlap wildly. For this reason we cannot clamp the accesses + * here. + * + * If the length is small (as is the case for address_space_ldl/stl), + * everything works fine. If the incoming length is large, however, + * the caller really has to do the clamping through memory_access_size. + */ + if (memory_region_is_ram(mr)) { + diff = int128_sub(section->size, int128_make64(addr)); + *plen = int128_get64(int128_min(diff, int128_make64(*plen))); + } + return section; +} + +/** + * address_space_translate_iommu - translate an address through an IOMMU + * memory region and then through the target address space. + * + * @iommu_mr: the IOMMU memory region that we start the translation from + * @addr: the address to be translated through the MMU + * @xlat: the translated address offset within the destination memory region. + * It cannot be %NULL. + * @plen_out: valid read/write length of the translated address. It + * cannot be %NULL. + * @page_mask_out: page mask for the translated address. This + * should only be meaningful for IOMMU translated + * addresses, since there may be huge pages that this bit + * would tell. It can be %NULL if we don't care about it. + * @is_write: whether the translation operation is for write + * @is_mmio: whether this can be MMIO, set true if it can + * @target_as: the address space targeted by the IOMMU + * @attrs: transaction attributes + * + * This function is called from RCU critical section. It is the common + * part of flatview_do_translate and address_space_translate_cached. + */ +static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr, + hwaddr *xlat, + hwaddr *plen_out, + hwaddr *page_mask_out, + bool is_write, + bool is_mmio, + AddressSpace **target_as, + MemTxAttrs attrs) +{ + MemoryRegionSection *section; + hwaddr page_mask = (hwaddr)-1; + + do { + hwaddr addr = *xlat; + IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr); + int iommu_idx = 0; + IOMMUTLBEntry iotlb; + + if (imrc->attrs_to_index) { + iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); + } + + iotlb = imrc->translate(iommu_mr, addr, is_write ? + IOMMU_WO : IOMMU_RO, iommu_idx); + + if (!(iotlb.perm & (1 << is_write))) { + goto unassigned; + } + + addr = ((iotlb.translated_addr & ~iotlb.addr_mask) + | (addr & iotlb.addr_mask)); + page_mask &= iotlb.addr_mask; + *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1); + *target_as = iotlb.target_as; + + section = address_space_translate_internal( + address_space_to_dispatch(iotlb.target_as), addr, xlat, + plen_out, is_mmio); + + iommu_mr = memory_region_get_iommu(section->mr); + } while (unlikely(iommu_mr)); + + if (page_mask_out) { + *page_mask_out = page_mask; + } + return *section; + +unassigned: + return (MemoryRegionSection) { .mr = &io_mem_unassigned }; +} + +/** + * flatview_do_translate - translate an address in FlatView + * + * @fv: the flat view that we want to translate on + * @addr: the address to be translated in above address space + * @xlat: the translated address offset within memory region. It + * cannot be @NULL. + * @plen_out: valid read/write length of the translated address. It + * can be @NULL when we don't care about it. + * @page_mask_out: page mask for the translated address. This + * should only be meaningful for IOMMU translated + * addresses, since there may be huge pages that this bit + * would tell. It can be @NULL if we don't care about it. + * @is_write: whether the translation operation is for write + * @is_mmio: whether this can be MMIO, set true if it can + * @target_as: the address space targeted by the IOMMU + * @attrs: memory transaction attributes + * + * This function is called from RCU critical section + */ +static MemoryRegionSection flatview_do_translate(FlatView *fv, + hwaddr addr, + hwaddr *xlat, + hwaddr *plen_out, + hwaddr *page_mask_out, + bool is_write, + bool is_mmio, + AddressSpace **target_as, + MemTxAttrs attrs) +{ + MemoryRegionSection *section; + IOMMUMemoryRegion *iommu_mr; + hwaddr plen = (hwaddr)(-1); + + if (!plen_out) { + plen_out = &plen; + } + + section = address_space_translate_internal( + flatview_to_dispatch(fv), addr, xlat, + plen_out, is_mmio); + + iommu_mr = memory_region_get_iommu(section->mr); + if (unlikely(iommu_mr)) { + return address_space_translate_iommu(iommu_mr, xlat, + plen_out, page_mask_out, + is_write, is_mmio, + target_as, attrs); + } + if (page_mask_out) { + /* Not behind an IOMMU, use default page size. */ + *page_mask_out = ~TARGET_PAGE_MASK; + } + + return *section; +} + +/* Called from RCU critical section */ +IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, + bool is_write, MemTxAttrs attrs) +{ + MemoryRegionSection section; + hwaddr xlat, page_mask; + + /* + * This can never be MMIO, and we don't really care about plen, + * but page mask. + */ + section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat, + NULL, &page_mask, is_write, false, &as, + attrs); + + /* Illegal translation */ + if (section.mr == &io_mem_unassigned) { + goto iotlb_fail; + } + + /* Convert memory region offset into address space offset */ + xlat += section.offset_within_address_space - + section.offset_within_region; + + return (IOMMUTLBEntry) { + .target_as = as, + .iova = addr & ~page_mask, + .translated_addr = xlat & ~page_mask, + .addr_mask = page_mask, + /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ + .perm = IOMMU_RW, + }; + +iotlb_fail: + return (IOMMUTLBEntry) {0}; +} + +/* Called from RCU critical section */ +MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, + hwaddr *plen, bool is_write, + MemTxAttrs attrs) +{ + MemoryRegion *mr; + MemoryRegionSection section; + AddressSpace *as = NULL; + + /* This can be MMIO, so setup MMIO bit. */ + section = flatview_do_translate(fv, addr, xlat, plen, NULL, + is_write, true, &as, attrs); + mr = section.mr; + + if (xen_enabled() && memory_access_is_direct(mr, is_write)) { + hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; + *plen = MIN(page, *plen); + } + + return mr; +} + +typedef struct TCGIOMMUNotifier { + IOMMUNotifier n; + MemoryRegion *mr; + CPUState *cpu; + int iommu_idx; + bool active; +} TCGIOMMUNotifier; + +static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) +{ + TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n); + + if (!notifier->active) { + return; + } + tlb_flush(notifier->cpu); + notifier->active = false; + /* We leave the notifier struct on the list to avoid reallocating it later. + * Generally the number of IOMMUs a CPU deals with will be small. + * In any case we can't unregister the iommu notifier from a notify + * callback. + */ +} + +static void tcg_register_iommu_notifier(CPUState *cpu, + IOMMUMemoryRegion *iommu_mr, + int iommu_idx) +{ + /* Make sure this CPU has an IOMMU notifier registered for this + * IOMMU/IOMMU index combination, so that we can flush its TLB + * when the IOMMU tells us the mappings we've cached have changed. + */ + MemoryRegion *mr = MEMORY_REGION(iommu_mr); + TCGIOMMUNotifier *notifier; + int i; + + for (i = 0; i < cpu->iommu_notifiers->len; i++) { + notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); + if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) { + break; + } + } + if (i == cpu->iommu_notifiers->len) { + /* Not found, add a new entry at the end of the array */ + cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1); + notifier = g_new0(TCGIOMMUNotifier, 1); + g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier; + + notifier->mr = mr; + notifier->iommu_idx = iommu_idx; + notifier->cpu = cpu; + /* Rather than trying to register interest in the specific part + * of the iommu's address space that we've accessed and then + * expand it later as subsequent accesses touch more of it, we + * just register interest in the whole thing, on the assumption + * that iommu reconfiguration will be rare. + */ + iommu_notifier_init(¬ifier->n, + tcg_iommu_unmap_notify, + IOMMU_NOTIFIER_UNMAP, + 0, + HWADDR_MAX, + iommu_idx); + memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n, + &error_fatal); + } + + if (!notifier->active) { + notifier->active = true; + } +} + +void tcg_iommu_free_notifier_list(CPUState *cpu) +{ + /* Destroy the CPU's notifier list */ + int i; + TCGIOMMUNotifier *notifier; + + for (i = 0; i < cpu->iommu_notifiers->len; i++) { + notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); + memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n); + g_free(notifier); + } + g_array_free(cpu->iommu_notifiers, true); +} + +void tcg_iommu_init_notifier_list(CPUState *cpu) +{ + cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *)); +} + +/* Called from RCU critical section */ +MemoryRegionSection * +address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, + hwaddr *xlat, hwaddr *plen, + MemTxAttrs attrs, int *prot) +{ + MemoryRegionSection *section; + IOMMUMemoryRegion *iommu_mr; + IOMMUMemoryRegionClass *imrc; + IOMMUTLBEntry iotlb; + int iommu_idx; + AddressSpaceDispatch *d = + qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch); + + for (;;) { + section = address_space_translate_internal(d, addr, &addr, plen, false); + + iommu_mr = memory_region_get_iommu(section->mr); + if (!iommu_mr) { + break; + } + + imrc = memory_region_get_iommu_class_nocheck(iommu_mr); + + iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); + tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx); + /* We need all the permissions, so pass IOMMU_NONE so the IOMMU + * doesn't short-cut its translation table walk. + */ + iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx); + addr = ((iotlb.translated_addr & ~iotlb.addr_mask) + | (addr & iotlb.addr_mask)); + /* Update the caller's prot bits to remove permissions the IOMMU + * is giving us a failure response for. If we get down to no + * permissions left at all we can give up now. + */ + if (!(iotlb.perm & IOMMU_RO)) { + *prot &= ~(PAGE_READ | PAGE_EXEC); + } + if (!(iotlb.perm & IOMMU_WO)) { + *prot &= ~PAGE_WRITE; + } + + if (!*prot) { + goto translate_fail; + } + + d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as)); + } + + assert(!memory_region_is_iommu(section->mr)); + *xlat = addr; + return section; + +translate_fail: + return &d->map.sections[PHYS_SECTION_UNASSIGNED]; +} + +void cpu_address_space_init(CPUState *cpu, int asidx, + const char *prefix, MemoryRegion *mr) +{ + CPUAddressSpace *newas; + AddressSpace *as = g_new0(AddressSpace, 1); + char *as_name; + + assert(mr); + as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index); + address_space_init(as, mr, as_name); + g_free(as_name); + + /* Target code should have set num_ases before calling us */ + assert(asidx < cpu->num_ases); + + if (asidx == 0) { + /* address space 0 gets the convenience alias */ + cpu->as = as; + } + + /* KVM cannot currently support multiple address spaces. */ + assert(asidx == 0 || !kvm_enabled()); + + if (!cpu->cpu_ases) { + cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); + } + + newas = &cpu->cpu_ases[asidx]; + newas->cpu = cpu; + newas->as = as; + if (tcg_enabled()) { + newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync; + newas->tcg_as_listener.commit = tcg_commit; + memory_listener_register(&newas->tcg_as_listener, as); + } +} + +AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) +{ + /* Return the AddressSpace corresponding to the specified index */ + return cpu->cpu_ases[asidx].as; +} + +/* Add a watchpoint. */ +int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, + int flags, CPUWatchpoint **watchpoint) +{ + CPUWatchpoint *wp; + vaddr in_page; + + /* forbid ranges which are empty or run off the end of the address space */ + if (len == 0 || (addr + len - 1) < addr) { + error_report("tried to set invalid watchpoint at %" + VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); + return -EINVAL; + } + wp = g_malloc(sizeof(*wp)); + + wp->vaddr = addr; + wp->len = len; + wp->flags = flags; + + /* keep all GDB-injected watchpoints in front */ + if (flags & BP_GDB) { + QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); + } else { + QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); + } + + in_page = -(addr | TARGET_PAGE_MASK); + if (len <= in_page) { + tlb_flush_page(cpu, addr); + } else { + tlb_flush(cpu); + } + + if (watchpoint) + *watchpoint = wp; + return 0; +} + +/* Remove a specific watchpoint. */ +int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, + int flags) +{ + CPUWatchpoint *wp; + + QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { + if (addr == wp->vaddr && len == wp->len + && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { + cpu_watchpoint_remove_by_ref(cpu, wp); + return 0; + } + } + return -ENOENT; +} + +/* Remove a specific watchpoint by reference. */ +void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) +{ + QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); + + tlb_flush_page(cpu, watchpoint->vaddr); + + g_free(watchpoint); +} + +/* Remove all matching watchpoints. */ +void cpu_watchpoint_remove_all(CPUState *cpu, int mask) +{ + CPUWatchpoint *wp, *next; + + QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { + if (wp->flags & mask) { + cpu_watchpoint_remove_by_ref(cpu, wp); + } + } +} + +/* Return true if this watchpoint address matches the specified + * access (ie the address range covered by the watchpoint overlaps + * partially or completely with the address range covered by the + * access). + */ +static inline bool watchpoint_address_matches(CPUWatchpoint *wp, + vaddr addr, vaddr len) +{ + /* We know the lengths are non-zero, but a little caution is + * required to avoid errors in the case where the range ends + * exactly at the top of the address space and so addr + len + * wraps round to zero. + */ + vaddr wpend = wp->vaddr + wp->len - 1; + vaddr addrend = addr + len - 1; + + return !(addr > wpend || wp->vaddr > addrend); +} + +/* Return flags for watchpoints that match addr + prot. */ +int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len) +{ + CPUWatchpoint *wp; + int ret = 0; + + QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { + if (watchpoint_address_matches(wp, addr, len)) { + ret |= wp->flags; + } + } + return ret; +} + +/* Called from RCU critical section */ +static RAMBlock *qemu_get_ram_block(ram_addr_t addr) +{ + RAMBlock *block; + + block = qatomic_rcu_read(&ram_list.mru_block); + if (block && addr - block->offset < block->max_length) { + return block; + } + RAMBLOCK_FOREACH(block) { + if (addr - block->offset < block->max_length) { + goto found; + } + } + + fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); + abort(); + +found: + /* It is safe to write mru_block outside the iothread lock. This + * is what happens: + * + * mru_block = xxx + * rcu_read_unlock() + * xxx removed from list + * rcu_read_lock() + * read mru_block + * mru_block = NULL; + * call_rcu(reclaim_ramblock, xxx); + * rcu_read_unlock() + * + * qatomic_rcu_set is not needed here. The block was already published + * when it was placed into the list. Here we're just making an extra + * copy of the pointer. + */ + ram_list.mru_block = block; + return block; +} + +static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) +{ + CPUState *cpu; + ram_addr_t start1; + RAMBlock *block; + ram_addr_t end; + + assert(tcg_enabled()); + end = TARGET_PAGE_ALIGN(start + length); + start &= TARGET_PAGE_MASK; + + RCU_READ_LOCK_GUARD(); + block = qemu_get_ram_block(start); + assert(block == qemu_get_ram_block(end - 1)); + start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); + CPU_FOREACH(cpu) { + tlb_reset_dirty(cpu, start1, length); + } +} + +/* Note: start and end must be within the same ram block. */ +bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, + ram_addr_t length, + unsigned client) +{ + DirtyMemoryBlocks *blocks; + unsigned long end, page, start_page; + bool dirty = false; + RAMBlock *ramblock; + uint64_t mr_offset, mr_size; + + if (length == 0) { + return false; + } + + end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; + start_page = start >> TARGET_PAGE_BITS; + page = start_page; + + WITH_RCU_READ_LOCK_GUARD() { + blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); + ramblock = qemu_get_ram_block(start); + /* Range sanity check on the ramblock */ + assert(start >= ramblock->offset && + start + length <= ramblock->offset + ramblock->used_length); + + while (page < end) { + unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; + unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; + unsigned long num = MIN(end - page, + DIRTY_MEMORY_BLOCK_SIZE - offset); + + dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], + offset, num); + page += num; + } + + mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset; + mr_size = (end - start_page) << TARGET_PAGE_BITS; + memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size); + } + + if (dirty && tcg_enabled()) { + tlb_reset_dirty_range_all(start, length); + } + + return dirty; +} + +DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty + (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client) +{ + DirtyMemoryBlocks *blocks; + ram_addr_t start = memory_region_get_ram_addr(mr) + offset; + unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); + ram_addr_t first = QEMU_ALIGN_DOWN(start, align); + ram_addr_t last = QEMU_ALIGN_UP(start + length, align); + DirtyBitmapSnapshot *snap; + unsigned long page, end, dest; + + snap = g_malloc0(sizeof(*snap) + + ((last - first) >> (TARGET_PAGE_BITS + 3))); + snap->start = first; + snap->end = last; + + page = first >> TARGET_PAGE_BITS; + end = last >> TARGET_PAGE_BITS; + dest = 0; + + WITH_RCU_READ_LOCK_GUARD() { + blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); + + while (page < end) { + unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; + unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; + unsigned long num = MIN(end - page, + DIRTY_MEMORY_BLOCK_SIZE - offset); + + assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL))); + assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); + offset >>= BITS_PER_LEVEL; + + bitmap_copy_and_clear_atomic(snap->dirty + dest, + blocks->blocks[idx] + offset, + num); + page += num; + dest += num >> BITS_PER_LEVEL; + } + } + + if (tcg_enabled()) { + tlb_reset_dirty_range_all(start, length); + } + + memory_region_clear_dirty_bitmap(mr, offset, length); + + return snap; +} + +bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, + ram_addr_t start, + ram_addr_t length) +{ + unsigned long page, end; + + assert(start >= snap->start); + assert(start + length <= snap->end); + + end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; + page = (start - snap->start) >> TARGET_PAGE_BITS; + + while (page < end) { + if (test_bit(page, snap->dirty)) { + return true; + } + page++; + } + return false; +} + +/* Called from RCU critical section */ +hwaddr memory_region_section_get_iotlb(CPUState *cpu, + MemoryRegionSection *section) +{ + AddressSpaceDispatch *d = flatview_to_dispatch(section->fv); + return section - d->map.sections; +} + +static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, + uint16_t section); +static subpage_t *subpage_init(FlatView *fv, hwaddr base); + +static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) = + qemu_anon_ram_alloc; + +/* + * Set a custom physical guest memory alloator. + * Accelerators with unusual needs may need this. Hopefully, we can + * get rid of it eventually. + */ +void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared)) +{ + phys_mem_alloc = alloc; +} + +static uint16_t phys_section_add(PhysPageMap *map, + MemoryRegionSection *section) +{ + /* The physical section number is ORed with a page-aligned + * pointer to produce the iotlb entries. Thus it should + * never overflow into the page-aligned value. + */ + assert(map->sections_nb < TARGET_PAGE_SIZE); + + if (map->sections_nb == map->sections_nb_alloc) { + map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); + map->sections = g_renew(MemoryRegionSection, map->sections, + map->sections_nb_alloc); + } + map->sections[map->sections_nb] = *section; + memory_region_ref(section->mr); + return map->sections_nb++; +} + +static void phys_section_destroy(MemoryRegion *mr) +{ + bool have_sub_page = mr->subpage; + + memory_region_unref(mr); + + if (have_sub_page) { + subpage_t *subpage = container_of(mr, subpage_t, iomem); + object_unref(OBJECT(&subpage->iomem)); + g_free(subpage); + } +} + +static void phys_sections_free(PhysPageMap *map) +{ + while (map->sections_nb > 0) { + MemoryRegionSection *section = &map->sections[--map->sections_nb]; + phys_section_destroy(section->mr); + } + g_free(map->sections); + g_free(map->nodes); +} + +static void register_subpage(FlatView *fv, MemoryRegionSection *section) +{ + AddressSpaceDispatch *d = flatview_to_dispatch(fv); + subpage_t *subpage; + hwaddr base = section->offset_within_address_space + & TARGET_PAGE_MASK; + MemoryRegionSection *existing = phys_page_find(d, base); + MemoryRegionSection subsection = { + .offset_within_address_space = base, + .size = int128_make64(TARGET_PAGE_SIZE), + }; + hwaddr start, end; + + assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); + + if (!(existing->mr->subpage)) { + subpage = subpage_init(fv, base); + subsection.fv = fv; + subsection.mr = &subpage->iomem; + phys_page_set(d, base >> TARGET_PAGE_BITS, 1, + phys_section_add(&d->map, &subsection)); + } else { + subpage = container_of(existing->mr, subpage_t, iomem); + } + start = section->offset_within_address_space & ~TARGET_PAGE_MASK; + end = start + int128_get64(section->size) - 1; + subpage_register(subpage, start, end, + phys_section_add(&d->map, section)); +} + + +static void register_multipage(FlatView *fv, + MemoryRegionSection *section) +{ + AddressSpaceDispatch *d = flatview_to_dispatch(fv); + hwaddr start_addr = section->offset_within_address_space; + uint16_t section_index = phys_section_add(&d->map, section); + uint64_t num_pages = int128_get64(int128_rshift(section->size, + TARGET_PAGE_BITS)); + + assert(num_pages); + phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); +} + +/* + * The range in *section* may look like this: + * + * |s|PPPPPPP|s| + * + * where s stands for subpage and P for page. + */ +void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section) +{ + MemoryRegionSection remain = *section; + Int128 page_size = int128_make64(TARGET_PAGE_SIZE); + + /* register first subpage */ + if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { + uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space) + - remain.offset_within_address_space; + + MemoryRegionSection now = remain; + now.size = int128_min(int128_make64(left), now.size); + register_subpage(fv, &now); + if (int128_eq(remain.size, now.size)) { + return; + } + remain.size = int128_sub(remain.size, now.size); + remain.offset_within_address_space += int128_get64(now.size); + remain.offset_within_region += int128_get64(now.size); + } + + /* register whole pages */ + if (int128_ge(remain.size, page_size)) { + MemoryRegionSection now = remain; + now.size = int128_and(now.size, int128_neg(page_size)); + register_multipage(fv, &now); + if (int128_eq(remain.size, now.size)) { + return; + } + remain.size = int128_sub(remain.size, now.size); + remain.offset_within_address_space += int128_get64(now.size); + remain.offset_within_region += int128_get64(now.size); + } + + /* register last subpage */ + register_subpage(fv, &remain); +} + +void qemu_flush_coalesced_mmio_buffer(void) +{ + if (kvm_enabled()) + kvm_flush_coalesced_mmio_buffer(); +} + +void qemu_mutex_lock_ramlist(void) +{ + qemu_mutex_lock(&ram_list.mutex); +} + +void qemu_mutex_unlock_ramlist(void) +{ + qemu_mutex_unlock(&ram_list.mutex); +} + +void ram_block_dump(Monitor *mon) +{ + RAMBlock *block; + char *psize; + + RCU_READ_LOCK_GUARD(); + monitor_printf(mon, "%24s %8s %18s %18s %18s\n", + "Block Name", "PSize", "Offset", "Used", "Total"); + RAMBLOCK_FOREACH(block) { + psize = size_to_str(block->page_size); + monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64 + " 0x%016" PRIx64 "\n", block->idstr, psize, + (uint64_t)block->offset, + (uint64_t)block->used_length, + (uint64_t)block->max_length); + g_free(psize); + } +} + +#ifdef __linux__ +/* + * FIXME TOCTTOU: this iterates over memory backends' mem-path, which + * may or may not name the same files / on the same filesystem now as + * when we actually open and map them. Iterate over the file + * descriptors instead, and use qemu_fd_getpagesize(). + */ +static int find_min_backend_pagesize(Object *obj, void *opaque) +{ + long *hpsize_min = opaque; + + if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { + HostMemoryBackend *backend = MEMORY_BACKEND(obj); + long hpsize = host_memory_backend_pagesize(backend); + + if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) { + *hpsize_min = hpsize; + } + } + + return 0; +} + +static int find_max_backend_pagesize(Object *obj, void *opaque) +{ + long *hpsize_max = opaque; + + if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { + HostMemoryBackend *backend = MEMORY_BACKEND(obj); + long hpsize = host_memory_backend_pagesize(backend); + + if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) { + *hpsize_max = hpsize; + } + } + + return 0; +} + +/* + * TODO: We assume right now that all mapped host memory backends are + * used as RAM, however some might be used for different purposes. + */ +long qemu_minrampagesize(void) +{ + long hpsize = LONG_MAX; + Object *memdev_root = object_resolve_path("/objects", NULL); + + object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize); + return hpsize; +} + +long qemu_maxrampagesize(void) +{ + long pagesize = 0; + Object *memdev_root = object_resolve_path("/objects", NULL); + + object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize); + return pagesize; +} +#else +long qemu_minrampagesize(void) +{ + return qemu_real_host_page_size; +} +long qemu_maxrampagesize(void) +{ + return qemu_real_host_page_size; +} +#endif + +#ifdef CONFIG_POSIX +static int64_t get_file_size(int fd) +{ + int64_t size; +#if defined(__linux__) + struct stat st; + + if (fstat(fd, &st) < 0) { + return -errno; + } + + /* Special handling for devdax character devices */ + if (S_ISCHR(st.st_mode)) { + g_autofree char *subsystem_path = NULL; + g_autofree char *subsystem = NULL; + + subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem", + major(st.st_rdev), minor(st.st_rdev)); + subsystem = g_file_read_link(subsystem_path, NULL); + + if (subsystem && g_str_has_suffix(subsystem, "/dax")) { + g_autofree char *size_path = NULL; + g_autofree char *size_str = NULL; + + size_path = g_strdup_printf("/sys/dev/char/%d:%d/size", + major(st.st_rdev), minor(st.st_rdev)); + + if (g_file_get_contents(size_path, &size_str, NULL, NULL)) { + return g_ascii_strtoll(size_str, NULL, 0); + } + } + } +#endif /* defined(__linux__) */ + + /* st.st_size may be zero for special files yet lseek(2) works */ + size = lseek(fd, 0, SEEK_END); + if (size < 0) { + return -errno; + } + return size; +} + +static int64_t get_file_align(int fd) +{ + int64_t align = -1; +#if defined(__linux__) && defined(CONFIG_LIBDAXCTL) + struct stat st; + + if (fstat(fd, &st) < 0) { + return -errno; + } + + /* Special handling for devdax character devices */ + if (S_ISCHR(st.st_mode)) { + g_autofree char *path = NULL; + g_autofree char *rpath = NULL; + struct daxctl_ctx *ctx; + struct daxctl_region *region; + int rc = 0; + + path = g_strdup_printf("/sys/dev/char/%d:%d", + major(st.st_rdev), minor(st.st_rdev)); + rpath = realpath(path, NULL); + + rc = daxctl_new(&ctx); + if (rc) { + return -1; + } + + daxctl_region_foreach(ctx, region) { + if (strstr(rpath, daxctl_region_get_path(region))) { + align = daxctl_region_get_align(region); + break; + } + } + daxctl_unref(ctx); + } +#endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */ + + return align; +} + +static int file_ram_open(const char *path, + const char *region_name, + bool *created, + Error **errp) +{ + char *filename; + char *sanitized_name; + char *c; + int fd = -1; + + *created = false; + for (;;) { + fd = open(path, O_RDWR); + if (fd >= 0) { + /* @path names an existing file, use it */ + break; + } + if (errno == ENOENT) { + /* @path names a file that doesn't exist, create it */ + fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); + if (fd >= 0) { + *created = true; + break; + } + } else if (errno == EISDIR) { + /* @path names a directory, create a file there */ + /* Make name safe to use with mkstemp by replacing '/' with '_'. */ + sanitized_name = g_strdup(region_name); + for (c = sanitized_name; *c != '\0'; c++) { + if (*c == '/') { + *c = '_'; + } + } + + filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, + sanitized_name); + g_free(sanitized_name); + + fd = mkstemp(filename); + if (fd >= 0) { + unlink(filename); + g_free(filename); + break; + } + g_free(filename); + } + if (errno != EEXIST && errno != EINTR) { + error_setg_errno(errp, errno, + "can't open backing store %s for guest RAM", + path); + return -1; + } + /* + * Try again on EINTR and EEXIST. The latter happens when + * something else creates the file between our two open(). + */ + } + + return fd; +} + +static void *file_ram_alloc(RAMBlock *block, + ram_addr_t memory, + int fd, + bool truncate, + Error **errp) +{ + void *area; + + block->page_size = qemu_fd_getpagesize(fd); + if (block->mr->align % block->page_size) { + error_setg(errp, "alignment 0x%" PRIx64 + " must be multiples of page size 0x%zx", + block->mr->align, block->page_size); + return NULL; + } else if (block->mr->align && !is_power_of_2(block->mr->align)) { + error_setg(errp, "alignment 0x%" PRIx64 + " must be a power of two", block->mr->align); + return NULL; + } + block->mr->align = MAX(block->page_size, block->mr->align); +#if defined(__s390x__) + if (kvm_enabled()) { + block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); + } +#endif + + if (memory < block->page_size) { + error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " + "or larger than page size 0x%zx", + memory, block->page_size); + return NULL; + } + + memory = ROUND_UP(memory, block->page_size); + + /* + * ftruncate is not supported by hugetlbfs in older + * hosts, so don't bother bailing out on errors. + * If anything goes wrong with it under other filesystems, + * mmap will fail. + * + * Do not truncate the non-empty backend file to avoid corrupting + * the existing data in the file. Disabling shrinking is not + * enough. For example, the current vNVDIMM implementation stores + * the guest NVDIMM labels at the end of the backend file. If the + * backend file is later extended, QEMU will not be able to find + * those labels. Therefore, extending the non-empty backend file + * is disabled as well. + */ + if (truncate && ftruncate(fd, memory)) { + perror("ftruncate"); + } + + area = qemu_ram_mmap(fd, memory, block->mr->align, + block->flags & RAM_SHARED, block->flags & RAM_PMEM); + if (area == MAP_FAILED) { + error_setg_errno(errp, errno, + "unable to map backing store for guest RAM"); + return NULL; + } + + block->fd = fd; + return area; +} +#endif + +/* Allocate space within the ram_addr_t space that governs the + * dirty bitmaps. + * Called with the ramlist lock held. + */ +static ram_addr_t find_ram_offset(ram_addr_t size) +{ + RAMBlock *block, *next_block; + ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; + + assert(size != 0); /* it would hand out same offset multiple times */ + + if (QLIST_EMPTY_RCU(&ram_list.blocks)) { + return 0; + } + + RAMBLOCK_FOREACH(block) { + ram_addr_t candidate, next = RAM_ADDR_MAX; + + /* Align blocks to start on a 'long' in the bitmap + * which makes the bitmap sync'ing take the fast path. + */ + candidate = block->offset + block->max_length; + candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS); + + /* Search for the closest following block + * and find the gap. + */ + RAMBLOCK_FOREACH(next_block) { + if (next_block->offset >= candidate) { + next = MIN(next, next_block->offset); + } + } + + /* If it fits remember our place and remember the size + * of gap, but keep going so that we might find a smaller + * gap to fill so avoiding fragmentation. + */ + if (next - candidate >= size && next - candidate < mingap) { + offset = candidate; + mingap = next - candidate; + } + + trace_find_ram_offset_loop(size, candidate, offset, next, mingap); + } + + if (offset == RAM_ADDR_MAX) { + fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", + (uint64_t)size); + abort(); + } + + trace_find_ram_offset(size, offset); + + return offset; +} + +static unsigned long last_ram_page(void) +{ + RAMBlock *block; + ram_addr_t last = 0; + + RCU_READ_LOCK_GUARD(); + RAMBLOCK_FOREACH(block) { + last = MAX(last, block->offset + block->max_length); + } + return last >> TARGET_PAGE_BITS; +} + +static void qemu_ram_setup_dump(void *addr, ram_addr_t size) +{ + int ret; + + /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ + if (!machine_dump_guest_core(current_machine)) { + ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); + if (ret) { + perror("qemu_madvise"); + fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " + "but dump_guest_core=off specified\n"); + } + } +} + +const char *qemu_ram_get_idstr(RAMBlock *rb) +{ + return rb->idstr; +} + +void *qemu_ram_get_host_addr(RAMBlock *rb) +{ + return rb->host; +} + +ram_addr_t qemu_ram_get_offset(RAMBlock *rb) +{ + return rb->offset; +} + +ram_addr_t qemu_ram_get_used_length(RAMBlock *rb) +{ + return rb->used_length; +} + +bool qemu_ram_is_shared(RAMBlock *rb) +{ + return rb->flags & RAM_SHARED; +} + +/* Note: Only set at the start of postcopy */ +bool qemu_ram_is_uf_zeroable(RAMBlock *rb) +{ + return rb->flags & RAM_UF_ZEROPAGE; +} + +void qemu_ram_set_uf_zeroable(RAMBlock *rb) +{ + rb->flags |= RAM_UF_ZEROPAGE; +} + +bool qemu_ram_is_migratable(RAMBlock *rb) +{ + return rb->flags & RAM_MIGRATABLE; +} + +void qemu_ram_set_migratable(RAMBlock *rb) +{ + rb->flags |= RAM_MIGRATABLE; +} + +void qemu_ram_unset_migratable(RAMBlock *rb) +{ + rb->flags &= ~RAM_MIGRATABLE; +} + +/* Called with iothread lock held. */ +void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) +{ + RAMBlock *block; + + assert(new_block); + assert(!new_block->idstr[0]); + + if (dev) { + char *id = qdev_get_dev_path(dev); + if (id) { + snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); + g_free(id); + } + } + pstrcat(new_block->idstr, sizeof(new_block->idstr), name); + + RCU_READ_LOCK_GUARD(); + RAMBLOCK_FOREACH(block) { + if (block != new_block && + !strcmp(block->idstr, new_block->idstr)) { + fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", + new_block->idstr); + abort(); + } + } +} + +/* Called with iothread lock held. */ +void qemu_ram_unset_idstr(RAMBlock *block) +{ + /* FIXME: arch_init.c assumes that this is not called throughout + * migration. Ignore the problem since hot-unplug during migration + * does not work anyway. + */ + if (block) { + memset(block->idstr, 0, sizeof(block->idstr)); + } +} + +size_t qemu_ram_pagesize(RAMBlock *rb) +{ + return rb->page_size; +} + +/* Returns the largest size of page in use */ +size_t qemu_ram_pagesize_largest(void) +{ + RAMBlock *block; + size_t largest = 0; + + RAMBLOCK_FOREACH(block) { + largest = MAX(largest, qemu_ram_pagesize(block)); + } + + return largest; +} + +static int memory_try_enable_merging(void *addr, size_t len) +{ + if (!machine_mem_merge(current_machine)) { + /* disabled by the user */ + return 0; + } + + return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); +} + +/* Only legal before guest might have detected the memory size: e.g. on + * incoming migration, or right after reset. + * + * As memory core doesn't know how is memory accessed, it is up to + * resize callback to update device state and/or add assertions to detect + * misuse, if necessary. + */ +int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) +{ + const ram_addr_t unaligned_size = newsize; + + assert(block); + + newsize = HOST_PAGE_ALIGN(newsize); + + if (block->used_length == newsize) { + /* + * We don't have to resize the ram block (which only knows aligned + * sizes), however, we have to notify if the unaligned size changed. + */ + if (unaligned_size != memory_region_size(block->mr)) { + memory_region_set_size(block->mr, unaligned_size); + if (block->resized) { + block->resized(block->idstr, unaligned_size, block->host); + } + } + return 0; + } + + if (!(block->flags & RAM_RESIZEABLE)) { + error_setg_errno(errp, EINVAL, + "Length mismatch: %s: 0x" RAM_ADDR_FMT + " in != 0x" RAM_ADDR_FMT, block->idstr, + newsize, block->used_length); + return -EINVAL; + } + + if (block->max_length < newsize) { + error_setg_errno(errp, EINVAL, + "Length too large: %s: 0x" RAM_ADDR_FMT + " > 0x" RAM_ADDR_FMT, block->idstr, + newsize, block->max_length); + return -EINVAL; + } + + cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); + block->used_length = newsize; + cpu_physical_memory_set_dirty_range(block->offset, block->used_length, + DIRTY_CLIENTS_ALL); + memory_region_set_size(block->mr, unaligned_size); + if (block->resized) { + block->resized(block->idstr, unaligned_size, block->host); + } + return 0; +} + +/* + * Trigger sync on the given ram block for range [start, start + length] + * with the backing store if one is available. + * Otherwise no-op. + * @Note: this is supposed to be a synchronous op. + */ +void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length) +{ + /* The requested range should fit in within the block range */ + g_assert((start + length) <= block->used_length); + +#ifdef CONFIG_LIBPMEM + /* The lack of support for pmem should not block the sync */ + if (ramblock_is_pmem(block)) { + void *addr = ramblock_ptr(block, start); + pmem_persist(addr, length); + return; + } +#endif + if (block->fd >= 0) { + /** + * Case there is no support for PMEM or the memory has not been + * specified as persistent (or is not one) - use the msync. + * Less optimal but still achieves the same goal + */ + void *addr = ramblock_ptr(block, start); + if (qemu_msync(addr, length, block->fd)) { + warn_report("%s: failed to sync memory range: start: " + RAM_ADDR_FMT " length: " RAM_ADDR_FMT, + __func__, start, length); + } + } +} + +/* Called with ram_list.mutex held */ +static void dirty_memory_extend(ram_addr_t old_ram_size, + ram_addr_t new_ram_size) +{ + ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, + DIRTY_MEMORY_BLOCK_SIZE); + ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, + DIRTY_MEMORY_BLOCK_SIZE); + int i; + + /* Only need to extend if block count increased */ + if (new_num_blocks <= old_num_blocks) { + return; + } + + for (i = 0; i < DIRTY_MEMORY_NUM; i++) { + DirtyMemoryBlocks *old_blocks; + DirtyMemoryBlocks *new_blocks; + int j; + + old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]); + new_blocks = g_malloc(sizeof(*new_blocks) + + sizeof(new_blocks->blocks[0]) * new_num_blocks); + + if (old_num_blocks) { + memcpy(new_blocks->blocks, old_blocks->blocks, + old_num_blocks * sizeof(old_blocks->blocks[0])); + } + + for (j = old_num_blocks; j < new_num_blocks; j++) { + new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); + } + + qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); + + if (old_blocks) { + g_free_rcu(old_blocks, rcu); + } + } +} + +static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared) +{ + RAMBlock *block; + RAMBlock *last_block = NULL; + ram_addr_t old_ram_size, new_ram_size; + Error *err = NULL; + + old_ram_size = last_ram_page(); + + qemu_mutex_lock_ramlist(); + new_block->offset = find_ram_offset(new_block->max_length); + + if (!new_block->host) { + if (xen_enabled()) { + xen_ram_alloc(new_block->offset, new_block->max_length, + new_block->mr, &err); + if (err) { + error_propagate(errp, err); + qemu_mutex_unlock_ramlist(); + return; + } + } else { + new_block->host = phys_mem_alloc(new_block->max_length, + &new_block->mr->align, shared); + if (!new_block->host) { + error_setg_errno(errp, errno, + "cannot set up guest memory '%s'", + memory_region_name(new_block->mr)); + qemu_mutex_unlock_ramlist(); + return; + } + memory_try_enable_merging(new_block->host, new_block->max_length); + } + } + + new_ram_size = MAX(old_ram_size, + (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); + if (new_ram_size > old_ram_size) { + dirty_memory_extend(old_ram_size, new_ram_size); + } + /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, + * QLIST (which has an RCU-friendly variant) does not have insertion at + * tail, so save the last element in last_block. + */ + RAMBLOCK_FOREACH(block) { + last_block = block; + if (block->max_length < new_block->max_length) { + break; + } + } + if (block) { + QLIST_INSERT_BEFORE_RCU(block, new_block, next); + } else if (last_block) { + QLIST_INSERT_AFTER_RCU(last_block, new_block, next); + } else { /* list is empty */ + QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); + } + ram_list.mru_block = NULL; + + /* Write list before version */ + smp_wmb(); + ram_list.version++; + qemu_mutex_unlock_ramlist(); + + cpu_physical_memory_set_dirty_range(new_block->offset, + new_block->used_length, + DIRTY_CLIENTS_ALL); + + if (new_block->host) { + qemu_ram_setup_dump(new_block->host, new_block->max_length); + qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); + /* + * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU + * Configure it unless the machine is a qtest server, in which case + * KVM is not used and it may be forked (eg for fuzzing purposes). + */ + if (!qtest_enabled()) { + qemu_madvise(new_block->host, new_block->max_length, + QEMU_MADV_DONTFORK); + } + ram_block_notify_add(new_block->host, new_block->max_length); + } +} + +#ifdef CONFIG_POSIX +RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr, + uint32_t ram_flags, int fd, + Error **errp) +{ + RAMBlock *new_block; + Error *local_err = NULL; + int64_t file_size, file_align; + + /* Just support these ram flags by now. */ + assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0); + + if (xen_enabled()) { + error_setg(errp, "-mem-path not supported with Xen"); + return NULL; + } + + if (kvm_enabled() && !kvm_has_sync_mmu()) { + error_setg(errp, + "host lacks kvm mmu notifiers, -mem-path unsupported"); + return NULL; + } + + if (phys_mem_alloc != qemu_anon_ram_alloc) { + /* + * file_ram_alloc() needs to allocate just like + * phys_mem_alloc, but we haven't bothered to provide + * a hook there. + */ + error_setg(errp, + "-mem-path not supported with this accelerator"); + return NULL; + } + + size = HOST_PAGE_ALIGN(size); + file_size = get_file_size(fd); + if (file_size > 0 && file_size < size) { + error_setg(errp, "backing store size 0x%" PRIx64 + " does not match 'size' option 0x" RAM_ADDR_FMT, + file_size, size); + return NULL; + } + + file_align = get_file_align(fd); + if (file_align > 0 && mr && file_align > mr->align) { + error_setg(errp, "backing store align 0x%" PRIx64 + " is larger than 'align' option 0x%" PRIx64, + file_align, mr->align); + return NULL; + } + + new_block = g_malloc0(sizeof(*new_block)); + new_block->mr = mr; + new_block->used_length = size; + new_block->max_length = size; + new_block->flags = ram_flags; + new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp); + if (!new_block->host) { + g_free(new_block); + return NULL; + } + + ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED); + if (local_err) { + g_free(new_block); + error_propagate(errp, local_err); + return NULL; + } + return new_block; + +} + + +RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, + uint32_t ram_flags, const char *mem_path, + Error **errp) +{ + int fd; + bool created; + RAMBlock *block; + + fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp); + if (fd < 0) { + return NULL; + } + + block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp); + if (!block) { + if (created) { + unlink(mem_path); + } + close(fd); + return NULL; + } + + return block; +} +#endif + +static +RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, + void (*resized)(const char*, + uint64_t length, + void *host), + void *host, bool resizeable, bool share, + MemoryRegion *mr, Error **errp) +{ + RAMBlock *new_block; + Error *local_err = NULL; + + size = HOST_PAGE_ALIGN(size); + max_size = HOST_PAGE_ALIGN(max_size); + new_block = g_malloc0(sizeof(*new_block)); + new_block->mr = mr; + new_block->resized = resized; + new_block->used_length = size; + new_block->max_length = max_size; + assert(max_size >= size); + new_block->fd = -1; + new_block->page_size = qemu_real_host_page_size; + new_block->host = host; + if (host) { + new_block->flags |= RAM_PREALLOC; + } + if (resizeable) { + new_block->flags |= RAM_RESIZEABLE; + } + ram_block_add(new_block, &local_err, share); + if (local_err) { + g_free(new_block); + error_propagate(errp, local_err); + return NULL; + } + return new_block; +} + +RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, + MemoryRegion *mr, Error **errp) +{ + return qemu_ram_alloc_internal(size, size, NULL, host, false, + false, mr, errp); +} + +RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share, + MemoryRegion *mr, Error **errp) +{ + return qemu_ram_alloc_internal(size, size, NULL, NULL, false, + share, mr, errp); +} + +RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, + void (*resized)(const char*, + uint64_t length, + void *host), + MemoryRegion *mr, Error **errp) +{ + return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, + false, mr, errp); +} + +static void reclaim_ramblock(RAMBlock *block) +{ + if (block->flags & RAM_PREALLOC) { + ; + } else if (xen_enabled()) { + xen_invalidate_map_cache_entry(block->host); +#ifndef _WIN32 + } else if (block->fd >= 0) { + qemu_ram_munmap(block->fd, block->host, block->max_length); + close(block->fd); +#endif + } else { + qemu_anon_ram_free(block->host, block->max_length); + } + g_free(block); +} + +void qemu_ram_free(RAMBlock *block) +{ + if (!block) { + return; + } + + if (block->host) { + ram_block_notify_remove(block->host, block->max_length); + } + + qemu_mutex_lock_ramlist(); + QLIST_REMOVE_RCU(block, next); + ram_list.mru_block = NULL; + /* Write list before version */ + smp_wmb(); + ram_list.version++; + call_rcu(block, reclaim_ramblock, rcu); + qemu_mutex_unlock_ramlist(); +} + +#ifndef _WIN32 +void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) +{ + RAMBlock *block; + ram_addr_t offset; + int flags; + void *area, *vaddr; + + RAMBLOCK_FOREACH(block) { + offset = addr - block->offset; + if (offset < block->max_length) { + vaddr = ramblock_ptr(block, offset); + if (block->flags & RAM_PREALLOC) { + ; + } else if (xen_enabled()) { + abort(); + } else { + flags = MAP_FIXED; + if (block->fd >= 0) { + flags |= (block->flags & RAM_SHARED ? + MAP_SHARED : MAP_PRIVATE); + area = mmap(vaddr, length, PROT_READ | PROT_WRITE, + flags, block->fd, offset); + } else { + /* + * Remap needs to match alloc. Accelerators that + * set phys_mem_alloc never remap. If they did, + * we'd need a remap hook here. + */ + assert(phys_mem_alloc == qemu_anon_ram_alloc); + + flags |= MAP_PRIVATE | MAP_ANONYMOUS; + area = mmap(vaddr, length, PROT_READ | PROT_WRITE, + flags, -1, 0); + } + if (area != vaddr) { + error_report("Could not remap addr: " + RAM_ADDR_FMT "@" RAM_ADDR_FMT "", + length, addr); + exit(1); + } + memory_try_enable_merging(vaddr, length); + qemu_ram_setup_dump(vaddr, length); + } + } + } +} +#endif /* !_WIN32 */ + +/* Return a host pointer to ram allocated with qemu_ram_alloc. + * This should not be used for general purpose DMA. Use address_space_map + * or address_space_rw instead. For local memory (e.g. video ram) that the + * device owns, use memory_region_get_ram_ptr. + * + * Called within RCU critical section. + */ +void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) +{ + RAMBlock *block = ram_block; + + if (block == NULL) { + block = qemu_get_ram_block(addr); + addr -= block->offset; + } + + if (xen_enabled() && block->host == NULL) { + /* We need to check if the requested address is in the RAM + * because we don't want to map the entire memory in QEMU. + * In that case just map until the end of the page. + */ + if (block->offset == 0) { + return xen_map_cache(addr, 0, 0, false); + } + + block->host = xen_map_cache(block->offset, block->max_length, 1, false); + } + return ramblock_ptr(block, addr); +} + +/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr + * but takes a size argument. + * + * Called within RCU critical section. + */ +static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, + hwaddr *size, bool lock) +{ + RAMBlock *block = ram_block; + if (*size == 0) { + return NULL; + } + + if (block == NULL) { + block = qemu_get_ram_block(addr); + addr -= block->offset; + } + *size = MIN(*size, block->max_length - addr); + + if (xen_enabled() && block->host == NULL) { + /* We need to check if the requested address is in the RAM + * because we don't want to map the entire memory in QEMU. + * In that case just map the requested area. + */ + if (block->offset == 0) { + return xen_map_cache(addr, *size, lock, lock); + } + + block->host = xen_map_cache(block->offset, block->max_length, 1, lock); + } + + return ramblock_ptr(block, addr); +} + +/* Return the offset of a hostpointer within a ramblock */ +ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host) +{ + ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host; + assert((uintptr_t)host >= (uintptr_t)rb->host); + assert(res < rb->max_length); + + return res; +} + +/* + * Translates a host ptr back to a RAMBlock, a ram_addr and an offset + * in that RAMBlock. + * + * ptr: Host pointer to look up + * round_offset: If true round the result offset down to a page boundary + * *ram_addr: set to result ram_addr + * *offset: set to result offset within the RAMBlock + * + * Returns: RAMBlock (or NULL if not found) + * + * By the time this function returns, the returned pointer is not protected + * by RCU anymore. If the caller is not within an RCU critical section and + * does not hold the iothread lock, it must have other means of protecting the + * pointer, such as a reference to the region that includes the incoming + * ram_addr_t. + */ +RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, + ram_addr_t *offset) +{ + RAMBlock *block; + uint8_t *host = ptr; + + if (xen_enabled()) { + ram_addr_t ram_addr; + RCU_READ_LOCK_GUARD(); + ram_addr = xen_ram_addr_from_mapcache(ptr); + block = qemu_get_ram_block(ram_addr); + if (block) { + *offset = ram_addr - block->offset; + } + return block; + } + + RCU_READ_LOCK_GUARD(); + block = qatomic_rcu_read(&ram_list.mru_block); + if (block && block->host && host - block->host < block->max_length) { + goto found; + } + + RAMBLOCK_FOREACH(block) { + /* This case append when the block is not mapped. */ + if (block->host == NULL) { + continue; + } + if (host - block->host < block->max_length) { + goto found; + } + } + + return NULL; + +found: + *offset = (host - block->host); + if (round_offset) { + *offset &= TARGET_PAGE_MASK; + } + return block; +} + +/* + * Finds the named RAMBlock + * + * name: The name of RAMBlock to find + * + * Returns: RAMBlock (or NULL if not found) + */ +RAMBlock *qemu_ram_block_by_name(const char *name) +{ + RAMBlock *block; + + RAMBLOCK_FOREACH(block) { + if (!strcmp(name, block->idstr)) { + return block; + } + } + + return NULL; +} + +/* Some of the softmmu routines need to translate from a host pointer + (typically a TLB entry) back to a ram offset. */ +ram_addr_t qemu_ram_addr_from_host(void *ptr) +{ + RAMBlock *block; + ram_addr_t offset; + + block = qemu_ram_block_from_host(ptr, false, &offset); + if (!block) { + return RAM_ADDR_INVALID; + } + + return block->offset + offset; +} + +/* Generate a debug exception if a watchpoint has been hit. */ +void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, + MemTxAttrs attrs, int flags, uintptr_t ra) +{ + CPUClass *cc = CPU_GET_CLASS(cpu); + CPUWatchpoint *wp; + + assert(tcg_enabled()); + if (cpu->watchpoint_hit) { + /* + * We re-entered the check after replacing the TB. + * Now raise the debug interrupt so that it will + * trigger after the current instruction. + */ + qemu_mutex_lock_iothread(); + cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); + qemu_mutex_unlock_iothread(); + return; + } + + addr = cc->adjust_watchpoint_address(cpu, addr, len); + QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { + if (watchpoint_address_matches(wp, addr, len) + && (wp->flags & flags)) { + if (replay_running_debug()) { + /* + * Don't process the watchpoints when we are + * in a reverse debugging operation. + */ + replay_breakpoint(); + return; + } + if (flags == BP_MEM_READ) { + wp->flags |= BP_WATCHPOINT_HIT_READ; + } else { + wp->flags |= BP_WATCHPOINT_HIT_WRITE; + } + wp->hitaddr = MAX(addr, wp->vaddr); + wp->hitattrs = attrs; + if (!cpu->watchpoint_hit) { + if (wp->flags & BP_CPU && + !cc->debug_check_watchpoint(cpu, wp)) { + wp->flags &= ~BP_WATCHPOINT_HIT; + continue; + } + cpu->watchpoint_hit = wp; + + mmap_lock(); + tb_check_watchpoint(cpu, ra); + if (wp->flags & BP_STOP_BEFORE_ACCESS) { + cpu->exception_index = EXCP_DEBUG; + mmap_unlock(); + cpu_loop_exit_restore(cpu, ra); + } else { + /* Force execution of one insn next time. */ + cpu->cflags_next_tb = 1 | curr_cflags(); + mmap_unlock(); + if (ra) { + cpu_restore_state(cpu, ra, true); + } + cpu_loop_exit_noexc(cpu); + } + } + } else { + wp->flags &= ~BP_WATCHPOINT_HIT; + } + } +} + +static MemTxResult flatview_read(FlatView *fv, hwaddr addr, + MemTxAttrs attrs, void *buf, hwaddr len); +static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, + const void *buf, hwaddr len); +static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, + bool is_write, MemTxAttrs attrs); + +static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, + unsigned len, MemTxAttrs attrs) +{ + subpage_t *subpage = opaque; + uint8_t buf[8]; + MemTxResult res; + +#if defined(DEBUG_SUBPAGE) + printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, + subpage, len, addr); +#endif + res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len); + if (res) { + return res; + } + *data = ldn_p(buf, len); + return MEMTX_OK; +} + +static MemTxResult subpage_write(void *opaque, hwaddr addr, + uint64_t value, unsigned len, MemTxAttrs attrs) +{ + subpage_t *subpage = opaque; + uint8_t buf[8]; + +#if defined(DEBUG_SUBPAGE) + printf("%s: subpage %p len %u addr " TARGET_FMT_plx + " value %"PRIx64"\n", + __func__, subpage, len, addr, value); +#endif + stn_p(buf, len, value); + return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len); +} + +static bool subpage_accepts(void *opaque, hwaddr addr, + unsigned len, bool is_write, + MemTxAttrs attrs) +{ + subpage_t *subpage = opaque; +#if defined(DEBUG_SUBPAGE) + printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", + __func__, subpage, is_write ? 'w' : 'r', len, addr); +#endif + + return flatview_access_valid(subpage->fv, addr + subpage->base, + len, is_write, attrs); +} + +static const MemoryRegionOps subpage_ops = { + .read_with_attrs = subpage_read, + .write_with_attrs = subpage_write, + .impl.min_access_size = 1, + .impl.max_access_size = 8, + .valid.min_access_size = 1, + .valid.max_access_size = 8, + .valid.accepts = subpage_accepts, + .endianness = DEVICE_NATIVE_ENDIAN, +}; + +static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, + uint16_t section) +{ + int idx, eidx; + + if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) + return -1; + idx = SUBPAGE_IDX(start); + eidx = SUBPAGE_IDX(end); +#if defined(DEBUG_SUBPAGE) + printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", + __func__, mmio, start, end, idx, eidx, section); +#endif + for (; idx <= eidx; idx++) { + mmio->sub_section[idx] = section; + } + + return 0; +} + +static subpage_t *subpage_init(FlatView *fv, hwaddr base) +{ + subpage_t *mmio; + + /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */ + mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); + mmio->fv = fv; + mmio->base = base; + memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, + NULL, TARGET_PAGE_SIZE); + mmio->iomem.subpage = true; +#if defined(DEBUG_SUBPAGE) + printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, + mmio, base, TARGET_PAGE_SIZE); +#endif + + return mmio; +} + +static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr) +{ + assert(fv); + MemoryRegionSection section = { + .fv = fv, + .mr = mr, + .offset_within_address_space = 0, + .offset_within_region = 0, + .size = int128_2_64(), + }; + + return phys_section_add(map, §ion); +} + +MemoryRegionSection *iotlb_to_section(CPUState *cpu, + hwaddr index, MemTxAttrs attrs) +{ + int asidx = cpu_asidx_from_attrs(cpu, attrs); + CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; + AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch); + MemoryRegionSection *sections = d->map.sections; + + return §ions[index & ~TARGET_PAGE_MASK]; +} + +static void io_mem_init(void) +{ + memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, + NULL, UINT64_MAX); +} + +AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv) +{ + AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); + uint16_t n; + + n = dummy_section(&d->map, fv, &io_mem_unassigned); + assert(n == PHYS_SECTION_UNASSIGNED); + + d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; + + return d; +} + +void address_space_dispatch_free(AddressSpaceDispatch *d) +{ + phys_sections_free(&d->map); + g_free(d); +} + +static void do_nothing(CPUState *cpu, run_on_cpu_data d) +{ +} + +static void tcg_log_global_after_sync(MemoryListener *listener) +{ + CPUAddressSpace *cpuas; + + /* Wait for the CPU to end the current TB. This avoids the following + * incorrect race: + * + * vCPU migration + * ---------------------- ------------------------- + * TLB check -> slow path + * notdirty_mem_write + * write to RAM + * mark dirty + * clear dirty flag + * TLB check -> fast path + * read memory + * write to RAM + * + * by pushing the migration thread's memory read after the vCPU thread has + * written the memory. + */ + if (replay_mode == REPLAY_MODE_NONE) { + /* + * VGA can make calls to this function while updating the screen. + * In record/replay mode this causes a deadlock, because + * run_on_cpu waits for rr mutex. Therefore no races are possible + * in this case and no need for making run_on_cpu when + * record/replay is not enabled. + */ + cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); + run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL); + } +} + +static void tcg_commit(MemoryListener *listener) +{ + CPUAddressSpace *cpuas; + AddressSpaceDispatch *d; + + assert(tcg_enabled()); + /* since each CPU stores ram addresses in its TLB cache, we must + reset the modified entries */ + cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); + cpu_reloading_memory_map(); + /* The CPU and TLB are protected by the iothread lock. + * We reload the dispatch pointer now because cpu_reloading_memory_map() + * may have split the RCU critical section. + */ + d = address_space_to_dispatch(cpuas->as); + qatomic_rcu_set(&cpuas->memory_dispatch, d); + tlb_flush(cpuas->cpu); +} + +static void memory_map_init(void) +{ + system_memory = g_malloc(sizeof(*system_memory)); + + memory_region_init(system_memory, NULL, "system", UINT64_MAX); + address_space_init(&address_space_memory, system_memory, "memory"); + + system_io = g_malloc(sizeof(*system_io)); + memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", + 65536); + address_space_init(&address_space_io, system_io, "I/O"); +} + +MemoryRegion *get_system_memory(void) +{ + return system_memory; +} + +MemoryRegion *get_system_io(void) +{ + return system_io; +} + +static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, + hwaddr length) +{ + uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); + addr += memory_region_get_ram_addr(mr); + + /* No early return if dirty_log_mask is or becomes 0, because + * cpu_physical_memory_set_dirty_range will still call + * xen_modified_memory. + */ + if (dirty_log_mask) { + dirty_log_mask = + cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); + } + if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { + assert(tcg_enabled()); + tb_invalidate_phys_range(addr, addr + length); + dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); + } + cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); +} + +void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size) +{ + /* + * In principle this function would work on other memory region types too, + * but the ROM device use case is the only one where this operation is + * necessary. Other memory regions should use the + * address_space_read/write() APIs. + */ + assert(memory_region_is_romd(mr)); + + invalidate_and_set_dirty(mr, addr, size); +} + +static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) +{ + unsigned access_size_max = mr->ops->valid.max_access_size; + + /* Regions are assumed to support 1-4 byte accesses unless + otherwise specified. */ + if (access_size_max == 0) { + access_size_max = 4; + } + + /* Bound the maximum access by the alignment of the address. */ + if (!mr->ops->impl.unaligned) { + unsigned align_size_max = addr & -addr; + if (align_size_max != 0 && align_size_max < access_size_max) { + access_size_max = align_size_max; + } + } + + /* Don't attempt accesses larger than the maximum. */ + if (l > access_size_max) { + l = access_size_max; + } + l = pow2floor(l); + + return l; +} + +static bool prepare_mmio_access(MemoryRegion *mr) +{ + bool unlocked = !qemu_mutex_iothread_locked(); + bool release_lock = false; + + if (unlocked) { + qemu_mutex_lock_iothread(); + unlocked = false; + release_lock = true; + } + if (mr->flush_coalesced_mmio) { + if (unlocked) { + qemu_mutex_lock_iothread(); + } + qemu_flush_coalesced_mmio_buffer(); + if (unlocked) { + qemu_mutex_unlock_iothread(); + } + } + + return release_lock; +} + +/* Called within RCU critical section. */ +static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr, + MemTxAttrs attrs, + const void *ptr, + hwaddr len, hwaddr addr1, + hwaddr l, MemoryRegion *mr) +{ + uint8_t *ram_ptr; + uint64_t val; + MemTxResult result = MEMTX_OK; + bool release_lock = false; + const uint8_t *buf = ptr; + + for (;;) { + if (!memory_access_is_direct(mr, true)) { + release_lock |= prepare_mmio_access(mr); + l = memory_access_size(mr, l, addr1); + /* XXX: could force current_cpu to NULL to avoid + potential bugs */ + val = ldn_he_p(buf, l); + result |= memory_region_dispatch_write(mr, addr1, val, + size_memop(l), attrs); + } else { + /* RAM case */ + ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); + memcpy(ram_ptr, buf, l); + invalidate_and_set_dirty(mr, addr1, l); + } + + if (release_lock) { + qemu_mutex_unlock_iothread(); + release_lock = false; + } + + len -= l; + buf += l; + addr += l; + + if (!len) { + break; + } + + l = len; + mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); + } + + return result; +} + +/* Called from RCU critical section. */ +static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, + const void *buf, hwaddr len) +{ + hwaddr l; + hwaddr addr1; + MemoryRegion *mr; + MemTxResult result = MEMTX_OK; + + l = len; + mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); + result = flatview_write_continue(fv, addr, attrs, buf, len, + addr1, l, mr); + + return result; +} + +/* Called within RCU critical section. */ +MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, + MemTxAttrs attrs, void *ptr, + hwaddr len, hwaddr addr1, hwaddr l, + MemoryRegion *mr) +{ + uint8_t *ram_ptr; + uint64_t val; + MemTxResult result = MEMTX_OK; + bool release_lock = false; + uint8_t *buf = ptr; + + for (;;) { + if (!memory_access_is_direct(mr, false)) { + /* I/O case */ + release_lock |= prepare_mmio_access(mr); + l = memory_access_size(mr, l, addr1); + result |= memory_region_dispatch_read(mr, addr1, &val, + size_memop(l), attrs); + stn_he_p(buf, l, val); + } else { + /* RAM case */ + ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); + memcpy(buf, ram_ptr, l); + } + + if (release_lock) { + qemu_mutex_unlock_iothread(); + release_lock = false; + } + + len -= l; + buf += l; + addr += l; + + if (!len) { + break; + } + + l = len; + mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); + } + + return result; +} + +/* Called from RCU critical section. */ +static MemTxResult flatview_read(FlatView *fv, hwaddr addr, + MemTxAttrs attrs, void *buf, hwaddr len) +{ + hwaddr l; + hwaddr addr1; + MemoryRegion *mr; + + l = len; + mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); + return flatview_read_continue(fv, addr, attrs, buf, len, + addr1, l, mr); +} + +MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, + MemTxAttrs attrs, void *buf, hwaddr len) +{ + MemTxResult result = MEMTX_OK; + FlatView *fv; + + if (len > 0) { + RCU_READ_LOCK_GUARD(); + fv = address_space_to_flatview(as); + result = flatview_read(fv, addr, attrs, buf, len); + } + + return result; +} + +MemTxResult address_space_write(AddressSpace *as, hwaddr addr, + MemTxAttrs attrs, + const void *buf, hwaddr len) +{ + MemTxResult result = MEMTX_OK; + FlatView *fv; + + if (len > 0) { + RCU_READ_LOCK_GUARD(); + fv = address_space_to_flatview(as); + result = flatview_write(fv, addr, attrs, buf, len); + } + + return result; +} + +MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, + void *buf, hwaddr len, bool is_write) +{ + if (is_write) { + return address_space_write(as, addr, attrs, buf, len); + } else { + return address_space_read_full(as, addr, attrs, buf, len); + } +} + +void cpu_physical_memory_rw(hwaddr addr, void *buf, + hwaddr len, bool is_write) +{ + address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, + buf, len, is_write); +} + +enum write_rom_type { + WRITE_DATA, + FLUSH_CACHE, +}; + +static inline MemTxResult address_space_write_rom_internal(AddressSpace *as, + hwaddr addr, + MemTxAttrs attrs, + const void *ptr, + hwaddr len, + enum write_rom_type type) +{ + hwaddr l; + uint8_t *ram_ptr; + hwaddr addr1; + MemoryRegion *mr; + const uint8_t *buf = ptr; + + RCU_READ_LOCK_GUARD(); + while (len > 0) { + l = len; + mr = address_space_translate(as, addr, &addr1, &l, true, attrs); + + if (!(memory_region_is_ram(mr) || + memory_region_is_romd(mr))) { + l = memory_access_size(mr, l, addr1); + } else { + /* ROM/RAM case */ + ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1); + switch (type) { + case WRITE_DATA: + memcpy(ram_ptr, buf, l); + invalidate_and_set_dirty(mr, addr1, l); + break; + case FLUSH_CACHE: + flush_icache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr + l); + break; + } + } + len -= l; + buf += l; + addr += l; + } + return MEMTX_OK; +} + +/* used for ROM loading : can write in RAM and ROM */ +MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, + MemTxAttrs attrs, + const void *buf, hwaddr len) +{ + return address_space_write_rom_internal(as, addr, attrs, + buf, len, WRITE_DATA); +} + +void cpu_flush_icache_range(hwaddr start, hwaddr len) +{ + /* + * This function should do the same thing as an icache flush that was + * triggered from within the guest. For TCG we are always cache coherent, + * so there is no need to flush anything. For KVM / Xen we need to flush + * the host's instruction cache at least. + */ + if (tcg_enabled()) { + return; + } + + address_space_write_rom_internal(&address_space_memory, + start, MEMTXATTRS_UNSPECIFIED, + NULL, len, FLUSH_CACHE); +} + +typedef struct { + MemoryRegion *mr; + void *buffer; + hwaddr addr; + hwaddr len; + bool in_use; +} BounceBuffer; + +static BounceBuffer bounce; + +typedef struct MapClient { + QEMUBH *bh; + QLIST_ENTRY(MapClient) link; +} MapClient; + +QemuMutex map_client_list_lock; +static QLIST_HEAD(, MapClient) map_client_list + = QLIST_HEAD_INITIALIZER(map_client_list); + +static void cpu_unregister_map_client_do(MapClient *client) +{ + QLIST_REMOVE(client, link); + g_free(client); +} + +static void cpu_notify_map_clients_locked(void) +{ + MapClient *client; + + while (!QLIST_EMPTY(&map_client_list)) { + client = QLIST_FIRST(&map_client_list); + qemu_bh_schedule(client->bh); + cpu_unregister_map_client_do(client); + } +} + +void cpu_register_map_client(QEMUBH *bh) +{ + MapClient *client = g_malloc(sizeof(*client)); + + qemu_mutex_lock(&map_client_list_lock); + client->bh = bh; + QLIST_INSERT_HEAD(&map_client_list, client, link); + if (!qatomic_read(&bounce.in_use)) { + cpu_notify_map_clients_locked(); + } + qemu_mutex_unlock(&map_client_list_lock); +} + +void cpu_exec_init_all(void) +{ + qemu_mutex_init(&ram_list.mutex); + /* The data structures we set up here depend on knowing the page size, + * so no more changes can be made after this point. + * In an ideal world, nothing we did before we had finished the + * machine setup would care about the target page size, and we could + * do this much later, rather than requiring board models to state + * up front what their requirements are. + */ + finalize_target_page_bits(); + io_mem_init(); + memory_map_init(); + qemu_mutex_init(&map_client_list_lock); +} + +void cpu_unregister_map_client(QEMUBH *bh) +{ + MapClient *client; + + qemu_mutex_lock(&map_client_list_lock); + QLIST_FOREACH(client, &map_client_list, link) { + if (client->bh == bh) { + cpu_unregister_map_client_do(client); + break; + } + } + qemu_mutex_unlock(&map_client_list_lock); +} + +static void cpu_notify_map_clients(void) +{ + qemu_mutex_lock(&map_client_list_lock); + cpu_notify_map_clients_locked(); + qemu_mutex_unlock(&map_client_list_lock); +} + +static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, + bool is_write, MemTxAttrs attrs) +{ + MemoryRegion *mr; + hwaddr l, xlat; + + while (len > 0) { + l = len; + mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); + if (!memory_access_is_direct(mr, is_write)) { + l = memory_access_size(mr, l, addr); + if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) { + return false; + } + } + + len -= l; + addr += l; + } + return true; +} + +bool address_space_access_valid(AddressSpace *as, hwaddr addr, + hwaddr len, bool is_write, + MemTxAttrs attrs) +{ + FlatView *fv; + bool result; + + RCU_READ_LOCK_GUARD(); + fv = address_space_to_flatview(as); + result = flatview_access_valid(fv, addr, len, is_write, attrs); + return result; +} + +static hwaddr +flatview_extend_translation(FlatView *fv, hwaddr addr, + hwaddr target_len, + MemoryRegion *mr, hwaddr base, hwaddr len, + bool is_write, MemTxAttrs attrs) +{ + hwaddr done = 0; + hwaddr xlat; + MemoryRegion *this_mr; + + for (;;) { + target_len -= len; + addr += len; + done += len; + if (target_len == 0) { + return done; + } + + len = target_len; + this_mr = flatview_translate(fv, addr, &xlat, + &len, is_write, attrs); + if (this_mr != mr || xlat != base + done) { + return done; + } + } +} + +/* Map a physical memory region into a host virtual address. + * May map a subset of the requested range, given by and returned in *plen. + * May return NULL if resources needed to perform the mapping are exhausted. + * Use only for reads OR writes - not for read-modify-write operations. + * Use cpu_register_map_client() to know when retrying the map operation is + * likely to succeed. + */ +void *address_space_map(AddressSpace *as, + hwaddr addr, + hwaddr *plen, + bool is_write, + MemTxAttrs attrs) +{ + hwaddr len = *plen; + hwaddr l, xlat; + MemoryRegion *mr; + void *ptr; + FlatView *fv; + + if (len == 0) { + return NULL; + } + + l = len; + RCU_READ_LOCK_GUARD(); + fv = address_space_to_flatview(as); + mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); + + if (!memory_access_is_direct(mr, is_write)) { + if (qatomic_xchg(&bounce.in_use, true)) { + *plen = 0; + return NULL; + } + /* Avoid unbounded allocations */ + l = MIN(l, TARGET_PAGE_SIZE); + bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); + bounce.addr = addr; + bounce.len = l; + + memory_region_ref(mr); + bounce.mr = mr; + if (!is_write) { + flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED, + bounce.buffer, l); + } + + *plen = l; + return bounce.buffer; + } + + + memory_region_ref(mr); + *plen = flatview_extend_translation(fv, addr, len, mr, xlat, + l, is_write, attrs); + ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true); + + return ptr; +} + +/* Unmaps a memory region previously mapped by address_space_map(). + * Will also mark the memory as dirty if is_write is true. access_len gives + * the amount of memory that was actually read or written by the caller. + */ +void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, + bool is_write, hwaddr access_len) +{ + if (buffer != bounce.buffer) { + MemoryRegion *mr; + ram_addr_t addr1; + + mr = memory_region_from_host(buffer, &addr1); + assert(mr != NULL); + if (is_write) { + invalidate_and_set_dirty(mr, addr1, access_len); + } + if (xen_enabled()) { + xen_invalidate_map_cache_entry(buffer); + } + memory_region_unref(mr); + return; + } + if (is_write) { + address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, + bounce.buffer, access_len); + } + qemu_vfree(bounce.buffer); + bounce.buffer = NULL; + memory_region_unref(bounce.mr); + qatomic_mb_set(&bounce.in_use, false); + cpu_notify_map_clients(); +} + +void *cpu_physical_memory_map(hwaddr addr, + hwaddr *plen, + bool is_write) +{ + return address_space_map(&address_space_memory, addr, plen, is_write, + MEMTXATTRS_UNSPECIFIED); +} + +void cpu_physical_memory_unmap(void *buffer, hwaddr len, + bool is_write, hwaddr access_len) +{ + return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); +} + +#define ARG1_DECL AddressSpace *as +#define ARG1 as +#define SUFFIX +#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) +#define RCU_READ_LOCK(...) rcu_read_lock() +#define RCU_READ_UNLOCK(...) rcu_read_unlock() +#include "memory_ldst.c.inc" + +int64_t address_space_cache_init(MemoryRegionCache *cache, + AddressSpace *as, + hwaddr addr, + hwaddr len, + bool is_write) +{ + AddressSpaceDispatch *d; + hwaddr l; + MemoryRegion *mr; + + assert(len > 0); + + l = len; + cache->fv = address_space_get_flatview(as); + d = flatview_to_dispatch(cache->fv); + cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true); + + mr = cache->mrs.mr; + memory_region_ref(mr); + if (memory_access_is_direct(mr, is_write)) { + /* We don't care about the memory attributes here as we're only + * doing this if we found actual RAM, which behaves the same + * regardless of attributes; so UNSPECIFIED is fine. + */ + l = flatview_extend_translation(cache->fv, addr, len, mr, + cache->xlat, l, is_write, + MEMTXATTRS_UNSPECIFIED); + cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true); + } else { + cache->ptr = NULL; + } + + cache->len = l; + cache->is_write = is_write; + return l; +} + +void address_space_cache_invalidate(MemoryRegionCache *cache, + hwaddr addr, + hwaddr access_len) +{ + assert(cache->is_write); + if (likely(cache->ptr)) { + invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len); + } +} + +void address_space_cache_destroy(MemoryRegionCache *cache) +{ + if (!cache->mrs.mr) { + return; + } + + if (xen_enabled()) { + xen_invalidate_map_cache_entry(cache->ptr); + } + memory_region_unref(cache->mrs.mr); + flatview_unref(cache->fv); + cache->mrs.mr = NULL; + cache->fv = NULL; +} + +/* Called from RCU critical section. This function has the same + * semantics as address_space_translate, but it only works on a + * predefined range of a MemoryRegion that was mapped with + * address_space_cache_init. + */ +static inline MemoryRegion *address_space_translate_cached( + MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat, + hwaddr *plen, bool is_write, MemTxAttrs attrs) +{ + MemoryRegionSection section; + MemoryRegion *mr; + IOMMUMemoryRegion *iommu_mr; + AddressSpace *target_as; + + assert(!cache->ptr); + *xlat = addr + cache->xlat; + + mr = cache->mrs.mr; + iommu_mr = memory_region_get_iommu(mr); + if (!iommu_mr) { + /* MMIO region. */ + return mr; + } + + section = address_space_translate_iommu(iommu_mr, xlat, plen, + NULL, is_write, true, + &target_as, attrs); + return section.mr; +} + +/* Called from RCU critical section. address_space_read_cached uses this + * out of line function when the target is an MMIO or IOMMU region. + */ +MemTxResult +address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr, + void *buf, hwaddr len) +{ + hwaddr addr1, l; + MemoryRegion *mr; + + l = len; + mr = address_space_translate_cached(cache, addr, &addr1, &l, false, + MEMTXATTRS_UNSPECIFIED); + return flatview_read_continue(cache->fv, + addr, MEMTXATTRS_UNSPECIFIED, buf, len, + addr1, l, mr); +} + +/* Called from RCU critical section. address_space_write_cached uses this + * out of line function when the target is an MMIO or IOMMU region. + */ +MemTxResult +address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr, + const void *buf, hwaddr len) +{ + hwaddr addr1, l; + MemoryRegion *mr; + + l = len; + mr = address_space_translate_cached(cache, addr, &addr1, &l, true, + MEMTXATTRS_UNSPECIFIED); + return flatview_write_continue(cache->fv, + addr, MEMTXATTRS_UNSPECIFIED, buf, len, + addr1, l, mr); +} + +#define ARG1_DECL MemoryRegionCache *cache +#define ARG1 cache +#define SUFFIX _cached_slow +#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__) +#define RCU_READ_LOCK() ((void)0) +#define RCU_READ_UNLOCK() ((void)0) +#include "memory_ldst.c.inc" + +/* virtual memory access for debug (includes writing to ROM) */ +int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, + void *ptr, target_ulong len, bool is_write) +{ + hwaddr phys_addr; + target_ulong l, page; + uint8_t *buf = ptr; + + cpu_synchronize_state(cpu); + while (len > 0) { + int asidx; + MemTxAttrs attrs; + MemTxResult res; + + page = addr & TARGET_PAGE_MASK; + phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); + asidx = cpu_asidx_from_attrs(cpu, attrs); + /* if no physical page mapped, return an error */ + if (phys_addr == -1) + return -1; + l = (page + TARGET_PAGE_SIZE) - addr; + if (l > len) + l = len; + phys_addr += (addr & ~TARGET_PAGE_MASK); + if (is_write) { + res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr, + attrs, buf, l); + } else { + res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr, + attrs, buf, l); + } + if (res != MEMTX_OK) { + return -1; + } + len -= l; + buf += l; + addr += l; + } + return 0; +} + +/* + * Allows code that needs to deal with migration bitmaps etc to still be built + * target independent. + */ +size_t qemu_target_page_size(void) +{ + return TARGET_PAGE_SIZE; +} + +int qemu_target_page_bits(void) +{ + return TARGET_PAGE_BITS; +} + +int qemu_target_page_bits_min(void) +{ + return TARGET_PAGE_BITS_MIN; +} + +bool cpu_physical_memory_is_io(hwaddr phys_addr) +{ + MemoryRegion*mr; + hwaddr l = 1; + bool res; + + RCU_READ_LOCK_GUARD(); + mr = address_space_translate(&address_space_memory, + phys_addr, &phys_addr, &l, false, + MEMTXATTRS_UNSPECIFIED); + + res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); + return res; +} + +int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) +{ + RAMBlock *block; + int ret = 0; + + RCU_READ_LOCK_GUARD(); + RAMBLOCK_FOREACH(block) { + ret = func(block, opaque); + if (ret) { + break; + } + } + return ret; +} + +/* + * Unmap pages of memory from start to start+length such that + * they a) read as 0, b) Trigger whatever fault mechanism + * the OS provides for postcopy. + * The pages must be unmapped by the end of the function. + * Returns: 0 on success, none-0 on failure + * + */ +int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) +{ + int ret = -1; + + uint8_t *host_startaddr = rb->host + start; + + if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) { + error_report("ram_block_discard_range: Unaligned start address: %p", + host_startaddr); + goto err; + } + + if ((start + length) <= rb->used_length) { + bool need_madvise, need_fallocate; + if (!QEMU_IS_ALIGNED(length, rb->page_size)) { + error_report("ram_block_discard_range: Unaligned length: %zx", + length); + goto err; + } + + errno = ENOTSUP; /* If we are missing MADVISE etc */ + + /* The logic here is messy; + * madvise DONTNEED fails for hugepages + * fallocate works on hugepages and shmem + */ + need_madvise = (rb->page_size == qemu_host_page_size); + need_fallocate = rb->fd != -1; + if (need_fallocate) { + /* For a file, this causes the area of the file to be zero'd + * if read, and for hugetlbfs also causes it to be unmapped + * so a userfault will trigger. + */ +#ifdef CONFIG_FALLOCATE_PUNCH_HOLE + ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, + start, length); + if (ret) { + ret = -errno; + error_report("ram_block_discard_range: Failed to fallocate " + "%s:%" PRIx64 " +%zx (%d)", + rb->idstr, start, length, ret); + goto err; + } +#else + ret = -ENOSYS; + error_report("ram_block_discard_range: fallocate not available/file" + "%s:%" PRIx64 " +%zx (%d)", + rb->idstr, start, length, ret); + goto err; +#endif + } + if (need_madvise) { + /* For normal RAM this causes it to be unmapped, + * for shared memory it causes the local mapping to disappear + * and to fall back on the file contents (which we just + * fallocate'd away). + */ +#if defined(CONFIG_MADVISE) + ret = madvise(host_startaddr, length, MADV_DONTNEED); + if (ret) { + ret = -errno; + error_report("ram_block_discard_range: Failed to discard range " + "%s:%" PRIx64 " +%zx (%d)", + rb->idstr, start, length, ret); + goto err; + } +#else + ret = -ENOSYS; + error_report("ram_block_discard_range: MADVISE not available" + "%s:%" PRIx64 " +%zx (%d)", + rb->idstr, start, length, ret); + goto err; +#endif + } + trace_ram_block_discard_range(rb->idstr, host_startaddr, length, + need_madvise, need_fallocate, ret); + } else { + error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64 + "/%zx/" RAM_ADDR_FMT")", + rb->idstr, start, length, rb->used_length); + } + +err: + return ret; +} + +bool ramblock_is_pmem(RAMBlock *rb) +{ + return rb->flags & RAM_PMEM; +} + +static void mtree_print_phys_entries(int start, int end, int skip, int ptr) +{ + if (start == end - 1) { + qemu_printf("\t%3d ", start); + } else { + qemu_printf("\t%3d..%-3d ", start, end - 1); + } + qemu_printf(" skip=%d ", skip); + if (ptr == PHYS_MAP_NODE_NIL) { + qemu_printf(" ptr=NIL"); + } else if (!skip) { + qemu_printf(" ptr=#%d", ptr); + } else { + qemu_printf(" ptr=[%d]", ptr); + } + qemu_printf("\n"); +} + +#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ + int128_sub((size), int128_one())) : 0) + +void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root) +{ + int i; + + qemu_printf(" Dispatch\n"); + qemu_printf(" Physical sections\n"); + + for (i = 0; i < d->map.sections_nb; ++i) { + MemoryRegionSection *s = d->map.sections + i; + const char *names[] = { " [unassigned]", " [not dirty]", + " [ROM]", " [watch]" }; + + qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx + " %s%s%s%s%s", + i, + s->offset_within_address_space, + s->offset_within_address_space + MR_SIZE(s->mr->size), + s->mr->name ? s->mr->name : "(noname)", + i < ARRAY_SIZE(names) ? names[i] : "", + s->mr == root ? " [ROOT]" : "", + s == d->mru_section ? " [MRU]" : "", + s->mr->is_iommu ? " [iommu]" : ""); + + if (s->mr->alias) { + qemu_printf(" alias=%s", s->mr->alias->name ? + s->mr->alias->name : "noname"); + } + qemu_printf("\n"); + } + + qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n", + P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip); + for (i = 0; i < d->map.nodes_nb; ++i) { + int j, jprev; + PhysPageEntry prev; + Node *n = d->map.nodes + i; + + qemu_printf(" [%d]\n", i); + + for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) { + PhysPageEntry *pe = *n + j; + + if (pe->ptr == prev.ptr && pe->skip == prev.skip) { + continue; + } + + mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); + + jprev = j; + prev = *pe; + } + + if (jprev != ARRAY_SIZE(*n)) { + mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); + } + } +} + +/* + * If positive, discarding RAM is disabled. If negative, discarding RAM is + * required to work and cannot be disabled. + */ +static int ram_block_discard_disabled; + +int ram_block_discard_disable(bool state) +{ + int old; + + if (!state) { + qatomic_dec(&ram_block_discard_disabled); + return 0; + } + + do { + old = qatomic_read(&ram_block_discard_disabled); + if (old < 0) { + return -EBUSY; + } + } while (qatomic_cmpxchg(&ram_block_discard_disabled, + old, old + 1) != old); + return 0; +} + +int ram_block_discard_require(bool state) +{ + int old; + + if (!state) { + qatomic_inc(&ram_block_discard_disabled); + return 0; + } + + do { + old = qatomic_read(&ram_block_discard_disabled); + if (old > 0) { + return -EBUSY; + } + } while (qatomic_cmpxchg(&ram_block_discard_disabled, + old, old - 1) != old); + return 0; +} + +bool ram_block_discard_is_disabled(void) +{ + return qatomic_read(&ram_block_discard_disabled) > 0; +} + +bool ram_block_discard_is_required(void) +{ + return qatomic_read(&ram_block_discard_disabled) < 0; +}