207393a
[linux.git] /
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/idtentry.h>
40 #include <asm/io.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/kexec.h>
43 #include <asm/perf_event.h>
44 #include <asm/mmu_context.h>
45 #include <asm/mshyperv.h>
46 #include <asm/mwait.h>
47 #include <asm/spec-ctrl.h>
48 #include <asm/virtext.h>
49 #include <asm/vmx.h>
50
51 #include "capabilities.h"
52 #include "cpuid.h"
53 #include "evmcs.h"
54 #include "hyperv.h"
55 #include "kvm_onhyperv.h"
56 #include "irq.h"
57 #include "kvm_cache_regs.h"
58 #include "lapic.h"
59 #include "mmu.h"
60 #include "nested.h"
61 #include "pmu.h"
62 #include "sgx.h"
63 #include "trace.h"
64 #include "vmcs.h"
65 #include "vmcs12.h"
66 #include "vmx.h"
67 #include "x86.h"
68
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71
72 #ifdef MODULE
73 static const struct x86_cpu_id vmx_cpu_id[] = {
74         X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
75         {}
76 };
77 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
78 #endif
79
80 bool __read_mostly enable_vpid = 1;
81 module_param_named(vpid, enable_vpid, bool, 0444);
82
83 static bool __read_mostly enable_vnmi = 1;
84 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
85
86 bool __read_mostly flexpriority_enabled = 1;
87 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
88
89 bool __read_mostly enable_ept = 1;
90 module_param_named(ept, enable_ept, bool, S_IRUGO);
91
92 bool __read_mostly enable_unrestricted_guest = 1;
93 module_param_named(unrestricted_guest,
94                         enable_unrestricted_guest, bool, S_IRUGO);
95
96 bool __read_mostly enable_ept_ad_bits = 1;
97 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
98
99 static bool __read_mostly emulate_invalid_guest_state = true;
100 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
101
102 static bool __read_mostly fasteoi = 1;
103 module_param(fasteoi, bool, S_IRUGO);
104
105 module_param(enable_apicv, bool, S_IRUGO);
106
107 /*
108  * If nested=1, nested virtualization is supported, i.e., guests may use
109  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
110  * use VMX instructions.
111  */
112 static bool __read_mostly nested = 1;
113 module_param(nested, bool, S_IRUGO);
114
115 bool __read_mostly enable_pml = 1;
116 module_param_named(pml, enable_pml, bool, S_IRUGO);
117
118 static bool __read_mostly dump_invalid_vmcs = 0;
119 module_param(dump_invalid_vmcs, bool, 0644);
120
121 #define MSR_BITMAP_MODE_X2APIC          1
122 #define MSR_BITMAP_MODE_X2APIC_APICV    2
123
124 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
125
126 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
127 static int __read_mostly cpu_preemption_timer_multi;
128 static bool __read_mostly enable_preemption_timer = 1;
129 #ifdef CONFIG_X86_64
130 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
131 #endif
132
133 extern bool __read_mostly allow_smaller_maxphyaddr;
134 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
135
136 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
137 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
138 #define KVM_VM_CR0_ALWAYS_ON                            \
139         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST |      \
140          X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
141
142 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
143 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
144 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
145
146 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
147
148 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
149         RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
150         RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
151         RTIT_STATUS_BYTECNT))
152
153 /*
154  * List of MSRs that can be directly passed to the guest.
155  * In addition to these x2apic and PT MSRs are handled specially.
156  */
157 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
158         MSR_IA32_SPEC_CTRL,
159         MSR_IA32_PRED_CMD,
160         MSR_IA32_TSC,
161 #ifdef CONFIG_X86_64
162         MSR_FS_BASE,
163         MSR_GS_BASE,
164         MSR_KERNEL_GS_BASE,
165 #endif
166         MSR_IA32_SYSENTER_CS,
167         MSR_IA32_SYSENTER_ESP,
168         MSR_IA32_SYSENTER_EIP,
169         MSR_CORE_C1_RES,
170         MSR_CORE_C3_RESIDENCY,
171         MSR_CORE_C6_RESIDENCY,
172         MSR_CORE_C7_RESIDENCY,
173 };
174
175 /*
176  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
177  * ple_gap:    upper bound on the amount of time between two successive
178  *             executions of PAUSE in a loop. Also indicate if ple enabled.
179  *             According to test, this time is usually smaller than 128 cycles.
180  * ple_window: upper bound on the amount of time a guest is allowed to execute
181  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
182  *             less than 2^12 cycles
183  * Time is measured based on a counter that runs at the same rate as the TSC,
184  * refer SDM volume 3b section 21.6.13 & 22.1.3.
185  */
186 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
187 module_param(ple_gap, uint, 0444);
188
189 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
190 module_param(ple_window, uint, 0444);
191
192 /* Default doubles per-vcpu window every exit. */
193 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
194 module_param(ple_window_grow, uint, 0444);
195
196 /* Default resets per-vcpu window every exit to ple_window. */
197 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
198 module_param(ple_window_shrink, uint, 0444);
199
200 /* Default is to compute the maximum so we can never overflow. */
201 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
202 module_param(ple_window_max, uint, 0444);
203
204 /* Default is SYSTEM mode, 1 for host-guest mode */
205 int __read_mostly pt_mode = PT_MODE_SYSTEM;
206 module_param(pt_mode, int, S_IRUGO);
207
208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
209 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
210 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
211
212 /* Storage for pre module init parameter parsing */
213 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
214
215 static const struct {
216         const char *option;
217         bool for_parse;
218 } vmentry_l1d_param[] = {
219         [VMENTER_L1D_FLUSH_AUTO]         = {"auto", true},
220         [VMENTER_L1D_FLUSH_NEVER]        = {"never", true},
221         [VMENTER_L1D_FLUSH_COND]         = {"cond", true},
222         [VMENTER_L1D_FLUSH_ALWAYS]       = {"always", true},
223         [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
224         [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
225 };
226
227 #define L1D_CACHE_ORDER 4
228 static void *vmx_l1d_flush_pages;
229
230 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
231 {
232         struct page *page;
233         unsigned int i;
234
235         if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
236                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
237                 return 0;
238         }
239
240         if (!enable_ept) {
241                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
242                 return 0;
243         }
244
245         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
246                 u64 msr;
247
248                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
249                 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
250                         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
251                         return 0;
252                 }
253         }
254
255         /* If set to auto use the default l1tf mitigation method */
256         if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
257                 switch (l1tf_mitigation) {
258                 case L1TF_MITIGATION_OFF:
259                         l1tf = VMENTER_L1D_FLUSH_NEVER;
260                         break;
261                 case L1TF_MITIGATION_FLUSH_NOWARN:
262                 case L1TF_MITIGATION_FLUSH:
263                 case L1TF_MITIGATION_FLUSH_NOSMT:
264                         l1tf = VMENTER_L1D_FLUSH_COND;
265                         break;
266                 case L1TF_MITIGATION_FULL:
267                 case L1TF_MITIGATION_FULL_FORCE:
268                         l1tf = VMENTER_L1D_FLUSH_ALWAYS;
269                         break;
270                 }
271         } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
272                 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
273         }
274
275         if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
276             !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
277                 /*
278                  * This allocation for vmx_l1d_flush_pages is not tied to a VM
279                  * lifetime and so should not be charged to a memcg.
280                  */
281                 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
282                 if (!page)
283                         return -ENOMEM;
284                 vmx_l1d_flush_pages = page_address(page);
285
286                 /*
287                  * Initialize each page with a different pattern in
288                  * order to protect against KSM in the nested
289                  * virtualization case.
290                  */
291                 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
292                         memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
293                                PAGE_SIZE);
294                 }
295         }
296
297         l1tf_vmx_mitigation = l1tf;
298
299         if (l1tf != VMENTER_L1D_FLUSH_NEVER)
300                 static_branch_enable(&vmx_l1d_should_flush);
301         else
302                 static_branch_disable(&vmx_l1d_should_flush);
303
304         if (l1tf == VMENTER_L1D_FLUSH_COND)
305                 static_branch_enable(&vmx_l1d_flush_cond);
306         else
307                 static_branch_disable(&vmx_l1d_flush_cond);
308         return 0;
309 }
310
311 static int vmentry_l1d_flush_parse(const char *s)
312 {
313         unsigned int i;
314
315         if (s) {
316                 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
317                         if (vmentry_l1d_param[i].for_parse &&
318                             sysfs_streq(s, vmentry_l1d_param[i].option))
319                                 return i;
320                 }
321         }
322         return -EINVAL;
323 }
324
325 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
326 {
327         int l1tf, ret;
328
329         l1tf = vmentry_l1d_flush_parse(s);
330         if (l1tf < 0)
331                 return l1tf;
332
333         if (!boot_cpu_has(X86_BUG_L1TF))
334                 return 0;
335
336         /*
337          * Has vmx_init() run already? If not then this is the pre init
338          * parameter parsing. In that case just store the value and let
339          * vmx_init() do the proper setup after enable_ept has been
340          * established.
341          */
342         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
343                 vmentry_l1d_flush_param = l1tf;
344                 return 0;
345         }
346
347         mutex_lock(&vmx_l1d_flush_mutex);
348         ret = vmx_setup_l1d_flush(l1tf);
349         mutex_unlock(&vmx_l1d_flush_mutex);
350         return ret;
351 }
352
353 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
354 {
355         if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
356                 return sprintf(s, "???\n");
357
358         return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
359 }
360
361 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
362         .set = vmentry_l1d_flush_set,
363         .get = vmentry_l1d_flush_get,
364 };
365 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
366
367 static u32 vmx_segment_access_rights(struct kvm_segment *var);
368
369 void vmx_vmexit(void);
370
371 #define vmx_insn_failed(fmt...)         \
372 do {                                    \
373         WARN_ONCE(1, fmt);              \
374         pr_warn_ratelimited(fmt);       \
375 } while (0)
376
377 asmlinkage void vmread_error(unsigned long field, bool fault)
378 {
379         if (fault)
380                 kvm_spurious_fault();
381         else
382                 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
383 }
384
385 noinline void vmwrite_error(unsigned long field, unsigned long value)
386 {
387         vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
388                         field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
389 }
390
391 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
392 {
393         vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
394 }
395
396 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
397 {
398         vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
399 }
400
401 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
402 {
403         vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
404                         ext, vpid, gva);
405 }
406
407 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
408 {
409         vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
410                         ext, eptp, gpa);
411 }
412
413 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
414 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
415 /*
416  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
417  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
418  */
419 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
420
421 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
422 static DEFINE_SPINLOCK(vmx_vpid_lock);
423
424 struct vmcs_config vmcs_config;
425 struct vmx_capability vmx_capability;
426
427 #define VMX_SEGMENT_FIELD(seg)                                  \
428         [VCPU_SREG_##seg] = {                                   \
429                 .selector = GUEST_##seg##_SELECTOR,             \
430                 .base = GUEST_##seg##_BASE,                     \
431                 .limit = GUEST_##seg##_LIMIT,                   \
432                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
433         }
434
435 static const struct kvm_vmx_segment_field {
436         unsigned selector;
437         unsigned base;
438         unsigned limit;
439         unsigned ar_bytes;
440 } kvm_vmx_segment_fields[] = {
441         VMX_SEGMENT_FIELD(CS),
442         VMX_SEGMENT_FIELD(DS),
443         VMX_SEGMENT_FIELD(ES),
444         VMX_SEGMENT_FIELD(FS),
445         VMX_SEGMENT_FIELD(GS),
446         VMX_SEGMENT_FIELD(SS),
447         VMX_SEGMENT_FIELD(TR),
448         VMX_SEGMENT_FIELD(LDTR),
449 };
450
451 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
452 {
453         vmx->segment_cache.bitmask = 0;
454 }
455
456 static unsigned long host_idt_base;
457
458 #if IS_ENABLED(CONFIG_HYPERV)
459 static bool __read_mostly enlightened_vmcs = true;
460 module_param(enlightened_vmcs, bool, 0444);
461
462 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
463 {
464         struct hv_enlightened_vmcs *evmcs;
465         struct hv_partition_assist_pg **p_hv_pa_pg =
466                         &to_kvm_hv(vcpu->kvm)->hv_pa_pg;
467         /*
468          * Synthetic VM-Exit is not enabled in current code and so All
469          * evmcs in singe VM shares same assist page.
470          */
471         if (!*p_hv_pa_pg)
472                 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
473
474         if (!*p_hv_pa_pg)
475                 return -ENOMEM;
476
477         evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
478
479         evmcs->partition_assist_page =
480                 __pa(*p_hv_pa_pg);
481         evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
482         evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
483
484         return 0;
485 }
486
487 #endif /* IS_ENABLED(CONFIG_HYPERV) */
488
489 /*
490  * Comment's format: document - errata name - stepping - processor name.
491  * Refer from
492  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
493  */
494 static u32 vmx_preemption_cpu_tfms[] = {
495 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
496 0x000206E6,
497 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
498 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
499 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
500 0x00020652,
501 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
502 0x00020655,
503 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
504 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
505 /*
506  * 320767.pdf - AAP86  - B1 -
507  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
508  */
509 0x000106E5,
510 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
511 0x000106A0,
512 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
513 0x000106A1,
514 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
515 0x000106A4,
516  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
517  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
518  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
519 0x000106A5,
520  /* Xeon E3-1220 V2 */
521 0x000306A8,
522 };
523
524 static inline bool cpu_has_broken_vmx_preemption_timer(void)
525 {
526         u32 eax = cpuid_eax(0x00000001), i;
527
528         /* Clear the reserved bits */
529         eax &= ~(0x3U << 14 | 0xfU << 28);
530         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
531                 if (eax == vmx_preemption_cpu_tfms[i])
532                         return true;
533
534         return false;
535 }
536
537 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
538 {
539         return flexpriority_enabled && lapic_in_kernel(vcpu);
540 }
541
542 static inline bool report_flexpriority(void)
543 {
544         return flexpriority_enabled;
545 }
546
547 static int possible_passthrough_msr_slot(u32 msr)
548 {
549         u32 i;
550
551         for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
552                 if (vmx_possible_passthrough_msrs[i] == msr)
553                         return i;
554
555         return -ENOENT;
556 }
557
558 static bool is_valid_passthrough_msr(u32 msr)
559 {
560         bool r;
561
562         switch (msr) {
563         case 0x800 ... 0x8ff:
564                 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
565                 return true;
566         case MSR_IA32_RTIT_STATUS:
567         case MSR_IA32_RTIT_OUTPUT_BASE:
568         case MSR_IA32_RTIT_OUTPUT_MASK:
569         case MSR_IA32_RTIT_CR3_MATCH:
570         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
571                 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
572         case MSR_LBR_SELECT:
573         case MSR_LBR_TOS:
574         case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
575         case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
576         case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
577         case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
578         case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
579                 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
580                 return true;
581         }
582
583         r = possible_passthrough_msr_slot(msr) != -ENOENT;
584
585         WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
586
587         return r;
588 }
589
590 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
591 {
592         int i;
593
594         i = kvm_find_user_return_msr(msr);
595         if (i >= 0)
596                 return &vmx->guest_uret_msrs[i];
597         return NULL;
598 }
599
600 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
601                                   struct vmx_uret_msr *msr, u64 data)
602 {
603         unsigned int slot = msr - vmx->guest_uret_msrs;
604         int ret = 0;
605
606         u64 old_msr_data = msr->data;
607         msr->data = data;
608         if (msr->load_into_hardware) {
609                 preempt_disable();
610                 ret = kvm_set_user_return_msr(slot, msr->data, msr->mask);
611                 preempt_enable();
612                 if (ret)
613                         msr->data = old_msr_data;
614         }
615         return ret;
616 }
617
618 #ifdef CONFIG_KEXEC_CORE
619 static void crash_vmclear_local_loaded_vmcss(void)
620 {
621         int cpu = raw_smp_processor_id();
622         struct loaded_vmcs *v;
623
624         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
625                             loaded_vmcss_on_cpu_link)
626                 vmcs_clear(v->vmcs);
627 }
628 #endif /* CONFIG_KEXEC_CORE */
629
630 static void __loaded_vmcs_clear(void *arg)
631 {
632         struct loaded_vmcs *loaded_vmcs = arg;
633         int cpu = raw_smp_processor_id();
634
635         if (loaded_vmcs->cpu != cpu)
636                 return; /* vcpu migration can race with cpu offline */
637         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
638                 per_cpu(current_vmcs, cpu) = NULL;
639
640         vmcs_clear(loaded_vmcs->vmcs);
641         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
642                 vmcs_clear(loaded_vmcs->shadow_vmcs);
643
644         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
645
646         /*
647          * Ensure all writes to loaded_vmcs, including deleting it from its
648          * current percpu list, complete before setting loaded_vmcs->vcpu to
649          * -1, otherwise a different cpu can see vcpu == -1 first and add
650          * loaded_vmcs to its percpu list before it's deleted from this cpu's
651          * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
652          */
653         smp_wmb();
654
655         loaded_vmcs->cpu = -1;
656         loaded_vmcs->launched = 0;
657 }
658
659 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
660 {
661         int cpu = loaded_vmcs->cpu;
662
663         if (cpu != -1)
664                 smp_call_function_single(cpu,
665                          __loaded_vmcs_clear, loaded_vmcs, 1);
666 }
667
668 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
669                                        unsigned field)
670 {
671         bool ret;
672         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
673
674         if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
675                 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
676                 vmx->segment_cache.bitmask = 0;
677         }
678         ret = vmx->segment_cache.bitmask & mask;
679         vmx->segment_cache.bitmask |= mask;
680         return ret;
681 }
682
683 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
684 {
685         u16 *p = &vmx->segment_cache.seg[seg].selector;
686
687         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
688                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
689         return *p;
690 }
691
692 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
693 {
694         ulong *p = &vmx->segment_cache.seg[seg].base;
695
696         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
697                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
698         return *p;
699 }
700
701 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
702 {
703         u32 *p = &vmx->segment_cache.seg[seg].limit;
704
705         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
706                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
707         return *p;
708 }
709
710 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
711 {
712         u32 *p = &vmx->segment_cache.seg[seg].ar;
713
714         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
715                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
716         return *p;
717 }
718
719 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
720 {
721         u32 eb;
722
723         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
724              (1u << DB_VECTOR) | (1u << AC_VECTOR);
725         /*
726          * Guest access to VMware backdoor ports could legitimately
727          * trigger #GP because of TSS I/O permission bitmap.
728          * We intercept those #GP and allow access to them anyway
729          * as VMware does.
730          */
731         if (enable_vmware_backdoor)
732                 eb |= (1u << GP_VECTOR);
733         if ((vcpu->guest_debug &
734              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
735             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
736                 eb |= 1u << BP_VECTOR;
737         if (to_vmx(vcpu)->rmode.vm86_active)
738                 eb = ~0;
739         if (!vmx_need_pf_intercept(vcpu))
740                 eb &= ~(1u << PF_VECTOR);
741
742         /* When we are running a nested L2 guest and L1 specified for it a
743          * certain exception bitmap, we must trap the same exceptions and pass
744          * them to L1. When running L2, we will only handle the exceptions
745          * specified above if L1 did not want them.
746          */
747         if (is_guest_mode(vcpu))
748                 eb |= get_vmcs12(vcpu)->exception_bitmap;
749         else {
750                 int mask = 0, match = 0;
751
752                 if (enable_ept && (eb & (1u << PF_VECTOR))) {
753                         /*
754                          * If EPT is enabled, #PF is currently only intercepted
755                          * if MAXPHYADDR is smaller on the guest than on the
756                          * host.  In that case we only care about present,
757                          * non-reserved faults.  For vmcs02, however, PFEC_MASK
758                          * and PFEC_MATCH are set in prepare_vmcs02_rare.
759                          */
760                         mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
761                         match = PFERR_PRESENT_MASK;
762                 }
763                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
764                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
765         }
766
767         vmcs_write32(EXCEPTION_BITMAP, eb);
768 }
769
770 /*
771  * Check if MSR is intercepted for currently loaded MSR bitmap.
772  */
773 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
774 {
775         unsigned long *msr_bitmap;
776         int f = sizeof(unsigned long);
777
778         if (!cpu_has_vmx_msr_bitmap())
779                 return true;
780
781         msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
782
783         if (msr <= 0x1fff) {
784                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
785         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
786                 msr &= 0x1fff;
787                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
788         }
789
790         return true;
791 }
792
793 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
794                 unsigned long entry, unsigned long exit)
795 {
796         vm_entry_controls_clearbit(vmx, entry);
797         vm_exit_controls_clearbit(vmx, exit);
798 }
799
800 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
801 {
802         unsigned int i;
803
804         for (i = 0; i < m->nr; ++i) {
805                 if (m->val[i].index == msr)
806                         return i;
807         }
808         return -ENOENT;
809 }
810
811 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
812 {
813         int i;
814         struct msr_autoload *m = &vmx->msr_autoload;
815
816         switch (msr) {
817         case MSR_EFER:
818                 if (cpu_has_load_ia32_efer()) {
819                         clear_atomic_switch_msr_special(vmx,
820                                         VM_ENTRY_LOAD_IA32_EFER,
821                                         VM_EXIT_LOAD_IA32_EFER);
822                         return;
823                 }
824                 break;
825         case MSR_CORE_PERF_GLOBAL_CTRL:
826                 if (cpu_has_load_perf_global_ctrl()) {
827                         clear_atomic_switch_msr_special(vmx,
828                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
829                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
830                         return;
831                 }
832                 break;
833         }
834         i = vmx_find_loadstore_msr_slot(&m->guest, msr);
835         if (i < 0)
836                 goto skip_guest;
837         --m->guest.nr;
838         m->guest.val[i] = m->guest.val[m->guest.nr];
839         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
840
841 skip_guest:
842         i = vmx_find_loadstore_msr_slot(&m->host, msr);
843         if (i < 0)
844                 return;
845
846         --m->host.nr;
847         m->host.val[i] = m->host.val[m->host.nr];
848         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
849 }
850
851 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
852                 unsigned long entry, unsigned long exit,
853                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
854                 u64 guest_val, u64 host_val)
855 {
856         vmcs_write64(guest_val_vmcs, guest_val);
857         if (host_val_vmcs != HOST_IA32_EFER)
858                 vmcs_write64(host_val_vmcs, host_val);
859         vm_entry_controls_setbit(vmx, entry);
860         vm_exit_controls_setbit(vmx, exit);
861 }
862
863 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
864                                   u64 guest_val, u64 host_val, bool entry_only)
865 {
866         int i, j = 0;
867         struct msr_autoload *m = &vmx->msr_autoload;
868
869         switch (msr) {
870         case MSR_EFER:
871                 if (cpu_has_load_ia32_efer()) {
872                         add_atomic_switch_msr_special(vmx,
873                                         VM_ENTRY_LOAD_IA32_EFER,
874                                         VM_EXIT_LOAD_IA32_EFER,
875                                         GUEST_IA32_EFER,
876                                         HOST_IA32_EFER,
877                                         guest_val, host_val);
878                         return;
879                 }
880                 break;
881         case MSR_CORE_PERF_GLOBAL_CTRL:
882                 if (cpu_has_load_perf_global_ctrl()) {
883                         add_atomic_switch_msr_special(vmx,
884                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
885                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
886                                         GUEST_IA32_PERF_GLOBAL_CTRL,
887                                         HOST_IA32_PERF_GLOBAL_CTRL,
888                                         guest_val, host_val);
889                         return;
890                 }
891                 break;
892         case MSR_IA32_PEBS_ENABLE:
893                 /* PEBS needs a quiescent period after being disabled (to write
894                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
895                  * provide that period, so a CPU could write host's record into
896                  * guest's memory.
897                  */
898                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
899         }
900
901         i = vmx_find_loadstore_msr_slot(&m->guest, msr);
902         if (!entry_only)
903                 j = vmx_find_loadstore_msr_slot(&m->host, msr);
904
905         if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
906             (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
907                 printk_once(KERN_WARNING "Not enough msr switch entries. "
908                                 "Can't add msr %x\n", msr);
909                 return;
910         }
911         if (i < 0) {
912                 i = m->guest.nr++;
913                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
914         }
915         m->guest.val[i].index = msr;
916         m->guest.val[i].value = guest_val;
917
918         if (entry_only)
919                 return;
920
921         if (j < 0) {
922                 j = m->host.nr++;
923                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
924         }
925         m->host.val[j].index = msr;
926         m->host.val[j].value = host_val;
927 }
928
929 static bool update_transition_efer(struct vcpu_vmx *vmx)
930 {
931         u64 guest_efer = vmx->vcpu.arch.efer;
932         u64 ignore_bits = 0;
933         int i;
934
935         /* Shadow paging assumes NX to be available.  */
936         if (!enable_ept)
937                 guest_efer |= EFER_NX;
938
939         /*
940          * LMA and LME handled by hardware; SCE meaningless outside long mode.
941          */
942         ignore_bits |= EFER_SCE;
943 #ifdef CONFIG_X86_64
944         ignore_bits |= EFER_LMA | EFER_LME;
945         /* SCE is meaningful only in long mode on Intel */
946         if (guest_efer & EFER_LMA)
947                 ignore_bits &= ~(u64)EFER_SCE;
948 #endif
949
950         /*
951          * On EPT, we can't emulate NX, so we must switch EFER atomically.
952          * On CPUs that support "load IA32_EFER", always switch EFER
953          * atomically, since it's faster than switching it manually.
954          */
955         if (cpu_has_load_ia32_efer() ||
956             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
957                 if (!(guest_efer & EFER_LMA))
958                         guest_efer &= ~EFER_LME;
959                 if (guest_efer != host_efer)
960                         add_atomic_switch_msr(vmx, MSR_EFER,
961                                               guest_efer, host_efer, false);
962                 else
963                         clear_atomic_switch_msr(vmx, MSR_EFER);
964                 return false;
965         }
966
967         i = kvm_find_user_return_msr(MSR_EFER);
968         if (i < 0)
969                 return false;
970
971         clear_atomic_switch_msr(vmx, MSR_EFER);
972
973         guest_efer &= ~ignore_bits;
974         guest_efer |= host_efer & ignore_bits;
975
976         vmx->guest_uret_msrs[i].data = guest_efer;
977         vmx->guest_uret_msrs[i].mask = ~ignore_bits;
978
979         return true;
980 }
981
982 #ifdef CONFIG_X86_32
983 /*
984  * On 32-bit kernels, VM exits still load the FS and GS bases from the
985  * VMCS rather than the segment table.  KVM uses this helper to figure
986  * out the current bases to poke them into the VMCS before entry.
987  */
988 static unsigned long segment_base(u16 selector)
989 {
990         struct desc_struct *table;
991         unsigned long v;
992
993         if (!(selector & ~SEGMENT_RPL_MASK))
994                 return 0;
995
996         table = get_current_gdt_ro();
997
998         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
999                 u16 ldt_selector = kvm_read_ldt();
1000
1001                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1002                         return 0;
1003
1004                 table = (struct desc_struct *)segment_base(ldt_selector);
1005         }
1006         v = get_desc_base(&table[selector >> 3]);
1007         return v;
1008 }
1009 #endif
1010
1011 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1012 {
1013         return vmx_pt_mode_is_host_guest() &&
1014                !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1015 }
1016
1017 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1018 {
1019         /* The base must be 128-byte aligned and a legal physical address. */
1020         return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1021 }
1022
1023 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1024 {
1025         u32 i;
1026
1027         wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1028         wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1029         wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1030         wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1031         for (i = 0; i < addr_range; i++) {
1032                 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1033                 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1034         }
1035 }
1036
1037 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1038 {
1039         u32 i;
1040
1041         rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1042         rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1043         rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1044         rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1045         for (i = 0; i < addr_range; i++) {
1046                 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1047                 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1048         }
1049 }
1050
1051 static void pt_guest_enter(struct vcpu_vmx *vmx)
1052 {
1053         if (vmx_pt_mode_is_system())
1054                 return;
1055
1056         /*
1057          * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1058          * Save host state before VM entry.
1059          */
1060         rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1061         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1062                 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1063                 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1064                 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1065         }
1066 }
1067
1068 static void pt_guest_exit(struct vcpu_vmx *vmx)
1069 {
1070         if (vmx_pt_mode_is_system())
1071                 return;
1072
1073         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1074                 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1075                 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1076         }
1077
1078         /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1079         wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1080 }
1081
1082 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1083                         unsigned long fs_base, unsigned long gs_base)
1084 {
1085         if (unlikely(fs_sel != host->fs_sel)) {
1086                 if (!(fs_sel & 7))
1087                         vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1088                 else
1089                         vmcs_write16(HOST_FS_SELECTOR, 0);
1090                 host->fs_sel = fs_sel;
1091         }
1092         if (unlikely(gs_sel != host->gs_sel)) {
1093                 if (!(gs_sel & 7))
1094                         vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1095                 else
1096                         vmcs_write16(HOST_GS_SELECTOR, 0);
1097                 host->gs_sel = gs_sel;
1098         }
1099         if (unlikely(fs_base != host->fs_base)) {
1100                 vmcs_writel(HOST_FS_BASE, fs_base);
1101                 host->fs_base = fs_base;
1102         }
1103         if (unlikely(gs_base != host->gs_base)) {
1104                 vmcs_writel(HOST_GS_BASE, gs_base);
1105                 host->gs_base = gs_base;
1106         }
1107 }
1108
1109 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1110 {
1111         struct vcpu_vmx *vmx = to_vmx(vcpu);
1112         struct vmcs_host_state *host_state;
1113 #ifdef CONFIG_X86_64
1114         int cpu = raw_smp_processor_id();
1115 #endif
1116         unsigned long fs_base, gs_base;
1117         u16 fs_sel, gs_sel;
1118         int i;
1119
1120         vmx->req_immediate_exit = false;
1121
1122         /*
1123          * Note that guest MSRs to be saved/restored can also be changed
1124          * when guest state is loaded. This happens when guest transitions
1125          * to/from long-mode by setting MSR_EFER.LMA.
1126          */
1127         if (!vmx->guest_uret_msrs_loaded) {
1128                 vmx->guest_uret_msrs_loaded = true;
1129                 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1130                         if (!vmx->guest_uret_msrs[i].load_into_hardware)
1131                                 continue;
1132
1133                         kvm_set_user_return_msr(i,
1134                                                 vmx->guest_uret_msrs[i].data,
1135                                                 vmx->guest_uret_msrs[i].mask);
1136                 }
1137         }
1138
1139         if (vmx->nested.need_vmcs12_to_shadow_sync)
1140                 nested_sync_vmcs12_to_shadow(vcpu);
1141
1142         if (vmx->guest_state_loaded)
1143                 return;
1144
1145         host_state = &vmx->loaded_vmcs->host_state;
1146
1147         /*
1148          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1149          * allow segment selectors with cpl > 0 or ti == 1.
1150          */
1151         host_state->ldt_sel = kvm_read_ldt();
1152
1153 #ifdef CONFIG_X86_64
1154         savesegment(ds, host_state->ds_sel);
1155         savesegment(es, host_state->es_sel);
1156
1157         gs_base = cpu_kernelmode_gs_base(cpu);
1158         if (likely(is_64bit_mm(current->mm))) {
1159                 current_save_fsgs();
1160                 fs_sel = current->thread.fsindex;
1161                 gs_sel = current->thread.gsindex;
1162                 fs_base = current->thread.fsbase;
1163                 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1164         } else {
1165                 savesegment(fs, fs_sel);
1166                 savesegment(gs, gs_sel);
1167                 fs_base = read_msr(MSR_FS_BASE);
1168                 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1169         }
1170
1171         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1172 #else
1173         savesegment(fs, fs_sel);
1174         savesegment(gs, gs_sel);
1175         fs_base = segment_base(fs_sel);
1176         gs_base = segment_base(gs_sel);
1177 #endif
1178
1179         vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1180         vmx->guest_state_loaded = true;
1181 }
1182
1183 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1184 {
1185         struct vmcs_host_state *host_state;
1186
1187         if (!vmx->guest_state_loaded)
1188                 return;
1189
1190         host_state = &vmx->loaded_vmcs->host_state;
1191
1192         ++vmx->vcpu.stat.host_state_reload;
1193
1194 #ifdef CONFIG_X86_64
1195         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1196 #endif
1197         if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1198                 kvm_load_ldt(host_state->ldt_sel);
1199 #ifdef CONFIG_X86_64
1200                 load_gs_index(host_state->gs_sel);
1201 #else
1202                 loadsegment(gs, host_state->gs_sel);
1203 #endif
1204         }
1205         if (host_state->fs_sel & 7)
1206                 loadsegment(fs, host_state->fs_sel);
1207 #ifdef CONFIG_X86_64
1208         if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1209                 loadsegment(ds, host_state->ds_sel);
1210                 loadsegment(es, host_state->es_sel);
1211         }
1212 #endif
1213         invalidate_tss_limit();
1214 #ifdef CONFIG_X86_64
1215         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1216 #endif
1217         load_fixmap_gdt(raw_smp_processor_id());
1218         vmx->guest_state_loaded = false;
1219         vmx->guest_uret_msrs_loaded = false;
1220 }
1221
1222 #ifdef CONFIG_X86_64
1223 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1224 {
1225         preempt_disable();
1226         if (vmx->guest_state_loaded)
1227                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1228         preempt_enable();
1229         return vmx->msr_guest_kernel_gs_base;
1230 }
1231
1232 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1233 {
1234         preempt_disable();
1235         if (vmx->guest_state_loaded)
1236                 wrmsrl(MSR_KERNEL_GS_BASE, data);
1237         preempt_enable();
1238         vmx->msr_guest_kernel_gs_base = data;
1239 }
1240 #endif
1241
1242 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1243                         struct loaded_vmcs *buddy)
1244 {
1245         struct vcpu_vmx *vmx = to_vmx(vcpu);
1246         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1247         struct vmcs *prev;
1248
1249         if (!already_loaded) {
1250                 loaded_vmcs_clear(vmx->loaded_vmcs);
1251                 local_irq_disable();
1252
1253                 /*
1254                  * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1255                  * this cpu's percpu list, otherwise it may not yet be deleted
1256                  * from its previous cpu's percpu list.  Pairs with the
1257                  * smb_wmb() in __loaded_vmcs_clear().
1258                  */
1259                 smp_rmb();
1260
1261                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1262                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1263                 local_irq_enable();
1264         }
1265
1266         prev = per_cpu(current_vmcs, cpu);
1267         if (prev != vmx->loaded_vmcs->vmcs) {
1268                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1269                 vmcs_load(vmx->loaded_vmcs->vmcs);
1270
1271                 /*
1272                  * No indirect branch prediction barrier needed when switching
1273                  * the active VMCS within a guest, e.g. on nested VM-Enter.
1274                  * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1275                  */
1276                 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1277                         indirect_branch_prediction_barrier();
1278         }
1279
1280         if (!already_loaded) {
1281                 void *gdt = get_current_gdt_ro();
1282                 unsigned long sysenter_esp;
1283
1284                 /*
1285                  * Flush all EPTP/VPID contexts, the new pCPU may have stale
1286                  * TLB entries from its previous association with the vCPU.
1287                  */
1288                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1289
1290                 /*
1291                  * Linux uses per-cpu TSS and GDT, so set these when switching
1292                  * processors.  See 22.2.4.
1293                  */
1294                 vmcs_writel(HOST_TR_BASE,
1295                             (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1296                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1297
1298                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1299                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1300
1301                 vmx->loaded_vmcs->cpu = cpu;
1302         }
1303 }
1304
1305 /*
1306  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1307  * vcpu mutex is already taken.
1308  */
1309 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1310 {
1311         struct vcpu_vmx *vmx = to_vmx(vcpu);
1312
1313         vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1314
1315         vmx_vcpu_pi_load(vcpu, cpu);
1316
1317         vmx->host_debugctlmsr = get_debugctlmsr();
1318 }
1319
1320 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1321 {
1322         vmx_vcpu_pi_put(vcpu);
1323
1324         vmx_prepare_switch_to_host(to_vmx(vcpu));
1325 }
1326
1327 static bool emulation_required(struct kvm_vcpu *vcpu)
1328 {
1329         return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1330 }
1331
1332 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1333 {
1334         struct vcpu_vmx *vmx = to_vmx(vcpu);
1335         unsigned long rflags, save_rflags;
1336
1337         if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1338                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1339                 rflags = vmcs_readl(GUEST_RFLAGS);
1340                 if (vmx->rmode.vm86_active) {
1341                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1342                         save_rflags = vmx->rmode.save_rflags;
1343                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1344                 }
1345                 vmx->rflags = rflags;
1346         }
1347         return vmx->rflags;
1348 }
1349
1350 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1351 {
1352         struct vcpu_vmx *vmx = to_vmx(vcpu);
1353         unsigned long old_rflags;
1354
1355         if (is_unrestricted_guest(vcpu)) {
1356                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1357                 vmx->rflags = rflags;
1358                 vmcs_writel(GUEST_RFLAGS, rflags);
1359                 return;
1360         }
1361
1362         old_rflags = vmx_get_rflags(vcpu);
1363         vmx->rflags = rflags;
1364         if (vmx->rmode.vm86_active) {
1365                 vmx->rmode.save_rflags = rflags;
1366                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1367         }
1368         vmcs_writel(GUEST_RFLAGS, rflags);
1369
1370         if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1371                 vmx->emulation_required = emulation_required(vcpu);
1372 }
1373
1374 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1375 {
1376         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1377         int ret = 0;
1378
1379         if (interruptibility & GUEST_INTR_STATE_STI)
1380                 ret |= KVM_X86_SHADOW_INT_STI;
1381         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1382                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1383
1384         return ret;
1385 }
1386
1387 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1388 {
1389         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1390         u32 interruptibility = interruptibility_old;
1391
1392         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1393
1394         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1395                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1396         else if (mask & KVM_X86_SHADOW_INT_STI)
1397                 interruptibility |= GUEST_INTR_STATE_STI;
1398
1399         if ((interruptibility != interruptibility_old))
1400                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1401 }
1402
1403 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1404 {
1405         struct vcpu_vmx *vmx = to_vmx(vcpu);
1406         unsigned long value;
1407
1408         /*
1409          * Any MSR write that attempts to change bits marked reserved will
1410          * case a #GP fault.
1411          */
1412         if (data & vmx->pt_desc.ctl_bitmask)
1413                 return 1;
1414
1415         /*
1416          * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1417          * result in a #GP unless the same write also clears TraceEn.
1418          */
1419         if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1420                 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1421                 return 1;
1422
1423         /*
1424          * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1425          * and FabricEn would cause #GP, if
1426          * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1427          */
1428         if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1429                 !(data & RTIT_CTL_FABRIC_EN) &&
1430                 !intel_pt_validate_cap(vmx->pt_desc.caps,
1431                                         PT_CAP_single_range_output))
1432                 return 1;
1433
1434         /*
1435          * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1436          * utilize encodings marked reserved will cause a #GP fault.
1437          */
1438         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1439         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1440                         !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1441                         RTIT_CTL_MTC_RANGE_OFFSET, &value))
1442                 return 1;
1443         value = intel_pt_validate_cap(vmx->pt_desc.caps,
1444                                                 PT_CAP_cycle_thresholds);
1445         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1446                         !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1447                         RTIT_CTL_CYC_THRESH_OFFSET, &value))
1448                 return 1;
1449         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1450         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1451                         !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1452                         RTIT_CTL_PSB_FREQ_OFFSET, &value))
1453                 return 1;
1454
1455         /*
1456          * If ADDRx_CFG is reserved or the encodings is >2 will
1457          * cause a #GP fault.
1458          */
1459         value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1460         if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1461                 return 1;
1462         value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1463         if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1464                 return 1;
1465         value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1466         if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1467                 return 1;
1468         value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1469         if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1470                 return 1;
1471
1472         return 0;
1473 }
1474
1475 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
1476 {
1477         /*
1478          * Emulation of instructions in SGX enclaves is impossible as RIP does
1479          * not point  tthe failing instruction, and even if it did, the code
1480          * stream is inaccessible.  Inject #UD instead of exiting to userspace
1481          * so that guest userspace can't DoS the guest simply by triggering
1482          * emulation (enclaves are CPL3 only).
1483          */
1484         if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1485                 kvm_queue_exception(vcpu, UD_VECTOR);
1486                 return false;
1487         }
1488         return true;
1489 }
1490
1491 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1492 {
1493         union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1494         unsigned long rip, orig_rip;
1495         u32 instr_len;
1496
1497         /*
1498          * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1499          * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1500          * set when EPT misconfig occurs.  In practice, real hardware updates
1501          * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1502          * (namely Hyper-V) don't set it due to it being undefined behavior,
1503          * i.e. we end up advancing IP with some random value.
1504          */
1505         if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1506             exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1507                 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1508
1509                 /*
1510                  * Emulating an enclave's instructions isn't supported as KVM
1511                  * cannot access the enclave's memory or its true RIP, e.g. the
1512                  * vmcs.GUEST_RIP points at the exit point of the enclave, not
1513                  * the RIP that actually triggered the VM-Exit.  But, because
1514                  * most instructions that cause VM-Exit will #UD in an enclave,
1515                  * most instruction-based VM-Exits simply do not occur.
1516                  *
1517                  * There are a few exceptions, notably the debug instructions
1518                  * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1519                  * and generate #DB/#BP as expected, which KVM might intercept.
1520                  * But again, the CPU does the dirty work and saves an instr
1521                  * length of zero so VMMs don't shoot themselves in the foot.
1522                  * WARN if KVM tries to skip a non-zero length instruction on
1523                  * a VM-Exit from an enclave.
1524                  */
1525                 if (!instr_len)
1526                         goto rip_updated;
1527
1528                 WARN(exit_reason.enclave_mode,
1529                      "KVM: skipping instruction after SGX enclave VM-Exit");
1530
1531                 orig_rip = kvm_rip_read(vcpu);
1532                 rip = orig_rip + instr_len;
1533 #ifdef CONFIG_X86_64
1534                 /*
1535                  * We need to mask out the high 32 bits of RIP if not in 64-bit
1536                  * mode, but just finding out that we are in 64-bit mode is
1537                  * quite expensive.  Only do it if there was a carry.
1538                  */
1539                 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1540                         rip = (u32)rip;
1541 #endif
1542                 kvm_rip_write(vcpu, rip);
1543         } else {
1544                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1545                         return 0;
1546         }
1547
1548 rip_updated:
1549         /* skipping an emulated instruction also counts */
1550         vmx_set_interrupt_shadow(vcpu, 0);
1551
1552         return 1;
1553 }
1554
1555 /*
1556  * Recognizes a pending MTF VM-exit and records the nested state for later
1557  * delivery.
1558  */
1559 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1560 {
1561         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1562         struct vcpu_vmx *vmx = to_vmx(vcpu);
1563
1564         if (!is_guest_mode(vcpu))
1565                 return;
1566
1567         /*
1568          * Per the SDM, MTF takes priority over debug-trap exceptions besides
1569          * T-bit traps. As instruction emulation is completed (i.e. at the
1570          * instruction boundary), any #DB exception pending delivery must be a
1571          * debug-trap. Record the pending MTF state to be delivered in
1572          * vmx_check_nested_events().
1573          */
1574         if (nested_cpu_has_mtf(vmcs12) &&
1575             (!vcpu->arch.exception.pending ||
1576              vcpu->arch.exception.nr == DB_VECTOR))
1577                 vmx->nested.mtf_pending = true;
1578         else
1579                 vmx->nested.mtf_pending = false;
1580 }
1581
1582 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1583 {
1584         vmx_update_emulated_instruction(vcpu);
1585         return skip_emulated_instruction(vcpu);
1586 }
1587
1588 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1589 {
1590         /*
1591          * Ensure that we clear the HLT state in the VMCS.  We don't need to
1592          * explicitly skip the instruction because if the HLT state is set,
1593          * then the instruction is already executing and RIP has already been
1594          * advanced.
1595          */
1596         if (kvm_hlt_in_guest(vcpu->kvm) &&
1597                         vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1598                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1599 }
1600
1601 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1602 {
1603         struct vcpu_vmx *vmx = to_vmx(vcpu);
1604         unsigned nr = vcpu->arch.exception.nr;
1605         bool has_error_code = vcpu->arch.exception.has_error_code;
1606         u32 error_code = vcpu->arch.exception.error_code;
1607         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1608
1609         kvm_deliver_exception_payload(vcpu);
1610
1611         if (has_error_code) {
1612                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1613                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1614         }
1615
1616         if (vmx->rmode.vm86_active) {
1617                 int inc_eip = 0;
1618                 if (kvm_exception_is_soft(nr))
1619                         inc_eip = vcpu->arch.event_exit_inst_len;
1620                 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1621                 return;
1622         }
1623
1624         WARN_ON_ONCE(vmx->emulation_required);
1625
1626         if (kvm_exception_is_soft(nr)) {
1627                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1628                              vmx->vcpu.arch.event_exit_inst_len);
1629                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1630         } else
1631                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1632
1633         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1634
1635         vmx_clear_hlt(vcpu);
1636 }
1637
1638 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1639                                bool load_into_hardware)
1640 {
1641         struct vmx_uret_msr *uret_msr;
1642
1643         uret_msr = vmx_find_uret_msr(vmx, msr);
1644         if (!uret_msr)
1645                 return;
1646
1647         uret_msr->load_into_hardware = load_into_hardware;
1648 }
1649
1650 /*
1651  * Set up the vmcs to automatically save and restore system
1652  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1653  * mode, as fiddling with msrs is very expensive.
1654  */
1655 static void setup_msrs(struct vcpu_vmx *vmx)
1656 {
1657 #ifdef CONFIG_X86_64
1658         bool load_syscall_msrs;
1659
1660         /*
1661          * The SYSCALL MSRs are only needed on long mode guests, and only
1662          * when EFER.SCE is set.
1663          */
1664         load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1665                             (vmx->vcpu.arch.efer & EFER_SCE);
1666
1667         vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1668         vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1669         vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1670 #endif
1671         vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1672
1673         vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1674                            guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1675                            guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1676
1677         /*
1678          * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1679          * kernel and old userspace.  If those guests run on a tsx=off host, do
1680          * allow guests to use TSX_CTRL, but don't change the value in hardware
1681          * so that TSX remains always disabled.
1682          */
1683         vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1684
1685         if (cpu_has_vmx_msr_bitmap())
1686                 vmx_update_msr_bitmap(&vmx->vcpu);
1687
1688         /*
1689          * The set of MSRs to load may have changed, reload MSRs before the
1690          * next VM-Enter.
1691          */
1692         vmx->guest_uret_msrs_loaded = false;
1693 }
1694
1695 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1696 {
1697         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1698
1699         if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1700                 return vmcs12->tsc_offset;
1701
1702         return 0;
1703 }
1704
1705 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1706 {
1707         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1708
1709         if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1710             nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1711                 return vmcs12->tsc_multiplier;
1712
1713         return kvm_default_tsc_scaling_ratio;
1714 }
1715
1716 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1717 {
1718         vmcs_write64(TSC_OFFSET, offset);
1719 }
1720
1721 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1722 {
1723         vmcs_write64(TSC_MULTIPLIER, multiplier);
1724 }
1725
1726 /*
1727  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1728  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1729  * all guests if the "nested" module option is off, and can also be disabled
1730  * for a single guest by disabling its VMX cpuid bit.
1731  */
1732 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1733 {
1734         return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1735 }
1736
1737 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1738                                                  uint64_t val)
1739 {
1740         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1741
1742         return !(val & ~valid_bits);
1743 }
1744
1745 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1746 {
1747         switch (msr->index) {
1748         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1749                 if (!nested)
1750                         return 1;
1751                 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1752         case MSR_IA32_PERF_CAPABILITIES:
1753                 msr->data = vmx_get_perf_capabilities();
1754                 return 0;
1755         default:
1756                 return KVM_MSR_RET_INVALID;
1757         }
1758 }
1759
1760 /*
1761  * Reads an msr value (of 'msr_index') into 'pdata'.
1762  * Returns 0 on success, non-0 otherwise.
1763  * Assumes vcpu_load() was already called.
1764  */
1765 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1766 {
1767         struct vcpu_vmx *vmx = to_vmx(vcpu);
1768         struct vmx_uret_msr *msr;
1769         u32 index;
1770
1771         switch (msr_info->index) {
1772 #ifdef CONFIG_X86_64
1773         case MSR_FS_BASE:
1774                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1775                 break;
1776         case MSR_GS_BASE:
1777                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1778                 break;
1779         case MSR_KERNEL_GS_BASE:
1780                 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1781                 break;
1782 #endif
1783         case MSR_EFER:
1784                 return kvm_get_msr_common(vcpu, msr_info);
1785         case MSR_IA32_TSX_CTRL:
1786                 if (!msr_info->host_initiated &&
1787                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1788                         return 1;
1789                 goto find_uret_msr;
1790         case MSR_IA32_UMWAIT_CONTROL:
1791                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1792                         return 1;
1793
1794                 msr_info->data = vmx->msr_ia32_umwait_control;
1795                 break;
1796         case MSR_IA32_SPEC_CTRL:
1797                 if (!msr_info->host_initiated &&
1798                     !guest_has_spec_ctrl_msr(vcpu))
1799                         return 1;
1800
1801                 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1802                 break;
1803         case MSR_IA32_SYSENTER_CS:
1804                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1805                 break;
1806         case MSR_IA32_SYSENTER_EIP:
1807                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1808                 break;
1809         case MSR_IA32_SYSENTER_ESP:
1810                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1811                 break;
1812         case MSR_IA32_BNDCFGS:
1813                 if (!kvm_mpx_supported() ||
1814                     (!msr_info->host_initiated &&
1815                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1816                         return 1;
1817                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1818                 break;
1819         case MSR_IA32_MCG_EXT_CTL:
1820                 if (!msr_info->host_initiated &&
1821                     !(vmx->msr_ia32_feature_control &
1822                       FEAT_CTL_LMCE_ENABLED))
1823                         return 1;
1824                 msr_info->data = vcpu->arch.mcg_ext_ctl;
1825                 break;
1826         case MSR_IA32_FEAT_CTL:
1827                 msr_info->data = vmx->msr_ia32_feature_control;
1828                 break;
1829         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
1830                 if (!msr_info->host_initiated &&
1831                     !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
1832                         return 1;
1833                 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
1834                         [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
1835                 break;
1836         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1837                 if (!nested_vmx_allowed(vcpu))
1838                         return 1;
1839                 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1840                                     &msr_info->data))
1841                         return 1;
1842                 /*
1843                  * Enlightened VMCS v1 doesn't have certain fields, but buggy
1844                  * Hyper-V versions are still trying to use corresponding
1845                  * features when they are exposed. Filter out the essential
1846                  * minimum.
1847                  */
1848                 if (!msr_info->host_initiated &&
1849                     vmx->nested.enlightened_vmcs_enabled)
1850                         nested_evmcs_filter_control_msr(msr_info->index,
1851                                                         &msr_info->data);
1852                 break;
1853         case MSR_IA32_RTIT_CTL:
1854                 if (!vmx_pt_mode_is_host_guest())
1855                         return 1;
1856                 msr_info->data = vmx->pt_desc.guest.ctl;
1857                 break;
1858         case MSR_IA32_RTIT_STATUS:
1859                 if (!vmx_pt_mode_is_host_guest())
1860                         return 1;
1861                 msr_info->data = vmx->pt_desc.guest.status;
1862                 break;
1863         case MSR_IA32_RTIT_CR3_MATCH:
1864                 if (!vmx_pt_mode_is_host_guest() ||
1865                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1866                                                 PT_CAP_cr3_filtering))
1867                         return 1;
1868                 msr_info->data = vmx->pt_desc.guest.cr3_match;
1869                 break;
1870         case MSR_IA32_RTIT_OUTPUT_BASE:
1871                 if (!vmx_pt_mode_is_host_guest() ||
1872                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1873                                         PT_CAP_topa_output) &&
1874                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1875                                         PT_CAP_single_range_output)))
1876                         return 1;
1877                 msr_info->data = vmx->pt_desc.guest.output_base;
1878                 break;
1879         case MSR_IA32_RTIT_OUTPUT_MASK:
1880                 if (!vmx_pt_mode_is_host_guest() ||
1881                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1882                                         PT_CAP_topa_output) &&
1883                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1884                                         PT_CAP_single_range_output)))
1885                         return 1;
1886                 msr_info->data = vmx->pt_desc.guest.output_mask;
1887                 break;
1888         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1889                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1890                 if (!vmx_pt_mode_is_host_guest() ||
1891                         (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1892                                         PT_CAP_num_address_ranges)))
1893                         return 1;
1894                 if (index % 2)
1895                         msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1896                 else
1897                         msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1898                 break;
1899         case MSR_IA32_DEBUGCTLMSR:
1900                 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
1901                 break;
1902         default:
1903         find_uret_msr:
1904                 msr = vmx_find_uret_msr(vmx, msr_info->index);
1905                 if (msr) {
1906                         msr_info->data = msr->data;
1907                         break;
1908                 }
1909                 return kvm_get_msr_common(vcpu, msr_info);
1910         }
1911
1912         return 0;
1913 }
1914
1915 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
1916                                                     u64 data)
1917 {
1918 #ifdef CONFIG_X86_64
1919         if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
1920                 return (u32)data;
1921 #endif
1922         return (unsigned long)data;
1923 }
1924
1925 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu)
1926 {
1927         u64 debugctl = vmx_supported_debugctl();
1928
1929         if (!intel_pmu_lbr_is_enabled(vcpu))
1930                 debugctl &= ~DEBUGCTLMSR_LBR_MASK;
1931
1932         if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1933                 debugctl &= ~DEBUGCTLMSR_BUS_LOCK_DETECT;
1934
1935         return debugctl;
1936 }
1937
1938 /*
1939  * Writes msr value into the appropriate "register".
1940  * Returns 0 on success, non-0 otherwise.
1941  * Assumes vcpu_load() was already called.
1942  */
1943 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1944 {
1945         struct vcpu_vmx *vmx = to_vmx(vcpu);
1946         struct vmx_uret_msr *msr;
1947         int ret = 0;
1948         u32 msr_index = msr_info->index;
1949         u64 data = msr_info->data;
1950         u32 index;
1951
1952         switch (msr_index) {
1953         case MSR_EFER:
1954                 ret = kvm_set_msr_common(vcpu, msr_info);
1955                 break;
1956 #ifdef CONFIG_X86_64
1957         case MSR_FS_BASE:
1958                 vmx_segment_cache_clear(vmx);
1959                 vmcs_writel(GUEST_FS_BASE, data);
1960                 break;
1961         case MSR_GS_BASE:
1962                 vmx_segment_cache_clear(vmx);
1963                 vmcs_writel(GUEST_GS_BASE, data);
1964                 break;
1965         case MSR_KERNEL_GS_BASE:
1966                 vmx_write_guest_kernel_gs_base(vmx, data);
1967                 break;
1968 #endif
1969         case MSR_IA32_SYSENTER_CS:
1970                 if (is_guest_mode(vcpu))
1971                         get_vmcs12(vcpu)->guest_sysenter_cs = data;
1972                 vmcs_write32(GUEST_SYSENTER_CS, data);
1973                 break;
1974         case MSR_IA32_SYSENTER_EIP:
1975                 if (is_guest_mode(vcpu)) {
1976                         data = nested_vmx_truncate_sysenter_addr(vcpu, data);
1977                         get_vmcs12(vcpu)->guest_sysenter_eip = data;
1978                 }
1979                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1980                 break;
1981         case MSR_IA32_SYSENTER_ESP:
1982                 if (is_guest_mode(vcpu)) {
1983                         data = nested_vmx_truncate_sysenter_addr(vcpu, data);
1984                         get_vmcs12(vcpu)->guest_sysenter_esp = data;
1985                 }
1986                 vmcs_writel(GUEST_SYSENTER_ESP, data);
1987                 break;
1988         case MSR_IA32_DEBUGCTLMSR: {
1989                 u64 invalid = data & ~vcpu_supported_debugctl(vcpu);
1990                 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
1991                         if (report_ignored_msrs)
1992                                 vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n",
1993                                             __func__, data);
1994                         data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
1995                         invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
1996                 }
1997
1998                 if (invalid)
1999                         return 1;
2000
2001                 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2002                                                 VM_EXIT_SAVE_DEBUG_CONTROLS)
2003                         get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2004
2005                 vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2006                 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2007                     (data & DEBUGCTLMSR_LBR))
2008                         intel_pmu_create_guest_lbr_event(vcpu);
2009                 return 0;
2010         }
2011         case MSR_IA32_BNDCFGS:
2012                 if (!kvm_mpx_supported() ||
2013                     (!msr_info->host_initiated &&
2014                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2015                         return 1;
2016                 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2017                     (data & MSR_IA32_BNDCFGS_RSVD))
2018                         return 1;
2019                 vmcs_write64(GUEST_BNDCFGS, data);
2020                 break;
2021         case MSR_IA32_UMWAIT_CONTROL:
2022                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2023                         return 1;
2024
2025                 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2026                 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2027                         return 1;
2028
2029                 vmx->msr_ia32_umwait_control = data;
2030                 break;
2031         case MSR_IA32_SPEC_CTRL:
2032                 if (!msr_info->host_initiated &&
2033                     !guest_has_spec_ctrl_msr(vcpu))
2034                         return 1;
2035
2036                 if (kvm_spec_ctrl_test_value(data))
2037                         return 1;
2038
2039                 vmx->spec_ctrl = data;
2040                 if (!data)
2041                         break;
2042
2043                 /*
2044                  * For non-nested:
2045                  * When it's written (to non-zero) for the first time, pass
2046                  * it through.
2047                  *
2048                  * For nested:
2049                  * The handling of the MSR bitmap for L2 guests is done in
2050                  * nested_vmx_prepare_msr_bitmap. We should not touch the
2051                  * vmcs02.msr_bitmap here since it gets completely overwritten
2052                  * in the merging. We update the vmcs01 here for L1 as well
2053                  * since it will end up touching the MSR anyway now.
2054                  */
2055                 vmx_disable_intercept_for_msr(vcpu,
2056                                               MSR_IA32_SPEC_CTRL,
2057                                               MSR_TYPE_RW);
2058                 break;
2059         case MSR_IA32_TSX_CTRL:
2060                 if (!msr_info->host_initiated &&
2061                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2062                         return 1;
2063                 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2064                         return 1;
2065                 goto find_uret_msr;
2066         case MSR_IA32_PRED_CMD:
2067                 if (!msr_info->host_initiated &&
2068                     !guest_has_pred_cmd_msr(vcpu))
2069                         return 1;
2070
2071                 if (data & ~PRED_CMD_IBPB)
2072                         return 1;
2073                 if (!boot_cpu_has(X86_FEATURE_IBPB))
2074                         return 1;
2075                 if (!data)
2076                         break;
2077
2078                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2079
2080                 /*
2081                  * For non-nested:
2082                  * When it's written (to non-zero) for the first time, pass
2083                  * it through.
2084                  *
2085                  * For nested:
2086                  * The handling of the MSR bitmap for L2 guests is done in
2087                  * nested_vmx_prepare_msr_bitmap. We should not touch the
2088                  * vmcs02.msr_bitmap here since it gets completely overwritten
2089                  * in the merging.
2090                  */
2091                 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2092                 break;
2093         case MSR_IA32_CR_PAT:
2094                 if (!kvm_pat_valid(data))
2095                         return 1;
2096
2097                 if (is_guest_mode(vcpu) &&
2098                     get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2099                         get_vmcs12(vcpu)->guest_ia32_pat = data;
2100
2101                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2102                         vmcs_write64(GUEST_IA32_PAT, data);
2103                         vcpu->arch.pat = data;
2104                         break;
2105                 }
2106                 ret = kvm_set_msr_common(vcpu, msr_info);
2107                 break;
2108         case MSR_IA32_TSC_ADJUST:
2109                 ret = kvm_set_msr_common(vcpu, msr_info);
2110                 break;
2111         case MSR_IA32_MCG_EXT_CTL:
2112                 if ((!msr_info->host_initiated &&
2113                      !(to_vmx(vcpu)->msr_ia32_feature_control &
2114                        FEAT_CTL_LMCE_ENABLED)) ||
2115                     (data & ~MCG_EXT_CTL_LMCE_EN))
2116                         return 1;
2117                 vcpu->arch.mcg_ext_ctl = data;
2118                 break;
2119         case MSR_IA32_FEAT_CTL:
2120                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2121                     (to_vmx(vcpu)->msr_ia32_feature_control &
2122                      FEAT_CTL_LOCKED && !msr_info->host_initiated))
2123                         return 1;
2124                 vmx->msr_ia32_feature_control = data;
2125                 if (msr_info->host_initiated && data == 0)
2126                         vmx_leave_nested(vcpu);
2127
2128                 /* SGX may be enabled/disabled by guest's firmware */
2129                 vmx_write_encls_bitmap(vcpu, NULL);
2130                 break;
2131         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2132                 /*
2133                  * On real hardware, the LE hash MSRs are writable before
2134                  * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2135                  * at which point SGX related bits in IA32_FEATURE_CONTROL
2136                  * become writable.
2137                  *
2138                  * KVM does not emulate SGX activation for simplicity, so
2139                  * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2140                  * is unlocked.  This is technically not architectural
2141                  * behavior, but it's close enough.
2142                  */
2143                 if (!msr_info->host_initiated &&
2144                     (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2145                     ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2146                     !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2147                         return 1;
2148                 vmx->msr_ia32_sgxlepubkeyhash
2149                         [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2150                 break;
2151         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2152                 if (!msr_info->host_initiated)
2153                         return 1; /* they are read-only */
2154                 if (!nested_vmx_allowed(vcpu))
2155                         return 1;
2156                 return vmx_set_vmx_msr(vcpu, msr_index, data);
2157         case MSR_IA32_RTIT_CTL:
2158                 if (!vmx_pt_mode_is_host_guest() ||
2159                         vmx_rtit_ctl_check(vcpu, data) ||
2160                         vmx->nested.vmxon)
2161                         return 1;
2162                 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2163                 vmx->pt_desc.guest.ctl = data;
2164                 pt_update_intercept_for_msr(vcpu);
2165                 break;
2166         case MSR_IA32_RTIT_STATUS:
2167                 if (!pt_can_write_msr(vmx))
2168                         return 1;
2169                 if (data & MSR_IA32_RTIT_STATUS_MASK)
2170                         return 1;
2171                 vmx->pt_desc.guest.status = data;
2172                 break;
2173         case MSR_IA32_RTIT_CR3_MATCH:
2174                 if (!pt_can_write_msr(vmx))
2175                         return 1;
2176                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2177                                            PT_CAP_cr3_filtering))
2178                         return 1;
2179                 vmx->pt_desc.guest.cr3_match = data;
2180                 break;
2181         case MSR_IA32_RTIT_OUTPUT_BASE:
2182                 if (!pt_can_write_msr(vmx))
2183                         return 1;
2184                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2185                                            PT_CAP_topa_output) &&
2186                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2187                                            PT_CAP_single_range_output))
2188                         return 1;
2189                 if (!pt_output_base_valid(vcpu, data))
2190                         return 1;
2191                 vmx->pt_desc.guest.output_base = data;
2192                 break;
2193         case MSR_IA32_RTIT_OUTPUT_MASK:
2194                 if (!pt_can_write_msr(vmx))
2195                         return 1;
2196                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2197                                            PT_CAP_topa_output) &&
2198                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2199                                            PT_CAP_single_range_output))
2200                         return 1;
2201                 vmx->pt_desc.guest.output_mask = data;
2202                 break;
2203         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2204                 if (!pt_can_write_msr(vmx))
2205                         return 1;
2206                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2207                 if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2208                                                        PT_CAP_num_address_ranges))
2209                         return 1;
2210                 if (is_noncanonical_address(data, vcpu))
2211                         return 1;
2212                 if (index % 2)
2213                         vmx->pt_desc.guest.addr_b[index / 2] = data;
2214                 else
2215                         vmx->pt_desc.guest.addr_a[index / 2] = data;
2216                 break;
2217         case MSR_IA32_PERF_CAPABILITIES:
2218                 if (data && !vcpu_to_pmu(vcpu)->version)
2219                         return 1;
2220                 if (data & PMU_CAP_LBR_FMT) {
2221                         if ((data & PMU_CAP_LBR_FMT) !=
2222                             (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT))
2223                                 return 1;
2224                         if (!intel_pmu_lbr_is_compatible(vcpu))
2225                                 return 1;
2226                 }
2227                 ret = kvm_set_msr_common(vcpu, msr_info);
2228                 break;
2229
2230         default:
2231         find_uret_msr:
2232                 msr = vmx_find_uret_msr(vmx, msr_index);
2233                 if (msr)
2234                         ret = vmx_set_guest_uret_msr(vmx, msr, data);
2235                 else
2236                         ret = kvm_set_msr_common(vcpu, msr_info);
2237         }
2238
2239         return ret;
2240 }
2241
2242 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2243 {
2244         unsigned long guest_owned_bits;
2245
2246         kvm_register_mark_available(vcpu, reg);
2247
2248         switch (reg) {
2249         case VCPU_REGS_RSP:
2250                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2251                 break;
2252         case VCPU_REGS_RIP:
2253                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2254                 break;
2255         case VCPU_EXREG_PDPTR:
2256                 if (enable_ept)
2257                         ept_save_pdptrs(vcpu);
2258                 break;
2259         case VCPU_EXREG_CR0:
2260                 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2261
2262                 vcpu->arch.cr0 &= ~guest_owned_bits;
2263                 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2264                 break;
2265         case VCPU_EXREG_CR3:
2266                 if (is_unrestricted_guest(vcpu) ||
2267                     (enable_ept && is_paging(vcpu)))
2268                         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2269                 break;
2270         case VCPU_EXREG_CR4:
2271                 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2272
2273                 vcpu->arch.cr4 &= ~guest_owned_bits;
2274                 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2275                 break;
2276         default:
2277                 KVM_BUG_ON(1, vcpu->kvm);
2278                 break;
2279         }
2280 }
2281
2282 static __init int cpu_has_kvm_support(void)
2283 {
2284         return cpu_has_vmx();
2285 }
2286
2287 static __init int vmx_disabled_by_bios(void)
2288 {
2289         return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2290                !boot_cpu_has(X86_FEATURE_VMX);
2291 }
2292
2293 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2294 {
2295         u64 msr;
2296
2297         cr4_set_bits(X86_CR4_VMXE);
2298
2299         asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2300                           _ASM_EXTABLE(1b, %l[fault])
2301                           : : [vmxon_pointer] "m"(vmxon_pointer)
2302                           : : fault);
2303         return 0;
2304
2305 fault:
2306         WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2307                   rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2308         cr4_clear_bits(X86_CR4_VMXE);
2309
2310         return -EFAULT;
2311 }
2312
2313 static int hardware_enable(void)
2314 {
2315         int cpu = raw_smp_processor_id();
2316         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2317         int r;
2318
2319         if (cr4_read_shadow() & X86_CR4_VMXE)
2320                 return -EBUSY;
2321
2322         /*
2323          * This can happen if we hot-added a CPU but failed to allocate
2324          * VP assist page for it.
2325          */
2326         if (static_branch_unlikely(&enable_evmcs) &&
2327             !hv_get_vp_assist_page(cpu))
2328                 return -EFAULT;
2329
2330         intel_pt_handle_vmx(1);
2331
2332         r = kvm_cpu_vmxon(phys_addr);
2333         if (r) {
2334                 intel_pt_handle_vmx(0);
2335                 return r;
2336         }
2337
2338         if (enable_ept)
2339                 ept_sync_global();
2340
2341         return 0;
2342 }
2343
2344 static void vmclear_local_loaded_vmcss(void)
2345 {
2346         int cpu = raw_smp_processor_id();
2347         struct loaded_vmcs *v, *n;
2348
2349         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2350                                  loaded_vmcss_on_cpu_link)
2351                 __loaded_vmcs_clear(v);
2352 }
2353
2354 static void hardware_disable(void)
2355 {
2356         vmclear_local_loaded_vmcss();
2357
2358         if (cpu_vmxoff())
2359                 kvm_spurious_fault();
2360
2361         intel_pt_handle_vmx(0);
2362 }
2363
2364 /*
2365  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2366  * directly instead of going through cpu_has(), to ensure KVM is trapping
2367  * ENCLS whenever it's supported in hardware.  It does not matter whether
2368  * the host OS supports or has enabled SGX.
2369  */
2370 static bool cpu_has_sgx(void)
2371 {
2372         return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2373 }
2374
2375 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2376                                       u32 msr, u32 *result)
2377 {
2378         u32 vmx_msr_low, vmx_msr_high;
2379         u32 ctl = ctl_min | ctl_opt;
2380
2381         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2382
2383         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2384         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2385
2386         /* Ensure minimum (required) set of control bits are supported. */
2387         if (ctl_min & ~ctl)
2388                 return -EIO;
2389
2390         *result = ctl;
2391         return 0;
2392 }
2393
2394 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2395                                     struct vmx_capability *vmx_cap)
2396 {
2397         u32 vmx_msr_low, vmx_msr_high;
2398         u32 min, opt, min2, opt2;
2399         u32 _pin_based_exec_control = 0;
2400         u32 _cpu_based_exec_control = 0;
2401         u32 _cpu_based_2nd_exec_control = 0;
2402         u32 _vmexit_control = 0;
2403         u32 _vmentry_control = 0;
2404
2405         memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2406         min = CPU_BASED_HLT_EXITING |
2407 #ifdef CONFIG_X86_64
2408               CPU_BASED_CR8_LOAD_EXITING |
2409               CPU_BASED_CR8_STORE_EXITING |
2410 #endif
2411               CPU_BASED_CR3_LOAD_EXITING |
2412               CPU_BASED_CR3_STORE_EXITING |
2413               CPU_BASED_UNCOND_IO_EXITING |
2414               CPU_BASED_MOV_DR_EXITING |
2415               CPU_BASED_USE_TSC_OFFSETTING |
2416               CPU_BASED_MWAIT_EXITING |
2417               CPU_BASED_MONITOR_EXITING |
2418               CPU_BASED_INVLPG_EXITING |
2419               CPU_BASED_RDPMC_EXITING;
2420
2421         opt = CPU_BASED_TPR_SHADOW |
2422               CPU_BASED_USE_MSR_BITMAPS |
2423               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2424         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2425                                 &_cpu_based_exec_control) < 0)
2426                 return -EIO;
2427 #ifdef CONFIG_X86_64
2428         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2429                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2430                                            ~CPU_BASED_CR8_STORE_EXITING;
2431 #endif
2432         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2433                 min2 = 0;
2434                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2435                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2436                         SECONDARY_EXEC_WBINVD_EXITING |
2437                         SECONDARY_EXEC_ENABLE_VPID |
2438                         SECONDARY_EXEC_ENABLE_EPT |
2439                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2440                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2441                         SECONDARY_EXEC_DESC |
2442                         SECONDARY_EXEC_ENABLE_RDTSCP |
2443                         SECONDARY_EXEC_ENABLE_INVPCID |
2444                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2445                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2446                         SECONDARY_EXEC_SHADOW_VMCS |
2447                         SECONDARY_EXEC_XSAVES |
2448                         SECONDARY_EXEC_RDSEED_EXITING |
2449                         SECONDARY_EXEC_RDRAND_EXITING |
2450                         SECONDARY_EXEC_ENABLE_PML |
2451                         SECONDARY_EXEC_TSC_SCALING |
2452                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2453                         SECONDARY_EXEC_PT_USE_GPA |
2454                         SECONDARY_EXEC_PT_CONCEAL_VMX |
2455                         SECONDARY_EXEC_ENABLE_VMFUNC |
2456                         SECONDARY_EXEC_BUS_LOCK_DETECTION;
2457                 if (cpu_has_sgx())
2458                         opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2459                 if (adjust_vmx_controls(min2, opt2,
2460                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2461                                         &_cpu_based_2nd_exec_control) < 0)
2462                         return -EIO;
2463         }
2464 #ifndef CONFIG_X86_64
2465         if (!(_cpu_based_2nd_exec_control &
2466                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2467                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2468 #endif
2469
2470         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2471                 _cpu_based_2nd_exec_control &= ~(
2472                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2473                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2474                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2475
2476         rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2477                 &vmx_cap->ept, &vmx_cap->vpid);
2478
2479         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2480                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2481                    enabled */
2482                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2483                                              CPU_BASED_CR3_STORE_EXITING |
2484                                              CPU_BASED_INVLPG_EXITING);
2485         } else if (vmx_cap->ept) {
2486                 vmx_cap->ept = 0;
2487                 pr_warn_once("EPT CAP should not exist if not support "
2488                                 "1-setting enable EPT VM-execution control\n");
2489         }
2490         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2491                 vmx_cap->vpid) {
2492                 vmx_cap->vpid = 0;
2493                 pr_warn_once("VPID CAP should not exist if not support "
2494                                 "1-setting enable VPID VM-execution control\n");
2495         }
2496
2497         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2498 #ifdef CONFIG_X86_64
2499         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2500 #endif
2501         opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2502               VM_EXIT_LOAD_IA32_PAT |
2503               VM_EXIT_LOAD_IA32_EFER |
2504               VM_EXIT_CLEAR_BNDCFGS |
2505               VM_EXIT_PT_CONCEAL_PIP |
2506               VM_EXIT_CLEAR_IA32_RTIT_CTL;
2507         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2508                                 &_vmexit_control) < 0)
2509                 return -EIO;
2510
2511         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2512         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2513                  PIN_BASED_VMX_PREEMPTION_TIMER;
2514         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2515                                 &_pin_based_exec_control) < 0)
2516                 return -EIO;
2517
2518         if (cpu_has_broken_vmx_preemption_timer())
2519                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2520         if (!(_cpu_based_2nd_exec_control &
2521                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2522                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2523
2524         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2525         opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2526               VM_ENTRY_LOAD_IA32_PAT |
2527               VM_ENTRY_LOAD_IA32_EFER |
2528               VM_ENTRY_LOAD_BNDCFGS |
2529               VM_ENTRY_PT_CONCEAL_PIP |
2530               VM_ENTRY_LOAD_IA32_RTIT_CTL;
2531         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2532                                 &_vmentry_control) < 0)
2533                 return -EIO;
2534
2535         /*
2536          * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2537          * can't be used due to an errata where VM Exit may incorrectly clear
2538          * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2539          * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2540          */
2541         if (boot_cpu_data.x86 == 0x6) {
2542                 switch (boot_cpu_data.x86_model) {
2543                 case 26: /* AAK155 */
2544                 case 30: /* AAP115 */
2545                 case 37: /* AAT100 */
2546                 case 44: /* BC86,AAY89,BD102 */
2547                 case 46: /* BA97 */
2548                         _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2549                         _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2550                         pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2551                                         "does not work properly. Using workaround\n");
2552                         break;
2553                 default:
2554                         break;
2555                 }
2556         }
2557
2558
2559         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2560
2561         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2562         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2563                 return -EIO;
2564
2565 #ifdef CONFIG_X86_64
2566         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2567         if (vmx_msr_high & (1u<<16))
2568                 return -EIO;
2569 #endif
2570
2571         /* Require Write-Back (WB) memory type for VMCS accesses. */
2572         if (((vmx_msr_high >> 18) & 15) != 6)
2573                 return -EIO;
2574
2575         vmcs_conf->size = vmx_msr_high & 0x1fff;
2576         vmcs_conf->order = get_order(vmcs_conf->size);
2577         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2578
2579         vmcs_conf->revision_id = vmx_msr_low;
2580
2581         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2582         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2583         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2584         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2585         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2586
2587 #if IS_ENABLED(CONFIG_HYPERV)
2588         if (enlightened_vmcs)
2589                 evmcs_sanitize_exec_ctrls(vmcs_conf);
2590 #endif
2591
2592         return 0;
2593 }
2594
2595 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2596 {
2597         int node = cpu_to_node(cpu);
2598         struct page *pages;
2599         struct vmcs *vmcs;
2600
2601         pages = __alloc_pages_node(node, flags, vmcs_config.order);
2602         if (!pages)
2603                 return NULL;
2604         vmcs = page_address(pages);
2605         memset(vmcs, 0, vmcs_config.size);
2606
2607         /* KVM supports Enlightened VMCS v1 only */
2608         if (static_branch_unlikely(&enable_evmcs))
2609                 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2610         else
2611                 vmcs->hdr.revision_id = vmcs_config.revision_id;
2612
2613         if (shadow)
2614                 vmcs->hdr.shadow_vmcs = 1;
2615         return vmcs;
2616 }
2617
2618 void free_vmcs(struct vmcs *vmcs)
2619 {
2620         free_pages((unsigned long)vmcs, vmcs_config.order);
2621 }
2622
2623 /*
2624  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2625  */
2626 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2627 {
2628         if (!loaded_vmcs->vmcs)
2629                 return;
2630         loaded_vmcs_clear(loaded_vmcs);
2631         free_vmcs(loaded_vmcs->vmcs);
2632         loaded_vmcs->vmcs = NULL;
2633         if (loaded_vmcs->msr_bitmap)
2634                 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2635         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2636 }
2637
2638 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2639 {
2640         loaded_vmcs->vmcs = alloc_vmcs(false);
2641         if (!loaded_vmcs->vmcs)
2642                 return -ENOMEM;
2643
2644         vmcs_clear(loaded_vmcs->vmcs);
2645
2646         loaded_vmcs->shadow_vmcs = NULL;
2647         loaded_vmcs->hv_timer_soft_disabled = false;
2648         loaded_vmcs->cpu = -1;
2649         loaded_vmcs->launched = 0;
2650
2651         if (cpu_has_vmx_msr_bitmap()) {
2652                 loaded_vmcs->msr_bitmap = (unsigned long *)
2653                                 __get_free_page(GFP_KERNEL_ACCOUNT);
2654                 if (!loaded_vmcs->msr_bitmap)
2655                         goto out_vmcs;
2656                 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2657
2658                 if (IS_ENABLED(CONFIG_HYPERV) &&
2659                     static_branch_unlikely(&enable_evmcs) &&
2660                     (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2661                         struct hv_enlightened_vmcs *evmcs =
2662                                 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2663
2664                         evmcs->hv_enlightenments_control.msr_bitmap = 1;
2665                 }
2666         }
2667
2668         memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2669         memset(&loaded_vmcs->controls_shadow, 0,
2670                 sizeof(struct vmcs_controls_shadow));
2671
2672         return 0;
2673
2674 out_vmcs:
2675         free_loaded_vmcs(loaded_vmcs);
2676         return -ENOMEM;
2677 }
2678
2679 static void free_kvm_area(void)
2680 {
2681         int cpu;
2682
2683         for_each_possible_cpu(cpu) {
2684                 free_vmcs(per_cpu(vmxarea, cpu));
2685                 per_cpu(vmxarea, cpu) = NULL;
2686         }
2687 }
2688
2689 static __init int alloc_kvm_area(void)
2690 {
2691         int cpu;
2692
2693         for_each_possible_cpu(cpu) {
2694                 struct vmcs *vmcs;
2695
2696                 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2697                 if (!vmcs) {
2698                         free_kvm_area();
2699                         return -ENOMEM;
2700                 }
2701
2702                 /*
2703                  * When eVMCS is enabled, alloc_vmcs_cpu() sets
2704                  * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2705                  * revision_id reported by MSR_IA32_VMX_BASIC.
2706                  *
2707                  * However, even though not explicitly documented by
2708                  * TLFS, VMXArea passed as VMXON argument should
2709                  * still be marked with revision_id reported by
2710                  * physical CPU.
2711                  */
2712                 if (static_branch_unlikely(&enable_evmcs))
2713                         vmcs->hdr.revision_id = vmcs_config.revision_id;
2714
2715                 per_cpu(vmxarea, cpu) = vmcs;
2716         }
2717         return 0;
2718 }
2719
2720 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2721                 struct kvm_segment *save)
2722 {
2723         if (!emulate_invalid_guest_state) {
2724                 /*
2725                  * CS and SS RPL should be equal during guest entry according
2726                  * to VMX spec, but in reality it is not always so. Since vcpu
2727                  * is in the middle of the transition from real mode to
2728                  * protected mode it is safe to assume that RPL 0 is a good
2729                  * default value.
2730                  */
2731                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2732                         save->selector &= ~SEGMENT_RPL_MASK;
2733                 save->dpl = save->selector & SEGMENT_RPL_MASK;
2734                 save->s = 1;
2735         }
2736         vmx_set_segment(vcpu, save, seg);
2737 }
2738
2739 static void enter_pmode(struct kvm_vcpu *vcpu)
2740 {
2741         unsigned long flags;
2742         struct vcpu_vmx *vmx = to_vmx(vcpu);
2743
2744         /*
2745          * Update real mode segment cache. It may be not up-to-date if segment
2746          * register was written while vcpu was in a guest mode.
2747          */
2748         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2749         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2750         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2751         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2752         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2753         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2754
2755         vmx->rmode.vm86_active = 0;
2756
2757         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2758
2759         flags = vmcs_readl(GUEST_RFLAGS);
2760         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2761         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2762         vmcs_writel(GUEST_RFLAGS, flags);
2763
2764         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2765                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2766
2767         vmx_update_exception_bitmap(vcpu);
2768
2769         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2770         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2771         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2772         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2773         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2774         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2775 }
2776
2777 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2778 {
2779         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2780         struct kvm_segment var = *save;
2781
2782         var.dpl = 0x3;
2783         if (seg == VCPU_SREG_CS)
2784                 var.type = 0x3;
2785
2786         if (!emulate_invalid_guest_state) {
2787                 var.selector = var.base >> 4;
2788                 var.base = var.base & 0xffff0;
2789                 var.limit = 0xffff;
2790                 var.g = 0;
2791                 var.db = 0;
2792                 var.present = 1;
2793                 var.s = 1;
2794                 var.l = 0;
2795                 var.unusable = 0;
2796                 var.type = 0x3;
2797                 var.avl = 0;
2798                 if (save->base & 0xf)
2799                         printk_once(KERN_WARNING "kvm: segment base is not "
2800                                         "paragraph aligned when entering "
2801                                         "protected mode (seg=%d)", seg);
2802         }
2803
2804         vmcs_write16(sf->selector, var.selector);
2805         vmcs_writel(sf->base, var.base);
2806         vmcs_write32(sf->limit, var.limit);
2807         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2808 }
2809
2810 static void enter_rmode(struct kvm_vcpu *vcpu)
2811 {
2812         unsigned long flags;
2813         struct vcpu_vmx *vmx = to_vmx(vcpu);
2814         struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2815
2816         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2817         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2818         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2819         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2820         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2821         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2822         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2823
2824         vmx->rmode.vm86_active = 1;
2825
2826         /*
2827          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2828          * vcpu. Warn the user that an update is overdue.
2829          */
2830         if (!kvm_vmx->tss_addr)
2831                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2832                              "called before entering vcpu\n");
2833
2834         vmx_segment_cache_clear(vmx);
2835
2836         vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2837         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2838         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2839
2840         flags = vmcs_readl(GUEST_RFLAGS);
2841         vmx->rmode.save_rflags = flags;
2842
2843         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2844
2845         vmcs_writel(GUEST_RFLAGS, flags);
2846         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2847         vmx_update_exception_bitmap(vcpu);
2848
2849         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2850         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2851         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2852         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2853         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2854         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2855 }
2856
2857 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2858 {
2859         struct vcpu_vmx *vmx = to_vmx(vcpu);
2860         struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER);
2861
2862         /* Nothing to do if hardware doesn't support EFER. */
2863         if (!msr)
2864                 return 0;
2865
2866         vcpu->arch.efer = efer;
2867         if (efer & EFER_LMA) {
2868                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2869                 msr->data = efer;
2870         } else {
2871                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2872
2873                 msr->data = efer & ~EFER_LME;
2874         }
2875         setup_msrs(vmx);
2876         return 0;
2877 }
2878
2879 #ifdef CONFIG_X86_64
2880
2881 static void enter_lmode(struct kvm_vcpu *vcpu)
2882 {
2883         u32 guest_tr_ar;
2884
2885         vmx_segment_cache_clear(to_vmx(vcpu));
2886
2887         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2888         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2889                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2890                                      __func__);
2891                 vmcs_write32(GUEST_TR_AR_BYTES,
2892                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2893                              | VMX_AR_TYPE_BUSY_64_TSS);
2894         }
2895         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2896 }
2897
2898 static void exit_lmode(struct kvm_vcpu *vcpu)
2899 {
2900         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2901         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2902 }
2903
2904 #endif
2905
2906 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2907 {
2908         struct vcpu_vmx *vmx = to_vmx(vcpu);
2909
2910         /*
2911          * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2912          * the CPU is not required to invalidate guest-physical mappings on
2913          * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
2914          * associated with the root EPT structure and not any particular VPID
2915          * (INVVPID also isn't required to invalidate guest-physical mappings).
2916          */
2917         if (enable_ept) {
2918                 ept_sync_global();
2919         } else if (enable_vpid) {
2920                 if (cpu_has_vmx_invvpid_global()) {
2921                         vpid_sync_vcpu_global();
2922                 } else {
2923                         vpid_sync_vcpu_single(vmx->vpid);
2924                         vpid_sync_vcpu_single(vmx->nested.vpid02);
2925                 }
2926         }
2927 }
2928
2929 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
2930 {
2931         struct kvm_mmu *mmu = vcpu->arch.mmu;
2932         u64 root_hpa = mmu->root_hpa;
2933
2934         /* No flush required if the current context is invalid. */
2935         if (!VALID_PAGE(root_hpa))
2936                 return;
2937
2938         if (enable_ept)
2939                 ept_sync_context(construct_eptp(vcpu, root_hpa,
2940                                                 mmu->shadow_root_level));
2941         else if (!is_guest_mode(vcpu))
2942                 vpid_sync_context(to_vmx(vcpu)->vpid);
2943         else
2944                 vpid_sync_context(nested_get_vpid02(vcpu));
2945 }
2946
2947 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2948 {
2949         /*
2950          * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in
2951          * vmx_flush_tlb_guest() for an explanation of why this is ok.
2952          */
2953         vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr);
2954 }
2955
2956 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
2957 {
2958         /*
2959          * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0
2960          * or a vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit
2961          * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is
2962          * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
2963          * i.e. no explicit INVVPID is necessary.
2964          */
2965         vpid_sync_context(to_vmx(vcpu)->vpid);
2966 }
2967
2968 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
2969 {
2970         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2971
2972         if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2973                 return;
2974
2975         if (is_pae_paging(vcpu)) {
2976                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2977                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2978                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2979                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2980         }
2981 }
2982
2983 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2984 {
2985         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2986
2987         if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
2988                 return;
2989
2990         mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2991         mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2992         mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2993         mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2994
2995         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
2996 }
2997
2998 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2999                                         unsigned long cr0,
3000                                         struct kvm_vcpu *vcpu)
3001 {
3002         struct vcpu_vmx *vmx = to_vmx(vcpu);
3003
3004         if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3005                 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3006         if (!(cr0 & X86_CR0_PG)) {
3007                 /* From paging/starting to nonpaging */
3008                 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3009                                           CPU_BASED_CR3_STORE_EXITING);
3010                 vcpu->arch.cr0 = cr0;
3011                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3012         } else if (!is_paging(vcpu)) {
3013                 /* From nonpaging to paging */
3014                 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3015                                             CPU_BASED_CR3_STORE_EXITING);
3016                 vcpu->arch.cr0 = cr0;
3017                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3018         }
3019
3020         if (!(cr0 & X86_CR0_WP))
3021                 *hw_cr0 &= ~X86_CR0_WP;
3022 }
3023
3024 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3025 {
3026         struct vcpu_vmx *vmx = to_vmx(vcpu);
3027         unsigned long hw_cr0;
3028
3029         hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3030         if (is_unrestricted_guest(vcpu))
3031                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3032         else {
3033                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3034
3035                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3036                         enter_pmode(vcpu);
3037
3038                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3039                         enter_rmode(vcpu);
3040         }
3041
3042 #ifdef CONFIG_X86_64
3043         if (vcpu->arch.efer & EFER_LME) {
3044                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3045                         enter_lmode(vcpu);
3046                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3047                         exit_lmode(vcpu);
3048         }
3049 #endif
3050
3051         if (enable_ept && !is_unrestricted_guest(vcpu))
3052                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3053
3054         vmcs_writel(CR0_READ_SHADOW, cr0);
3055         vmcs_writel(GUEST_CR0, hw_cr0);
3056         vcpu->arch.cr0 = cr0;
3057         kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3058
3059         /* depends on vcpu->arch.cr0 to be set to a new value */
3060         vmx->emulation_required = emulation_required(vcpu);
3061 }
3062
3063 static int vmx_get_max_tdp_level(void)
3064 {
3065         if (cpu_has_vmx_ept_5levels())
3066                 return 5;
3067         return 4;
3068 }
3069
3070 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3071 {
3072         u64 eptp = VMX_EPTP_MT_WB;
3073
3074         eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3075
3076         if (enable_ept_ad_bits &&
3077             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3078                 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3079         eptp |= root_hpa;
3080
3081         return eptp;
3082 }
3083
3084 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3085                              int root_level)
3086 {
3087         struct kvm *kvm = vcpu->kvm;
3088         bool update_guest_cr3 = true;
3089         unsigned long guest_cr3;
3090         u64 eptp;
3091
3092         if (enable_ept) {
3093                 eptp = construct_eptp(vcpu, root_hpa, root_level);
3094                 vmcs_write64(EPT_POINTER, eptp);
3095
3096                 hv_track_root_tdp(vcpu, root_hpa);
3097
3098                 if (!enable_unrestricted_guest && !is_paging(vcpu))
3099                         guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3100                 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3101                         guest_cr3 = vcpu->arch.cr3;
3102                 else /* vmcs01.GUEST_CR3 is already up-to-date. */
3103                         update_guest_cr3 = false;
3104                 vmx_ept_load_pdptrs(vcpu);
3105         } else {
3106                 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3107         }
3108
3109         if (update_guest_cr3)
3110                 vmcs_writel(GUEST_CR3, guest_cr3);
3111 }
3112
3113 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3114 {
3115         /*
3116          * We operate under the default treatment of SMM, so VMX cannot be
3117          * enabled under SMM.  Note, whether or not VMXE is allowed at all is
3118          * handled by kvm_is_valid_cr4().
3119          */
3120         if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3121                 return false;
3122
3123         if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3124                 return false;
3125
3126         return true;
3127 }
3128
3129 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3130 {
3131         unsigned long old_cr4 = vcpu->arch.cr4;
3132         struct vcpu_vmx *vmx = to_vmx(vcpu);
3133         /*
3134          * Pass through host's Machine Check Enable value to hw_cr4, which
3135          * is in force while we are in guest mode.  Do not let guests control
3136          * this bit, even if host CR4.MCE == 0.
3137          */
3138         unsigned long hw_cr4;
3139
3140         hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3141         if (is_unrestricted_guest(vcpu))
3142                 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3143         else if (vmx->rmode.vm86_active)
3144                 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3145         else
3146                 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3147
3148         if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3149                 if (cr4 & X86_CR4_UMIP) {
3150                         secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3151                         hw_cr4 &= ~X86_CR4_UMIP;
3152                 } else if (!is_guest_mode(vcpu) ||
3153                         !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3154                         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3155                 }
3156         }
3157
3158         vcpu->arch.cr4 = cr4;
3159         kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3160
3161         if (!is_unrestricted_guest(vcpu)) {
3162                 if (enable_ept) {
3163                         if (!is_paging(vcpu)) {
3164                                 hw_cr4 &= ~X86_CR4_PAE;
3165                                 hw_cr4 |= X86_CR4_PSE;
3166                         } else if (!(cr4 & X86_CR4_PAE)) {
3167                                 hw_cr4 &= ~X86_CR4_PAE;
3168                         }
3169                 }
3170
3171                 /*
3172                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3173                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3174                  * to be manually disabled when guest switches to non-paging
3175                  * mode.
3176                  *
3177                  * If !enable_unrestricted_guest, the CPU is always running
3178                  * with CR0.PG=1 and CR4 needs to be modified.
3179                  * If enable_unrestricted_guest, the CPU automatically
3180                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3181                  */
3182                 if (!is_paging(vcpu))
3183                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3184         }
3185
3186         vmcs_writel(CR4_READ_SHADOW, cr4);
3187         vmcs_writel(GUEST_CR4, hw_cr4);
3188
3189         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3190                 kvm_update_cpuid_runtime(vcpu);
3191 }
3192
3193 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3194 {
3195         struct vcpu_vmx *vmx = to_vmx(vcpu);
3196         u32 ar;
3197
3198         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3199                 *var = vmx->rmode.segs[seg];
3200                 if (seg == VCPU_SREG_TR
3201                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3202                         return;
3203                 var->base = vmx_read_guest_seg_base(vmx, seg);
3204                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3205                 return;
3206         }
3207         var->base = vmx_read_guest_seg_base(vmx, seg);
3208         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3209         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3210         ar = vmx_read_guest_seg_ar(vmx, seg);
3211         var->unusable = (ar >> 16) & 1;
3212         var->type = ar & 15;
3213         var->s = (ar >> 4) & 1;
3214         var->dpl = (ar >> 5) & 3;
3215         /*
3216          * Some userspaces do not preserve unusable property. Since usable
3217          * segment has to be present according to VMX spec we can use present
3218          * property to amend userspace bug by making unusable segment always
3219          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3220          * segment as unusable.
3221          */
3222         var->present = !var->unusable;
3223         var->avl = (ar >> 12) & 1;
3224         var->l = (ar >> 13) & 1;
3225         var->db = (ar >> 14) & 1;
3226         var->g = (ar >> 15) & 1;
3227 }
3228
3229 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3230 {
3231         struct kvm_segment s;
3232
3233         if (to_vmx(vcpu)->rmode.vm86_active) {
3234                 vmx_get_segment(vcpu, &s, seg);
3235                 return s.base;
3236         }
3237         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3238 }
3239
3240 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3241 {
3242         struct vcpu_vmx *vmx = to_vmx(vcpu);
3243
3244         if (unlikely(vmx->rmode.vm86_active))
3245                 return 0;
3246         else {
3247                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3248                 return VMX_AR_DPL(ar);
3249         }
3250 }
3251
3252 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3253 {
3254         u32 ar;
3255
3256         if (var->unusable || !var->present)
3257                 ar = 1 << 16;
3258         else {
3259                 ar = var->type & 15;
3260                 ar |= (var->s & 1) << 4;
3261                 ar |= (var->dpl & 3) << 5;
3262                 ar |= (var->present & 1) << 7;
3263                 ar |= (var->avl & 1) << 12;
3264                 ar |= (var->l & 1) << 13;
3265                 ar |= (var->db & 1) << 14;
3266                 ar |= (var->g & 1) << 15;
3267         }
3268
3269         return ar;
3270 }
3271
3272 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3273 {
3274         struct vcpu_vmx *vmx = to_vmx(vcpu);
3275         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3276
3277         vmx_segment_cache_clear(vmx);
3278
3279         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3280                 vmx->rmode.segs[seg] = *var;
3281                 if (seg == VCPU_SREG_TR)
3282                         vmcs_write16(sf->selector, var->selector);
3283                 else if (var->s)
3284                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3285                 goto out;
3286         }
3287
3288         vmcs_writel(sf->base, var->base);
3289         vmcs_write32(sf->limit, var->limit);
3290         vmcs_write16(sf->selector, var->selector);
3291
3292         /*
3293          *   Fix the "Accessed" bit in AR field of segment registers for older
3294          * qemu binaries.
3295          *   IA32 arch specifies that at the time of processor reset the
3296          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3297          * is setting it to 0 in the userland code. This causes invalid guest
3298          * state vmexit when "unrestricted guest" mode is turned on.
3299          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3300          * tree. Newer qemu binaries with that qemu fix would not need this
3301          * kvm hack.
3302          */
3303         if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3304                 var->type |= 0x1; /* Accessed */
3305
3306         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3307
3308 out:
3309         vmx->emulation_required = emulation_required(vcpu);
3310 }
3311
3312 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3313 {
3314         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3315
3316         *db = (ar >> 14) & 1;
3317         *l = (ar >> 13) & 1;
3318 }
3319
3320 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3321 {
3322         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3323         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3324 }
3325
3326 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3327 {
3328         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3329         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3330 }
3331
3332 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3333 {
3334         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3335         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3336 }
3337
3338 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3339 {
3340         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3341         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3342 }
3343
3344 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3345 {
3346         struct kvm_segment var;
3347         u32 ar;
3348
3349         vmx_get_segment(vcpu, &var, seg);
3350         var.dpl = 0x3;
3351         if (seg == VCPU_SREG_CS)
3352                 var.type = 0x3;
3353         ar = vmx_segment_access_rights(&var);
3354
3355         if (var.base != (var.selector << 4))
3356                 return false;
3357         if (var.limit != 0xffff)
3358                 return false;
3359         if (ar != 0xf3)
3360                 return false;
3361
3362         return true;
3363 }
3364
3365 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3366 {
3367         struct kvm_segment cs;
3368         unsigned int cs_rpl;
3369
3370         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3371         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3372
3373         if (cs.unusable)
3374                 return false;
3375         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3376                 return false;
3377         if (!cs.s)
3378                 return false;
3379         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3380                 if (cs.dpl > cs_rpl)
3381                         return false;
3382         } else {
3383                 if (cs.dpl != cs_rpl)
3384                         return false;
3385         }
3386         if (!cs.present)
3387                 return false;
3388
3389         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3390         return true;
3391 }
3392
3393 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3394 {
3395         struct kvm_segment ss;
3396         unsigned int ss_rpl;
3397
3398         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3399         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3400
3401         if (ss.unusable)
3402                 return true;
3403         if (ss.type != 3 && ss.type != 7)
3404                 return false;
3405         if (!ss.s)
3406                 return false;
3407         if (ss.dpl != ss_rpl) /* DPL != RPL */
3408                 return false;
3409         if (!ss.present)
3410                 return false;
3411
3412         return true;
3413 }
3414
3415 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3416 {
3417         struct kvm_segment var;
3418         unsigned int rpl;
3419
3420         vmx_get_segment(vcpu, &var, seg);
3421         rpl = var.selector & SEGMENT_RPL_MASK;
3422
3423         if (var.unusable)
3424                 return true;
3425         if (!var.s)
3426                 return false;
3427         if (!var.present)
3428                 return false;
3429         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3430                 if (var.dpl < rpl) /* DPL < RPL */
3431                         return false;
3432         }
3433
3434         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3435          * rights flags
3436          */
3437         return true;
3438 }
3439
3440 static bool tr_valid(struct kvm_vcpu *vcpu)
3441 {
3442         struct kvm_segment tr;
3443
3444         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3445
3446         if (tr.unusable)
3447                 return false;
3448         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3449                 return false;
3450         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3451                 return false;
3452         if (!tr.present)
3453                 return false;
3454
3455         return true;
3456 }
3457
3458 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3459 {
3460         struct kvm_segment ldtr;
3461
3462         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3463
3464         if (ldtr.unusable)
3465                 return true;
3466         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3467                 return false;
3468         if (ldtr.type != 2)
3469                 return false;
3470         if (!ldtr.present)
3471                 return false;
3472
3473         return true;
3474 }
3475
3476 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3477 {
3478         struct kvm_segment cs, ss;
3479
3480         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3481         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3482
3483         return ((cs.selector & SEGMENT_RPL_MASK) ==
3484                  (ss.selector & SEGMENT_RPL_MASK));
3485 }
3486
3487 /*
3488  * Check if guest state is valid. Returns true if valid, false if
3489  * not.
3490  * We assume that registers are always usable
3491  */
3492 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3493 {
3494         /* real mode guest state checks */
3495         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3496                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3497                         return false;
3498                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3499                         return false;
3500                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3501                         return false;
3502                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3503                         return false;
3504                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3505                         return false;
3506                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3507                         return false;
3508         } else {
3509         /* protected mode guest state checks */
3510                 if (!cs_ss_rpl_check(vcpu))
3511                         return false;
3512                 if (!code_segment_valid(vcpu))
3513                         return false;
3514                 if (!stack_segment_valid(vcpu))
3515                         return false;
3516                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3517                         return false;
3518                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3519                         return false;
3520                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3521                         return false;
3522                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3523                         return false;
3524                 if (!tr_valid(vcpu))
3525                         return false;
3526                 if (!ldtr_valid(vcpu))
3527                         return false;
3528         }
3529         /* TODO:
3530          * - Add checks on RIP
3531          * - Add checks on RFLAGS
3532          */
3533
3534         return true;
3535 }
3536
3537 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3538 {
3539         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3540         u16 data;
3541         int i;
3542
3543         for (i = 0; i < 3; i++) {
3544                 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3545                         return -EFAULT;
3546         }
3547
3548         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3549         if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3550                 return -EFAULT;
3551
3552         data = ~0;
3553         if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3554                 return -EFAULT;
3555
3556         return 0;
3557 }
3558
3559 static int init_rmode_identity_map(struct kvm *kvm)
3560 {
3561         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3562         int i, r = 0;
3563         void __user *uaddr;
3564         u32 tmp;
3565
3566         /* Protect kvm_vmx->ept_identity_pagetable_done. */
3567         mutex_lock(&kvm->slots_lock);
3568
3569         if (likely(kvm_vmx->ept_identity_pagetable_done))
3570                 goto out;
3571
3572         if (!kvm_vmx->ept_identity_map_addr)
3573                 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3574
3575         uaddr = __x86_set_memory_region(kvm,
3576                                         IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3577                                         kvm_vmx->ept_identity_map_addr,
3578                                         PAGE_SIZE);
3579         if (IS_ERR(uaddr)) {
3580                 r = PTR_ERR(uaddr);
3581                 goto out;
3582         }
3583
3584         /* Set up identity-mapping pagetable for EPT in real mode */
3585         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3586                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3587                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3588                 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3589                         r = -EFAULT;
3590                         goto out;
3591                 }
3592         }
3593         kvm_vmx->ept_identity_pagetable_done = true;
3594
3595 out:
3596         mutex_unlock(&kvm->slots_lock);
3597         return r;
3598 }
3599
3600 static void seg_setup(int seg)
3601 {
3602         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3603         unsigned int ar;
3604
3605         vmcs_write16(sf->selector, 0);
3606         vmcs_writel(sf->base, 0);
3607         vmcs_write32(sf->limit, 0xffff);
3608         ar = 0x93;
3609         if (seg == VCPU_SREG_CS)
3610                 ar |= 0x08; /* code segment */
3611
3612         vmcs_write32(sf->ar_bytes, ar);
3613 }
3614
3615 static int alloc_apic_access_page(struct kvm *kvm)
3616 {
3617         struct page *page;
3618         void __user *hva;
3619         int ret = 0;
3620
3621         mutex_lock(&kvm->slots_lock);
3622         if (kvm->arch.apic_access_memslot_enabled)
3623                 goto out;
3624         hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3625                                       APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3626         if (IS_ERR(hva)) {
3627                 ret = PTR_ERR(hva);
3628                 goto out;
3629         }
3630
3631         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3632         if (is_error_page(page)) {
3633                 ret = -EFAULT;
3634                 goto out;
3635         }
3636
3637         /*
3638          * Do not pin the page in memory, so that memory hot-unplug
3639          * is able to migrate it.
3640          */
3641         put_page(page);
3642         kvm->arch.apic_access_memslot_enabled = true;
3643 out:
3644         mutex_unlock(&kvm->slots_lock);
3645         return ret;
3646 }
3647
3648 int allocate_vpid(void)
3649 {
3650         int vpid;
3651
3652         if (!enable_vpid)
3653                 return 0;
3654         spin_lock(&vmx_vpid_lock);
3655         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3656         if (vpid < VMX_NR_VPIDS)
3657                 __set_bit(vpid, vmx_vpid_bitmap);
3658         else
3659                 vpid = 0;
3660         spin_unlock(&vmx_vpid_lock);
3661         return vpid;
3662 }
3663
3664 void free_vpid(int vpid)
3665 {
3666         if (!enable_vpid || vpid == 0)
3667                 return;
3668         spin_lock(&vmx_vpid_lock);
3669         __clear_bit(vpid, vmx_vpid_bitmap);
3670         spin_unlock(&vmx_vpid_lock);
3671 }
3672
3673 static void vmx_clear_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3674 {
3675         int f = sizeof(unsigned long);
3676
3677         if (msr <= 0x1fff)
3678                 __clear_bit(msr, msr_bitmap + 0x000 / f);
3679         else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3680                 __clear_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3681 }
3682
3683 static void vmx_clear_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3684 {
3685         int f = sizeof(unsigned long);
3686
3687         if (msr <= 0x1fff)
3688                 __clear_bit(msr, msr_bitmap + 0x800 / f);
3689         else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3690                 __clear_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3691 }
3692
3693 static void vmx_set_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3694 {
3695         int f = sizeof(unsigned long);
3696
3697         if (msr <= 0x1fff)
3698                 __set_bit(msr, msr_bitmap + 0x000 / f);
3699         else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3700                 __set_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3701 }
3702
3703 static void vmx_set_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3704 {
3705         int f = sizeof(unsigned long);
3706
3707         if (msr <= 0x1fff)
3708                 __set_bit(msr, msr_bitmap + 0x800 / f);
3709         else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3710                 __set_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3711 }
3712
3713 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3714 {
3715         struct vcpu_vmx *vmx = to_vmx(vcpu);
3716         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3717
3718         if (!cpu_has_vmx_msr_bitmap())
3719                 return;
3720
3721         if (static_branch_unlikely(&enable_evmcs))
3722                 evmcs_touch_msr_bitmap();
3723
3724         /*
3725          * Mark the desired intercept state in shadow bitmap, this is needed
3726          * for resync when the MSR filters change.
3727         */
3728         if (is_valid_passthrough_msr(msr)) {
3729                 int idx = possible_passthrough_msr_slot(msr);
3730
3731                 if (idx != -ENOENT) {
3732                         if (type & MSR_TYPE_R)
3733                                 clear_bit(idx, vmx->shadow_msr_intercept.read);
3734                         if (type & MSR_TYPE_W)
3735                                 clear_bit(idx, vmx->shadow_msr_intercept.write);
3736                 }
3737         }
3738
3739         if ((type & MSR_TYPE_R) &&
3740             !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3741                 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3742                 type &= ~MSR_TYPE_R;
3743         }
3744
3745         if ((type & MSR_TYPE_W) &&
3746             !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3747                 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3748                 type &= ~MSR_TYPE_W;
3749         }
3750
3751         if (type & MSR_TYPE_R)
3752                 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3753
3754         if (type & MSR_TYPE_W)
3755                 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3756 }
3757
3758 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3759 {
3760         struct vcpu_vmx *vmx = to_vmx(vcpu);
3761         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3762
3763         if (!cpu_has_vmx_msr_bitmap())
3764                 return;
3765
3766         if (static_branch_unlikely(&enable_evmcs))
3767                 evmcs_touch_msr_bitmap();
3768
3769         /*
3770          * Mark the desired intercept state in shadow bitmap, this is needed
3771          * for resync when the MSR filter changes.
3772         */
3773         if (is_valid_passthrough_msr(msr)) {
3774                 int idx = possible_passthrough_msr_slot(msr);
3775
3776                 if (idx != -ENOENT) {
3777                         if (type & MSR_TYPE_R)
3778                                 set_bit(idx, vmx->shadow_msr_intercept.read);
3779                         if (type & MSR_TYPE_W)
3780                                 set_bit(idx, vmx->shadow_msr_intercept.write);
3781                 }
3782         }
3783
3784         if (type & MSR_TYPE_R)
3785                 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3786
3787         if (type & MSR_TYPE_W)
3788                 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3789 }
3790
3791 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3792 {
3793         u8 mode = 0;
3794
3795         if (cpu_has_secondary_exec_ctrls() &&
3796             (secondary_exec_controls_get(to_vmx(vcpu)) &
3797              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3798                 mode |= MSR_BITMAP_MODE_X2APIC;
3799                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3800                         mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3801         }
3802
3803         return mode;
3804 }
3805
3806 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3807 {
3808         unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3809         unsigned long read_intercept;
3810         int msr;
3811
3812         read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3813
3814         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3815                 unsigned int read_idx = msr / BITS_PER_LONG;
3816                 unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3817
3818                 msr_bitmap[read_idx] = read_intercept;
3819                 msr_bitmap[write_idx] = ~0ul;
3820         }
3821 }
3822
3823 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu, u8 mode)
3824 {
3825         if (!cpu_has_vmx_msr_bitmap())
3826                 return;
3827
3828         vmx_reset_x2apic_msrs(vcpu, mode);
3829
3830         /*
3831          * TPR reads and writes can be virtualized even if virtual interrupt
3832          * delivery is not in use.
3833          */
3834         vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3835                                   !(mode & MSR_BITMAP_MODE_X2APIC));
3836
3837         if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3838                 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3839                 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3840                 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3841         }
3842 }
3843
3844 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3845 {
3846         struct vcpu_vmx *vmx = to_vmx(vcpu);
3847         u8 mode = vmx_msr_bitmap_mode(vcpu);
3848         u8 changed = mode ^ vmx->msr_bitmap_mode;
3849
3850         if (!changed)
3851                 return;
3852
3853         if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3854                 vmx_update_msr_bitmap_x2apic(vcpu, mode);
3855
3856         vmx->msr_bitmap_mode = mode;
3857 }
3858
3859 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3860 {
3861         struct vcpu_vmx *vmx = to_vmx(vcpu);
3862         bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3863         u32 i;
3864
3865         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3866         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3867         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3868         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3869         for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3870                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3871                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3872         }
3873 }
3874
3875 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3876 {
3877         struct vcpu_vmx *vmx = to_vmx(vcpu);
3878         void *vapic_page;
3879         u32 vppr;
3880         int rvi;
3881
3882         if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3883                 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3884                 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3885                 return false;
3886
3887         rvi = vmx_get_rvi();
3888
3889         vapic_page = vmx->nested.virtual_apic_map.hva;
3890         vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3891
3892         return ((rvi & 0xf0) > (vppr & 0xf0));
3893 }
3894
3895 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
3896 {
3897         struct vcpu_vmx *vmx = to_vmx(vcpu);
3898         u32 i;
3899
3900         /*
3901          * Set intercept permissions for all potentially passed through MSRs
3902          * again. They will automatically get filtered through the MSR filter,
3903          * so we are back in sync after this.
3904          */
3905         for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
3906                 u32 msr = vmx_possible_passthrough_msrs[i];
3907                 bool read = test_bit(i, vmx->shadow_msr_intercept.read);
3908                 bool write = test_bit(i, vmx->shadow_msr_intercept.write);
3909
3910                 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read);
3911                 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write);
3912         }
3913
3914         pt_update_intercept_for_msr(vcpu);
3915         vmx_update_msr_bitmap_x2apic(vcpu, vmx_msr_bitmap_mode(vcpu));
3916 }
3917
3918 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3919                                                      bool nested)
3920 {
3921 #ifdef CONFIG_SMP
3922         int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3923
3924         if (vcpu->mode == IN_GUEST_MODE) {
3925                 /*
3926                  * The vector of interrupt to be delivered to vcpu had
3927                  * been set in PIR before this function.
3928                  *
3929                  * Following cases will be reached in this block, and
3930                  * we always send a notification event in all cases as
3931                  * explained below.
3932                  *
3933                  * Case 1: vcpu keeps in non-root mode. Sending a
3934                  * notification event posts the interrupt to vcpu.
3935                  *
3936                  * Case 2: vcpu exits to root mode and is still
3937                  * runnable. PIR will be synced to vIRR before the
3938                  * next vcpu entry. Sending a notification event in
3939                  * this case has no effect, as vcpu is not in root
3940                  * mode.
3941                  *
3942                  * Case 3: vcpu exits to root mode and is blocked.
3943                  * vcpu_block() has already synced PIR to vIRR and
3944                  * never blocks vcpu if vIRR is not cleared. Therefore,
3945                  * a blocked vcpu here does not wait for any requested
3946                  * interrupts in PIR, and sending a notification event
3947                  * which has no effect is safe here.
3948                  */
3949
3950                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3951                 return true;
3952         }
3953 #endif
3954         return false;
3955 }
3956
3957 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3958                                                 int vector)
3959 {
3960         struct vcpu_vmx *vmx = to_vmx(vcpu);
3961
3962         if (is_guest_mode(vcpu) &&
3963             vector == vmx->nested.posted_intr_nv) {
3964                 /*
3965                  * If a posted intr is not recognized by hardware,
3966                  * we will accomplish it in the next vmentry.
3967                  */
3968                 vmx->nested.pi_pending = true;
3969                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3970                 /* the PIR and ON have been set by L1. */
3971                 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3972                         kvm_vcpu_kick(vcpu);
3973                 return 0;
3974         }
3975         return -1;
3976 }
3977 /*
3978  * Send interrupt to vcpu via posted interrupt way.
3979  * 1. If target vcpu is running(non-root mode), send posted interrupt
3980  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3981  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3982  * interrupt from PIR in next vmentry.
3983  */
3984 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3985 {
3986         struct vcpu_vmx *vmx = to_vmx(vcpu);
3987         int r;
3988
3989         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3990         if (!r)
3991                 return 0;
3992
3993         if (!vcpu->arch.apicv_active)
3994                 return -1;
3995
3996         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3997                 return 0;
3998
3999         /* If a previous notification has sent the IPI, nothing to do.  */
4000         if (pi_test_and_set_on(&vmx->pi_desc))
4001                 return 0;
4002
4003         if (vcpu != kvm_get_running_vcpu() &&
4004             !kvm_vcpu_trigger_posted_interrupt(vcpu, false))
4005                 kvm_vcpu_kick(vcpu);
4006
4007         return 0;
4008 }
4009
4010 /*
4011  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4012  * will not change in the lifetime of the guest.
4013  * Note that host-state that does change is set elsewhere. E.g., host-state
4014  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4015  */
4016 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4017 {
4018         u32 low32, high32;
4019         unsigned long tmpl;
4020         unsigned long cr0, cr3, cr4;
4021
4022         cr0 = read_cr0();
4023         WARN_ON(cr0 & X86_CR0_TS);
4024         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4025
4026         /*
4027          * Save the most likely value for this task's CR3 in the VMCS.
4028          * We can't use __get_current_cr3_fast() because we're not atomic.
4029          */
4030         cr3 = __read_cr3();
4031         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
4032         vmx->loaded_vmcs->host_state.cr3 = cr3;
4033
4034         /* Save the most likely value for this task's CR4 in the VMCS. */
4035         cr4 = cr4_read_shadow();
4036         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
4037         vmx->loaded_vmcs->host_state.cr4 = cr4;
4038
4039         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4040 #ifdef CONFIG_X86_64
4041         /*
4042          * Load null selectors, so we can avoid reloading them in
4043          * vmx_prepare_switch_to_host(), in case userspace uses
4044          * the null selectors too (the expected case).
4045          */
4046         vmcs_write16(HOST_DS_SELECTOR, 0);
4047         vmcs_write16(HOST_ES_SELECTOR, 0);
4048 #else
4049         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4050         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4051 #endif
4052         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4053         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4054
4055         vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4056
4057         vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4058
4059         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4060         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4061         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4062         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4063
4064         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4065                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4066                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4067         }
4068
4069         if (cpu_has_load_ia32_efer())
4070                 vmcs_write64(HOST_IA32_EFER, host_efer);
4071 }
4072
4073 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4074 {
4075         struct kvm_vcpu *vcpu = &vmx->vcpu;
4076
4077         vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4078                                           ~vcpu->arch.cr4_guest_rsvd_bits;
4079         if (!enable_ept)
4080                 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE;
4081         if (is_guest_mode(&vmx->vcpu))
4082                 vcpu->arch.cr4_guest_owned_bits &=
4083                         ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4084         vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4085 }
4086
4087 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4088 {
4089         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4090
4091         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4092                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4093
4094         if (!enable_vnmi)
4095                 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4096
4097         if (!enable_preemption_timer)
4098                 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4099
4100         return pin_based_exec_ctrl;
4101 }
4102
4103 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4104 {
4105         struct vcpu_vmx *vmx = to_vmx(vcpu);
4106
4107         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4108         if (cpu_has_secondary_exec_ctrls()) {
4109                 if (kvm_vcpu_apicv_active(vcpu))
4110                         secondary_exec_controls_setbit(vmx,
4111                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4112                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4113                 else
4114                         secondary_exec_controls_clearbit(vmx,
4115                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
4116                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4117         }
4118
4119         if (cpu_has_vmx_msr_bitmap())
4120                 vmx_update_msr_bitmap(vcpu);
4121 }
4122
4123 u32 vmx_exec_control(struct vcpu_vmx *vmx)
4124 {
4125         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4126
4127         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4128                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4129
4130         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4131                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4132 #ifdef CONFIG_X86_64
4133                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4134                                 CPU_BASED_CR8_LOAD_EXITING;
4135 #endif
4136         }
4137         if (!enable_ept)
4138                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4139                                 CPU_BASED_CR3_LOAD_EXITING  |
4140                                 CPU_BASED_INVLPG_EXITING;
4141         if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4142                 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4143                                 CPU_BASED_MONITOR_EXITING);
4144         if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4145                 exec_control &= ~CPU_BASED_HLT_EXITING;
4146         return exec_control;
4147 }
4148
4149 /*
4150  * Adjust a single secondary execution control bit to intercept/allow an
4151  * instruction in the guest.  This is usually done based on whether or not a
4152  * feature has been exposed to the guest in order to correctly emulate faults.
4153  */
4154 static inline void
4155 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4156                                   u32 control, bool enabled, bool exiting)
4157 {
4158         /*
4159          * If the control is for an opt-in feature, clear the control if the
4160          * feature is not exposed to the guest, i.e. not enabled.  If the
4161          * control is opt-out, i.e. an exiting control, clear the control if
4162          * the feature _is_ exposed to the guest, i.e. exiting/interception is
4163          * disabled for the associated instruction.  Note, the caller is
4164          * responsible presetting exec_control to set all supported bits.
4165          */
4166         if (enabled == exiting)
4167                 *exec_control &= ~control;
4168
4169         /*
4170          * Update the nested MSR settings so that a nested VMM can/can't set
4171          * controls for features that are/aren't exposed to the guest.
4172          */
4173         if (nested) {
4174                 if (enabled)
4175                         vmx->nested.msrs.secondary_ctls_high |= control;
4176                 else
4177                         vmx->nested.msrs.secondary_ctls_high &= ~control;
4178         }
4179 }
4180
4181 /*
4182  * Wrapper macro for the common case of adjusting a secondary execution control
4183  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4184  * verifies that the control is actually supported by KVM and hardware.
4185  */
4186 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4187 ({                                                                       \
4188         bool __enabled;                                                  \
4189                                                                          \
4190         if (cpu_has_vmx_##name()) {                                      \
4191                 __enabled = guest_cpuid_has(&(vmx)->vcpu,                \
4192                                             X86_FEATURE_##feat_name);    \
4193                 vmx_adjust_secondary_exec_control(vmx, exec_control,     \
4194                         SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4195         }                                                                \
4196 })
4197
4198 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4199 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4200         vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4201
4202 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4203         vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4204
4205 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4206 {
4207         struct kvm_vcpu *vcpu = &vmx->vcpu;
4208
4209         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4210
4211         if (vmx_pt_mode_is_system())
4212                 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4213         if (!cpu_need_virtualize_apic_accesses(vcpu))
4214                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4215         if (vmx->vpid == 0)
4216                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4217         if (!enable_ept) {
4218                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4219                 enable_unrestricted_guest = 0;
4220         }
4221         if (!enable_unrestricted_guest)
4222                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4223         if (kvm_pause_in_guest(vmx->vcpu.kvm))
4224                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4225         if (!kvm_vcpu_apicv_active(vcpu))
4226                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4227                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4228         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4229
4230         /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4231          * in vmx_set_cr4.  */
4232         exec_control &= ~SECONDARY_EXEC_DESC;
4233
4234         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4235            (handle_vmptrld).
4236            We can NOT enable shadow_vmcs here because we don't have yet
4237            a current VMCS12
4238         */
4239         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4240
4241         /*
4242          * PML is enabled/disabled when dirty logging of memsmlots changes, but
4243          * it needs to be set here when dirty logging is already active, e.g.
4244          * if this vCPU was created after dirty logging was enabled.
4245          */
4246         if (!vcpu->kvm->arch.cpu_dirty_logging_count)
4247                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4248
4249         if (cpu_has_vmx_xsaves()) {
4250                 /* Exposing XSAVES only when XSAVE is exposed */
4251                 bool xsaves_enabled =
4252                         boot_cpu_has(X86_FEATURE_XSAVE) &&
4253                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4254                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4255
4256                 vcpu->arch.xsaves_enabled = xsaves_enabled;
4257
4258                 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4259                                                   SECONDARY_EXEC_XSAVES,
4260                                                   xsaves_enabled, false);
4261         }
4262
4263         /*
4264          * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4265          * feature is exposed to the guest.  This creates a virtualization hole
4266          * if both are supported in hardware but only one is exposed to the
4267          * guest, but letting the guest execute RDTSCP or RDPID when either one
4268          * is advertised is preferable to emulating the advertised instruction
4269          * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4270          */
4271         if (cpu_has_vmx_rdtscp()) {
4272                 bool rdpid_or_rdtscp_enabled =
4273                         guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4274                         guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4275
4276                 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4277                                                   SECONDARY_EXEC_ENABLE_RDTSCP,
4278                                                   rdpid_or_rdtscp_enabled, false);
4279         }
4280         vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4281
4282         vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4283         vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4284
4285         vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4286                                     ENABLE_USR_WAIT_PAUSE, false);
4287
4288         if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4289                 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4290
4291         vmx->secondary_exec_control = exec_control;
4292 }
4293
4294 #define VMX_XSS_EXIT_BITMAP 0
4295
4296 /*
4297  * Noting that the initialization of Guest-state Area of VMCS is in
4298  * vmx_vcpu_reset().
4299  */
4300 static void init_vmcs(struct vcpu_vmx *vmx)
4301 {
4302         if (nested)
4303                 nested_vmx_set_vmcs_shadowing_bitmap();
4304
4305         if (cpu_has_vmx_msr_bitmap())
4306                 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4307
4308         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4309
4310         /* Control */
4311         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4312
4313         exec_controls_set(vmx, vmx_exec_control(vmx));
4314
4315         if (cpu_has_secondary_exec_ctrls()) {
4316                 vmx_compute_secondary_exec_control(vmx);
4317                 secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4318         }
4319
4320         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4321                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4322                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4323                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4324                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4325
4326                 vmcs_write16(GUEST_INTR_STATUS, 0);
4327
4328                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4329                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4330         }
4331
4332         if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4333                 vmcs_write32(PLE_GAP, ple_gap);
4334                 vmx->ple_window = ple_window;
4335                 vmx->ple_window_dirty = true;
4336         }
4337
4338         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4339         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4340         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4341
4342         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4343         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4344         vmx_set_constant_host_state(vmx);
4345         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4346         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4347
4348         if (cpu_has_vmx_vmfunc())
4349                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4350
4351         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4352         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4353         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4354         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4355         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4356
4357         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4358                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4359
4360         vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4361
4362         /* 22.2.1, 20.8.1 */
4363         vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4364
4365         vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4366         vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4367
4368         set_cr4_guest_host_mask(vmx);
4369
4370         if (vmx->vpid != 0)
4371                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4372
4373         if (cpu_has_vmx_xsaves())
4374                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4375
4376         if (enable_pml) {
4377                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4378                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4379         }
4380
4381         vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4382
4383         if (vmx_pt_mode_is_host_guest()) {
4384                 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4385                 /* Bit[6~0] are forced to 1, writes are ignored. */
4386                 vmx->pt_desc.guest.output_mask = 0x7F;
4387                 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4388         }
4389 }
4390
4391 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4392 {
4393         struct vcpu_vmx *vmx = to_vmx(vcpu);
4394         struct msr_data apic_base_msr;
4395         u32 eax, dummy;
4396         u64 cr0;
4397
4398         vmx->rmode.vm86_active = 0;
4399         vmx->spec_ctrl = 0;
4400
4401         vmx->msr_ia32_umwait_control = 0;
4402
4403         eax = 1;
4404         if (!kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true))
4405                 eax = get_rdx_init_val();
4406         kvm_rdx_write(vcpu, eax);
4407
4408         vmx->hv_deadline_tsc = -1;
4409         kvm_set_cr8(vcpu, 0);
4410
4411         if (!init_event) {
4412                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4413                                      MSR_IA32_APICBASE_ENABLE;
4414                 if (kvm_vcpu_is_reset_bsp(vcpu))
4415                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4416                 apic_base_msr.host_initiated = true;
4417                 kvm_set_apic_base(vcpu, &apic_base_msr);
4418         }
4419
4420         vmx_segment_cache_clear(vmx);
4421
4422         seg_setup(VCPU_SREG_CS);
4423         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4424         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4425
4426         seg_setup(VCPU_SREG_DS);
4427         seg_setup(VCPU_SREG_ES);
4428         seg_setup(VCPU_SREG_FS);
4429         seg_setup(VCPU_SREG_GS);
4430         seg_setup(VCPU_SREG_SS);
4431
4432         vmcs_write16(GUEST_TR_SELECTOR, 0);
4433         vmcs_writel(GUEST_TR_BASE, 0);
4434         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4435         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4436
4437         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4438         vmcs_writel(GUEST_LDTR_BASE, 0);
4439         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4440         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4441
4442         if (!init_event) {
4443                 vmcs_write32(GUEST_SYSENTER_CS, 0);
4444                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4445                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4446                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4447         }
4448
4449         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4450         kvm_rip_write(vcpu, 0xfff0);
4451
4452         vmcs_writel(GUEST_GDTR_BASE, 0);
4453         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4454
4455         vmcs_writel(GUEST_IDTR_BASE, 0);
4456         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4457
4458         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4459         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4460         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4461         if (kvm_mpx_supported())
4462                 vmcs_write64(GUEST_BNDCFGS, 0);
4463
4464         setup_msrs(vmx);
4465
4466         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4467
4468         if (cpu_has_vmx_tpr_shadow() && !init_event) {
4469                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4470                 if (cpu_need_tpr_shadow(vcpu))
4471                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4472                                      __pa(vcpu->arch.apic->regs));
4473                 vmcs_write32(TPR_THRESHOLD, 0);
4474         }
4475
4476         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4477
4478         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4479         vmx->vcpu.arch.cr0 = cr0;
4480         vmx_set_cr0(vcpu, cr0); /* enter rmode */
4481         vmx_set_cr4(vcpu, 0);
4482         vmx_set_efer(vcpu, 0);
4483
4484         vmx_update_exception_bitmap(vcpu);
4485
4486         vpid_sync_context(vmx->vpid);
4487         if (init_event)
4488                 vmx_clear_hlt(vcpu);
4489 }
4490
4491 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4492 {
4493         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4494 }
4495
4496 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4497 {
4498         if (!enable_vnmi ||
4499             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4500                 vmx_enable_irq_window(vcpu);
4501                 return;
4502         }
4503
4504         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4505 }
4506
4507 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4508 {
4509         struct vcpu_vmx *vmx = to_vmx(vcpu);
4510         uint32_t intr;
4511         int irq = vcpu->arch.interrupt.nr;
4512
4513         trace_kvm_inj_virq(irq);
4514
4515         ++vcpu->stat.irq_injections;
4516         if (vmx->rmode.vm86_active) {
4517                 int inc_eip = 0;
4518                 if (vcpu->arch.interrupt.soft)
4519                         inc_eip = vcpu->arch.event_exit_inst_len;
4520                 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4521                 return;
4522         }
4523         intr = irq | INTR_INFO_VALID_MASK;
4524         if (vcpu->arch.interrupt.soft) {
4525                 intr |= INTR_TYPE_SOFT_INTR;
4526                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4527                              vmx->vcpu.arch.event_exit_inst_len);
4528         } else
4529                 intr |= INTR_TYPE_EXT_INTR;
4530         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4531
4532         vmx_clear_hlt(vcpu);
4533 }
4534
4535 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4536 {
4537         struct vcpu_vmx *vmx = to_vmx(vcpu);
4538
4539         if (!enable_vnmi) {
4540                 /*
4541                  * Tracking the NMI-blocked state in software is built upon
4542                  * finding the next open IRQ window. This, in turn, depends on
4543                  * well-behaving guests: They have to keep IRQs disabled at
4544                  * least as long as the NMI handler runs. Otherwise we may
4545                  * cause NMI nesting, maybe breaking the guest. But as this is
4546                  * highly unlikely, we can live with the residual risk.
4547                  */
4548                 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4549                 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4550         }
4551
4552         ++vcpu->stat.nmi_injections;
4553         vmx->loaded_vmcs->nmi_known_unmasked = false;
4554
4555         if (vmx->rmode.vm86_active) {
4556                 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4557                 return;
4558         }
4559
4560         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4561                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4562
4563         vmx_clear_hlt(vcpu);
4564 }
4565
4566 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4567 {
4568         struct vcpu_vmx *vmx = to_vmx(vcpu);
4569         bool masked;
4570
4571         if (!enable_vnmi)
4572                 return vmx->loaded_vmcs->soft_vnmi_blocked;
4573         if (vmx->loaded_vmcs->nmi_known_unmasked)
4574                 return false;
4575         masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4576         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4577         return masked;
4578 }
4579
4580 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4581 {
4582         struct vcpu_vmx *vmx = to_vmx(vcpu);
4583
4584         if (!enable_vnmi) {
4585                 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4586                         vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4587                         vmx->loaded_vmcs->vnmi_blocked_time = 0;
4588                 }
4589         } else {
4590                 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4591                 if (masked)
4592                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4593                                       GUEST_INTR_STATE_NMI);
4594                 else
4595                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4596                                         GUEST_INTR_STATE_NMI);
4597         }
4598 }
4599
4600 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4601 {
4602         if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4603                 return false;
4604
4605         if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4606                 return true;
4607
4608         return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4609                 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4610                  GUEST_INTR_STATE_NMI));
4611 }
4612
4613 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4614 {
4615         if (to_vmx(vcpu)->nested.nested_run_pending)
4616                 return -EBUSY;
4617
4618         /* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
4619         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4620                 return -EBUSY;
4621
4622         return !vmx_nmi_blocked(vcpu);
4623 }
4624
4625 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4626 {
4627         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4628                 return false;
4629
4630         return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4631                (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4632                 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4633 }
4634
4635 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4636 {
4637         if (to_vmx(vcpu)->nested.nested_run_pending)
4638                 return -EBUSY;
4639
4640        /*
4641         * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4642         * e.g. if the IRQ arrived asynchronously after checking nested events.
4643         */
4644         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4645                 return -EBUSY;
4646
4647         return !vmx_interrupt_blocked(vcpu);
4648 }
4649
4650 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4651 {
4652         void __user *ret;
4653
4654         if (enable_unrestricted_guest)
4655                 return 0;
4656
4657         mutex_lock(&kvm->slots_lock);
4658         ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4659                                       PAGE_SIZE * 3);
4660         mutex_unlock(&kvm->slots_lock);
4661
4662         if (IS_ERR(ret))
4663                 return PTR_ERR(ret);
4664
4665         to_kvm_vmx(kvm)->tss_addr = addr;
4666
4667         return init_rmode_tss(kvm, ret);
4668 }
4669
4670 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4671 {
4672         to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4673         return 0;
4674 }
4675
4676 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4677 {
4678         switch (vec) {
4679         case BP_VECTOR:
4680                 /*
4681                  * Update instruction length as we may reinject the exception
4682                  * from user space while in guest debugging mode.
4683                  */
4684                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4685                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4686                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4687                         return false;
4688                 fallthrough;
4689         case DB_VECTOR:
4690                 return !(vcpu->guest_debug &
4691                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4692         case DE_VECTOR:
4693         case OF_VECTOR:
4694         case BR_VECTOR:
4695         case UD_VECTOR:
4696         case DF_VECTOR:
4697         case SS_VECTOR:
4698         case GP_VECTOR:
4699         case MF_VECTOR:
4700                 return true;
4701         }
4702         return false;
4703 }
4704
4705 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4706                                   int vec, u32 err_code)
4707 {
4708         /*
4709          * Instruction with address size override prefix opcode 0x67
4710          * Cause the #SS fault with 0 error code in VM86 mode.
4711          */
4712         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4713                 if (kvm_emulate_instruction(vcpu, 0)) {
4714                         if (vcpu->arch.halt_request) {
4715                                 vcpu->arch.halt_request = 0;
4716                                 return kvm_vcpu_halt(vcpu);
4717                         }
4718                         return 1;
4719                 }
4720                 return 0;
4721         }
4722
4723         /*
4724          * Forward all other exceptions that are valid in real mode.
4725          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4726          *        the required debugging infrastructure rework.
4727          */
4728         kvm_queue_exception(vcpu, vec);
4729         return 1;
4730 }
4731
4732 static int handle_machine_check(struct kvm_vcpu *vcpu)
4733 {
4734         /* handled by vmx_vcpu_run() */
4735         return 1;
4736 }
4737
4738 /*
4739  * If the host has split lock detection disabled, then #AC is
4740  * unconditionally injected into the guest, which is the pre split lock
4741  * detection behaviour.
4742  *
4743  * If the host has split lock detection enabled then #AC is
4744  * only injected into the guest when:
4745  *  - Guest CPL == 3 (user mode)
4746  *  - Guest has #AC detection enabled in CR0
4747  *  - Guest EFLAGS has AC bit set
4748  */
4749 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
4750 {
4751         if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4752                 return true;
4753
4754         return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4755                (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4756 }
4757
4758 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4759 {
4760         struct vcpu_vmx *vmx = to_vmx(vcpu);
4761         struct kvm_run *kvm_run = vcpu->run;
4762         u32 intr_info, ex_no, error_code;
4763         unsigned long cr2, dr6;
4764         u32 vect_info;
4765
4766         vect_info = vmx->idt_vectoring_info;
4767         intr_info = vmx_get_intr_info(vcpu);
4768
4769         if (is_machine_check(intr_info) || is_nmi(intr_info))
4770                 return 1; /* handled by handle_exception_nmi_irqoff() */
4771
4772         if (is_invalid_opcode(intr_info))
4773                 return handle_ud(vcpu);
4774
4775         error_code = 0;
4776         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4777                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4778
4779         if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4780                 WARN_ON_ONCE(!enable_vmware_backdoor);
4781
4782                 /*
4783                  * VMware backdoor emulation on #GP interception only handles
4784                  * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4785                  * error code on #GP.
4786                  */
4787                 if (error_code) {
4788                         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4789                         return 1;
4790                 }
4791                 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4792         }
4793
4794         /*
4795          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4796          * MMIO, it is better to report an internal error.
4797          * See the comments in vmx_handle_exit.
4798          */
4799         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4800             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4801                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4802                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4803                 vcpu->run->internal.ndata = 4;
4804                 vcpu->run->internal.data[0] = vect_info;
4805                 vcpu->run->internal.data[1] = intr_info;
4806                 vcpu->run->internal.data[2] = error_code;
4807                 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
4808                 return 0;
4809         }
4810
4811         if (is_page_fault(intr_info)) {
4812                 cr2 = vmx_get_exit_qual(vcpu);
4813                 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
4814                         /*
4815                          * EPT will cause page fault only if we need to
4816                          * detect illegal GPAs.
4817                          */
4818                         WARN_ON_ONCE(!allow_smaller_maxphyaddr);
4819                         kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
4820                         return 1;
4821                 } else
4822                         return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4823         }
4824
4825         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4826
4827         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4828                 return handle_rmode_exception(vcpu, ex_no, error_code);
4829
4830         switch (ex_no) {
4831         case DB_VECTOR:
4832                 dr6 = vmx_get_exit_qual(vcpu);
4833                 if (!(vcpu->guest_debug &
4834                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4835                         if (is_icebp(intr_info))
4836                                 WARN_ON(!skip_emulated_instruction(vcpu));
4837
4838                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4839                         return 1;
4840                 }
4841                 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
4842                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4843                 fallthrough;
4844         case BP_VECTOR:
4845                 /*
4846                  * Update instruction length as we may reinject #BP from
4847                  * user space while in guest debugging mode. Reading it for
4848                  * #DB as well causes no harm, it is not used in that case.
4849                  */
4850                 vmx->vcpu.arch.event_exit_inst_len =
4851                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4852                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4853                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4854                 kvm_run->debug.arch.exception = ex_no;
4855                 break;
4856         case AC_VECTOR:
4857                 if (vmx_guest_inject_ac(vcpu)) {
4858                         kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4859                         return 1;
4860                 }
4861
4862                 /*
4863                  * Handle split lock. Depending on detection mode this will
4864                  * either warn and disable split lock detection for this
4865                  * task or force SIGBUS on it.
4866                  */
4867                 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4868                         return 1;
4869                 fallthrough;
4870         default:
4871                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4872                 kvm_run->ex.exception = ex_no;
4873                 kvm_run->ex.error_code = error_code;
4874                 break;
4875         }
4876         return 0;
4877 }
4878
4879 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4880 {
4881         ++vcpu->stat.irq_exits;
4882         return 1;
4883 }
4884
4885 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4886 {
4887         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4888         vcpu->mmio_needed = 0;
4889         return 0;
4890 }
4891
4892 static int handle_io(struct kvm_vcpu *vcpu)
4893 {
4894         unsigned long exit_qualification;
4895         int size, in, string;
4896         unsigned port;
4897
4898         exit_qualification = vmx_get_exit_qual(vcpu);
4899         string = (exit_qualification & 16) != 0;
4900
4901         ++vcpu->stat.io_exits;
4902
4903         if (string)
4904                 return kvm_emulate_instruction(vcpu, 0);
4905
4906         port = exit_qualification >> 16;
4907         size = (exit_qualification & 7) + 1;
4908         in = (exit_qualification & 8) != 0;
4909
4910         return kvm_fast_pio(vcpu, size, port, in);
4911 }
4912
4913 static void
4914 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4915 {
4916         /*
4917          * Patch in the VMCALL instruction:
4918          */
4919         hypercall[0] = 0x0f;
4920         hypercall[1] = 0x01;
4921         hypercall[2] = 0xc1;
4922 }
4923
4924 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4925 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4926 {
4927         if (is_guest_mode(vcpu)) {
4928                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4929                 unsigned long orig_val = val;
4930
4931                 /*
4932                  * We get here when L2 changed cr0 in a way that did not change
4933                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4934                  * but did change L0 shadowed bits. So we first calculate the
4935                  * effective cr0 value that L1 would like to write into the
4936                  * hardware. It consists of the L2-owned bits from the new
4937                  * value combined with the L1-owned bits from L1's guest_cr0.
4938                  */
4939                 val = (val & ~vmcs12->cr0_guest_host_mask) |
4940                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4941
4942                 if (!nested_guest_cr0_valid(vcpu, val))
4943                         return 1;
4944
4945                 if (kvm_set_cr0(vcpu, val))
4946                         return 1;
4947                 vmcs_writel(CR0_READ_SHADOW, orig_val);
4948                 return 0;
4949         } else {
4950                 if (to_vmx(vcpu)->nested.vmxon &&
4951                     !nested_host_cr0_valid(vcpu, val))
4952                         return 1;
4953
4954                 return kvm_set_cr0(vcpu, val);
4955         }
4956 }
4957
4958 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4959 {
4960         if (is_guest_mode(vcpu)) {
4961                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4962                 unsigned long orig_val = val;
4963
4964                 /* analogously to handle_set_cr0 */
4965                 val = (val & ~vmcs12->cr4_guest_host_mask) |
4966                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4967                 if (kvm_set_cr4(vcpu, val))
4968                         return 1;
4969                 vmcs_writel(CR4_READ_SHADOW, orig_val);
4970                 return 0;
4971         } else
4972                 return kvm_set_cr4(vcpu, val);
4973 }
4974
4975 static int handle_desc(struct kvm_vcpu *vcpu)
4976 {
4977         WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4978         return kvm_emulate_instruction(vcpu, 0);
4979 }
4980
4981 static int handle_cr(struct kvm_vcpu *vcpu)
4982 {
4983         unsigned long exit_qualification, val;
4984         int cr;
4985         int reg;
4986         int err;
4987         int ret;
4988
4989         exit_qualification = vmx_get_exit_qual(vcpu);
4990         cr = exit_qualification & 15;
4991         reg = (exit_qualification >> 8) & 15;
4992         switch ((exit_qualification >> 4) & 3) {
4993         case 0: /* mov to cr */
4994                 val = kvm_register_read(vcpu, reg);
4995                 trace_kvm_cr_write(cr, val);
4996                 switch (cr) {
4997                 case 0:
4998                         err = handle_set_cr0(vcpu, val);
4999                         return kvm_complete_insn_gp(vcpu, err);
5000                 case 3:
5001                         WARN_ON_ONCE(enable_unrestricted_guest);
5002
5003                         err = kvm_set_cr3(vcpu, val);
5004                         return kvm_complete_insn_gp(vcpu, err);
5005                 case 4:
5006                         err = handle_set_cr4(vcpu, val);
5007                         return kvm_complete_insn_gp(vcpu, err);
5008                 case 8: {
5009                                 u8 cr8_prev = kvm_get_cr8(vcpu);
5010                                 u8 cr8 = (u8)val;
5011                                 err = kvm_set_cr8(vcpu, cr8);
5012                                 ret = kvm_complete_insn_gp(vcpu, err);
5013                                 if (lapic_in_kernel(vcpu))
5014                                         return ret;
5015                                 if (cr8_prev <= cr8)
5016                                         return ret;
5017                                 /*
5018                                  * TODO: we might be squashing a
5019                                  * KVM_GUESTDBG_SINGLESTEP-triggered
5020                                  * KVM_EXIT_DEBUG here.
5021                                  */
5022                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5023                                 return 0;
5024                         }
5025                 }
5026                 break;
5027         case 2: /* clts */
5028                 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5029                 return -EIO;
5030         case 1: /*mov from cr*/
5031                 switch (cr) {
5032                 case 3:
5033                         WARN_ON_ONCE(enable_unrestricted_guest);
5034
5035                         val = kvm_read_cr3(vcpu);
5036                         kvm_register_write(vcpu, reg, val);
5037                         trace_kvm_cr_read(cr, val);
5038                         return kvm_skip_emulated_instruction(vcpu);
5039                 case 8:
5040                         val = kvm_get_cr8(vcpu);
5041                         kvm_register_write(vcpu, reg, val);
5042                         trace_kvm_cr_read(cr, val);
5043                         return kvm_skip_emulated_instruction(vcpu);
5044                 }
5045                 break;
5046         case 3: /* lmsw */
5047                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5048                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5049                 kvm_lmsw(vcpu, val);
5050
5051                 return kvm_skip_emulated_instruction(vcpu);
5052         default:
5053                 break;
5054         }
5055         vcpu->run->exit_reason = 0;
5056         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5057                (int)(exit_qualification >> 4) & 3, cr);
5058         return 0;
5059 }
5060
5061 static int handle_dr(struct kvm_vcpu *vcpu)
5062 {
5063         unsigned long exit_qualification;
5064         int dr, dr7, reg;
5065         int err = 1;
5066
5067         exit_qualification = vmx_get_exit_qual(vcpu);
5068         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5069
5070         /* First, if DR does not exist, trigger UD */
5071         if (!kvm_require_dr(vcpu, dr))
5072                 return 1;
5073
5074         if (kvm_x86_ops.get_cpl(vcpu) > 0)
5075                 goto out;
5076
5077         dr7 = vmcs_readl(GUEST_DR7);
5078         if (dr7 & DR7_GD) {
5079                 /*
5080                  * As the vm-exit takes precedence over the debug trap, we
5081                  * need to emulate the latter, either for the host or the
5082                  * guest debugging itself.
5083                  */
5084                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5085                         vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5086                         vcpu->run->debug.arch.dr7 = dr7;
5087                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5088                         vcpu->run->debug.arch.exception = DB_VECTOR;
5089                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5090                         return 0;
5091                 } else {
5092                         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5093                         return 1;
5094                 }
5095         }
5096
5097         if (vcpu->guest_debug == 0) {
5098                 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5099
5100                 /*
5101                  * No more DR vmexits; force a reload of the debug registers
5102                  * and reenter on this instruction.  The next vmexit will
5103                  * retrieve the full state of the debug registers.
5104                  */
5105                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5106                 return 1;
5107         }
5108
5109         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5110         if (exit_qualification & TYPE_MOV_FROM_DR) {
5111                 unsigned long val;
5112
5113                 kvm_get_dr(vcpu, dr, &val);
5114                 kvm_register_write(vcpu, reg, val);
5115                 err = 0;
5116         } else {
5117                 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5118         }
5119
5120 out:
5121         return kvm_complete_insn_gp(vcpu, err);
5122 }
5123
5124 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5125 {
5126         get_debugreg(vcpu->arch.db[0], 0);
5127         get_debugreg(vcpu->arch.db[1], 1);
5128         get_debugreg(vcpu->arch.db[2], 2);
5129         get_debugreg(vcpu->arch.db[3], 3);
5130         get_debugreg(vcpu->arch.dr6, 6);
5131         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5132
5133         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5134         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5135 }
5136
5137 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5138 {
5139         vmcs_writel(GUEST_DR7, val);
5140 }
5141
5142 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5143 {
5144         kvm_apic_update_ppr(vcpu);
5145         return 1;
5146 }
5147
5148 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5149 {
5150         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5151
5152         kvm_make_request(KVM_REQ_EVENT, vcpu);
5153
5154         ++vcpu->stat.irq_window_exits;
5155         return 1;
5156 }
5157
5158 static int handle_invlpg(struct kvm_vcpu *vcpu)
5159 {
5160         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5161
5162         kvm_mmu_invlpg(vcpu, exit_qualification);
5163         return kvm_skip_emulated_instruction(vcpu);
5164 }
5165
5166 static int handle_apic_access(struct kvm_vcpu *vcpu)
5167 {
5168         if (likely(fasteoi)) {
5169                 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5170                 int access_type, offset;
5171
5172                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5173                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5174                 /*
5175                  * Sane guest uses MOV to write EOI, with written value
5176                  * not cared. So make a short-circuit here by avoiding
5177                  * heavy instruction emulation.
5178                  */
5179                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5180                     (offset == APIC_EOI)) {
5181                         kvm_lapic_set_eoi(vcpu);
5182                         return kvm_skip_emulated_instruction(vcpu);
5183                 }
5184         }
5185         return kvm_emulate_instruction(vcpu, 0);
5186 }
5187
5188 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5189 {
5190         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5191         int vector = exit_qualification & 0xff;
5192
5193         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5194         kvm_apic_set_eoi_accelerated(vcpu, vector);
5195         return 1;
5196 }
5197
5198 static int handle_apic_write(struct kvm_vcpu *vcpu)
5199 {
5200         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5201         u32 offset = exit_qualification & 0xfff;
5202
5203         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5204         kvm_apic_write_nodecode(vcpu, offset);
5205         return 1;
5206 }
5207
5208 static int handle_task_switch(struct kvm_vcpu *vcpu)
5209 {
5210         struct vcpu_vmx *vmx = to_vmx(vcpu);
5211         unsigned long exit_qualification;
5212         bool has_error_code = false;
5213         u32 error_code = 0;
5214         u16 tss_selector;
5215         int reason, type, idt_v, idt_index;
5216
5217         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5218         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5219         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5220
5221         exit_qualification = vmx_get_exit_qual(vcpu);
5222
5223         reason = (u32)exit_qualification >> 30;
5224         if (reason == TASK_SWITCH_GATE && idt_v) {
5225                 switch (type) {
5226                 case INTR_TYPE_NMI_INTR:
5227                         vcpu->arch.nmi_injected = false;
5228                         vmx_set_nmi_mask(vcpu, true);
5229                         break;
5230                 case INTR_TYPE_EXT_INTR:
5231                 case INTR_TYPE_SOFT_INTR:
5232                         kvm_clear_interrupt_queue(vcpu);
5233                         break;
5234                 case INTR_TYPE_HARD_EXCEPTION:
5235                         if (vmx->idt_vectoring_info &
5236                             VECTORING_INFO_DELIVER_CODE_MASK) {
5237                                 has_error_code = true;
5238                                 error_code =
5239                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5240                         }
5241                         fallthrough;
5242                 case INTR_TYPE_SOFT_EXCEPTION:
5243                         kvm_clear_exception_queue(vcpu);
5244                         break;
5245                 default:
5246                         break;
5247                 }
5248         }
5249         tss_selector = exit_qualification;
5250
5251         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5252                        type != INTR_TYPE_EXT_INTR &&
5253                        type != INTR_TYPE_NMI_INTR))
5254                 WARN_ON(!skip_emulated_instruction(vcpu));
5255
5256         /*
5257          * TODO: What about debug traps on tss switch?
5258          *       Are we supposed to inject them and update dr6?
5259          */
5260         return kvm_task_switch(vcpu, tss_selector,
5261                                type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5262                                reason, has_error_code, error_code);
5263 }
5264
5265 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5266 {
5267         unsigned long exit_qualification;
5268         gpa_t gpa;
5269         u64 error_code;
5270
5271         exit_qualification = vmx_get_exit_qual(vcpu);
5272
5273         /*
5274          * EPT violation happened while executing iret from NMI,
5275          * "blocked by NMI" bit has to be set before next VM entry.
5276          * There are errata that may cause this bit to not be set:
5277          * AAK134, BY25.
5278          */
5279         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5280                         enable_vnmi &&
5281                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5282                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5283
5284         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5285         trace_kvm_page_fault(gpa, exit_qualification);
5286
5287         /* Is it a read fault? */
5288         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5289                      ? PFERR_USER_MASK : 0;
5290         /* Is it a write fault? */
5291         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5292                       ? PFERR_WRITE_MASK : 0;
5293         /* Is it a fetch fault? */
5294         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5295                       ? PFERR_FETCH_MASK : 0;
5296         /* ept page table entry is present? */
5297         error_code |= (exit_qualification &
5298                        (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5299                         EPT_VIOLATION_EXECUTABLE))
5300                       ? PFERR_PRESENT_MASK : 0;
5301
5302         error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5303                PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5304
5305         vcpu->arch.exit_qualification = exit_qualification;
5306
5307         /*
5308          * Check that the GPA doesn't exceed physical memory limits, as that is
5309          * a guest page fault.  We have to emulate the instruction here, because
5310          * if the illegal address is that of a paging structure, then
5311          * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5312          * would also use advanced VM-exit information for EPT violations to
5313          * reconstruct the page fault error code.
5314          */
5315         if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5316                 return kvm_emulate_instruction(vcpu, 0);
5317
5318         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5319 }
5320
5321 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5322 {
5323         gpa_t gpa;
5324
5325         if (!vmx_can_emulate_instruction(vcpu, NULL, 0))
5326                 return 1;
5327
5328         /*
5329          * A nested guest cannot optimize MMIO vmexits, because we have an
5330          * nGPA here instead of the required GPA.
5331          */
5332         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5333         if (!is_guest_mode(vcpu) &&
5334             !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5335                 trace_kvm_fast_mmio(gpa);
5336                 return kvm_skip_emulated_instruction(vcpu);
5337         }
5338
5339         return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5340 }
5341
5342 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5343 {
5344         if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5345                 return -EIO;
5346
5347         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5348         ++vcpu->stat.nmi_window_exits;
5349         kvm_make_request(KVM_REQ_EVENT, vcpu);
5350
5351         return 1;
5352 }
5353
5354 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5355 {
5356         struct vcpu_vmx *vmx = to_vmx(vcpu);
5357         bool intr_window_requested;
5358         unsigned count = 130;
5359
5360         intr_window_requested = exec_controls_get(vmx) &
5361                                 CPU_BASED_INTR_WINDOW_EXITING;
5362
5363         while (vmx->emulation_required && count-- != 0) {
5364                 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5365                         return handle_interrupt_window(&vmx->vcpu);
5366
5367                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5368                         return 1;
5369
5370                 if (!kvm_emulate_instruction(vcpu, 0))
5371                         return 0;
5372
5373                 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5374                     vcpu->arch.exception.pending) {
5375                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5376                         vcpu->run->internal.suberror =
5377                                                 KVM_INTERNAL_ERROR_EMULATION;
5378                         vcpu->run->internal.ndata = 0;
5379                         return 0;
5380                 }
5381
5382                 if (vcpu->arch.halt_request) {
5383                         vcpu->arch.halt_request = 0;
5384                         return kvm_vcpu_halt(vcpu);
5385                 }
5386
5387                 /*
5388                  * Note, return 1 and not 0, vcpu_run() will invoke
5389                  * xfer_to_guest_mode() which will create a proper return
5390                  * code.
5391                  */
5392                 if (__xfer_to_guest_mode_work_pending())
5393                         return 1;
5394         }
5395
5396         return 1;
5397 }
5398
5399 static void grow_ple_window(struct kvm_vcpu *vcpu)
5400 {
5401         struct vcpu_vmx *vmx = to_vmx(vcpu);
5402         unsigned int old = vmx->ple_window;
5403
5404         vmx->ple_window = __grow_ple_window(old, ple_window,
5405                                             ple_window_grow,
5406                                             ple_window_max);
5407
5408         if (vmx->ple_window != old) {
5409                 vmx->ple_window_dirty = true;
5410                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5411                                             vmx->ple_window, old);
5412         }
5413 }
5414
5415 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5416 {
5417         struct vcpu_vmx *vmx = to_vmx(vcpu);
5418         unsigned int old = vmx->ple_window;
5419
5420         vmx->ple_window = __shrink_ple_window(old, ple_window,
5421                                               ple_window_shrink,
5422                                               ple_window);
5423
5424         if (vmx->ple_window != old) {
5425                 vmx->ple_window_dirty = true;
5426                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5427                                             vmx->ple_window, old);
5428         }
5429 }
5430
5431 /*
5432  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5433  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5434  */
5435 static int handle_pause(struct kvm_vcpu *vcpu)
5436 {
5437         if (!kvm_pause_in_guest(vcpu->kvm))
5438                 grow_ple_window(vcpu);
5439
5440         /*
5441          * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5442          * VM-execution control is ignored if CPL > 0. OTOH, KVM
5443          * never set PAUSE_EXITING and just set PLE if supported,
5444          * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5445          */
5446         kvm_vcpu_on_spin(vcpu, true);
5447         return kvm_skip_emulated_instruction(vcpu);
5448 }
5449
5450 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5451 {
5452         return 1;
5453 }
5454
5455 static int handle_invpcid(struct kvm_vcpu *vcpu)
5456 {
5457         u32 vmx_instruction_info;
5458         unsigned long type;
5459         gva_t gva;
5460         struct {
5461                 u64 pcid;
5462                 u64 gla;
5463         } operand;
5464
5465         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5466                 kvm_queue_exception(vcpu, UD_VECTOR);
5467                 return 1;
5468         }
5469
5470         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5471         type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
5472
5473         if (type > 3) {
5474                 kvm_inject_gp(vcpu, 0);
5475                 return 1;
5476         }
5477
5478         /* According to the Intel instruction reference, the memory operand
5479          * is read even if it isn't needed (e.g., for type==all)
5480          */
5481         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5482                                 vmx_instruction_info, false,
5483                                 sizeof(operand), &gva))
5484                 return 1;
5485
5486         return kvm_handle_invpcid(vcpu, type, gva);
5487 }
5488
5489 static int handle_pml_full(struct kvm_vcpu *vcpu)
5490 {
5491         unsigned long exit_qualification;
5492
5493         trace_kvm_pml_full(vcpu->vcpu_id);
5494
5495         exit_qualification = vmx_get_exit_qual(vcpu);
5496
5497         /*
5498          * PML buffer FULL happened while executing iret from NMI,
5499          * "blocked by NMI" bit has to be set before next VM entry.
5500          */
5501         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5502                         enable_vnmi &&
5503                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5504                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5505                                 GUEST_INTR_STATE_NMI);
5506
5507         /*
5508          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5509          * here.., and there's no userspace involvement needed for PML.
5510          */
5511         return 1;
5512 }
5513
5514 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5515 {
5516         struct vcpu_vmx *vmx = to_vmx(vcpu);
5517
5518         if (!vmx->req_immediate_exit &&
5519             !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5520                 kvm_lapic_expired_hv_timer(vcpu);
5521                 return EXIT_FASTPATH_REENTER_GUEST;
5522         }
5523
5524         return EXIT_FASTPATH_NONE;
5525 }
5526
5527 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5528 {
5529         handle_fastpath_preemption_timer(vcpu);
5530         return 1;
5531 }
5532
5533 /*
5534  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5535  * are overwritten by nested_vmx_setup() when nested=1.
5536  */
5537 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5538 {
5539         kvm_queue_exception(vcpu, UD_VECTOR);
5540         return 1;
5541 }
5542
5543 #ifndef CONFIG_X86_SGX_KVM
5544 static int handle_encls(struct kvm_vcpu *vcpu)
5545 {
5546         /*
5547          * SGX virtualization is disabled.  There is no software enable bit for
5548          * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
5549          * the guest from executing ENCLS (when SGX is supported by hardware).
5550          */
5551         kvm_queue_exception(vcpu, UD_VECTOR);
5552         return 1;
5553 }
5554 #endif /* CONFIG_X86_SGX_KVM */
5555
5556 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
5557 {
5558         vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
5559         vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
5560         return 0;
5561 }
5562
5563 /*
5564  * The exit handlers return 1 if the exit was handled fully and guest execution
5565  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5566  * to be done to userspace and return 0.
5567  */
5568 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5569         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5570         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5571         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5572         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
5573         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5574         [EXIT_REASON_CR_ACCESS]               = handle_cr,
5575         [EXIT_REASON_DR_ACCESS]               = handle_dr,
5576         [EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5577         [EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5578         [EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5579         [EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5580         [EXIT_REASON_HLT]                     = kvm_emulate_halt,
5581         [EXIT_REASON_INVD]                    = kvm_emulate_invd,
5582         [EXIT_REASON_INVLPG]                  = handle_invlpg,
5583         [EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
5584         [EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
5585         [EXIT_REASON_VMCLEAR]                 = handle_vmx_instruction,
5586         [EXIT_REASON_VMLAUNCH]                = handle_vmx_instruction,
5587         [EXIT_REASON_VMPTRLD]                 = handle_vmx_instruction,
5588         [EXIT_REASON_VMPTRST]                 = handle_vmx_instruction,
5589         [EXIT_REASON_VMREAD]                  = handle_vmx_instruction,
5590         [EXIT_REASON_VMRESUME]                = handle_vmx_instruction,
5591         [EXIT_REASON_VMWRITE]                 = handle_vmx_instruction,
5592         [EXIT_REASON_VMOFF]                   = handle_vmx_instruction,
5593         [EXIT_REASON_VMON]                    = handle_vmx_instruction,
5594         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5595         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5596         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5597         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5598         [EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
5599         [EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
5600         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5601         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5602         [EXIT_REASON_GDTR_IDTR]               = handle_desc,
5603         [EXIT_REASON_LDTR_TR]                 = handle_desc,
5604         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
5605         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5606         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5607         [EXIT_REASON_MWAIT_INSTRUCTION]       = kvm_emulate_mwait,
5608         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5609         [EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
5610         [EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5611         [EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5612         [EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
5613         [EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
5614         [EXIT_REASON_PML_FULL]                = handle_pml_full,
5615         [EXIT_REASON_INVPCID]                 = handle_invpcid,
5616         [EXIT_REASON_VMFUNC]                  = handle_vmx_instruction,
5617         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
5618         [EXIT_REASON_ENCLS]                   = handle_encls,
5619         [EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
5620 };
5621
5622 static const int kvm_vmx_max_exit_handlers =
5623         ARRAY_SIZE(kvm_vmx_exit_handlers);
5624
5625 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
5626                               u32 *intr_info, u32 *error_code)
5627 {
5628         struct vcpu_vmx *vmx = to_vmx(vcpu);
5629
5630         *info1 = vmx_get_exit_qual(vcpu);
5631         if (!(vmx->exit_reason.failed_vmentry)) {
5632                 *info2 = vmx->idt_vectoring_info;
5633                 *intr_info = vmx_get_intr_info(vcpu);
5634                 if (is_exception_with_error_code(*intr_info))
5635                         *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5636                 else
5637                         *error_code = 0;
5638         } else {
5639                 *info2 = 0;
5640                 *intr_info = 0;
5641                 *error_code = 0;
5642         }
5643 }
5644
5645 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5646 {
5647         if (vmx->pml_pg) {
5648                 __free_page(vmx->pml_pg);
5649                 vmx->pml_pg = NULL;
5650         }
5651 }
5652
5653 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5654 {
5655         struct vcpu_vmx *vmx = to_vmx(vcpu);
5656         u64 *pml_buf;
5657         u16 pml_idx;
5658
5659         pml_idx = vmcs_read16(GUEST_PML_INDEX);
5660
5661         /* Do nothing if PML buffer is empty */
5662         if (pml_idx == (PML_ENTITY_NUM - 1))
5663                 return;
5664
5665         /* PML index always points to next available PML buffer entity */
5666         if (pml_idx >= PML_ENTITY_NUM)
5667                 pml_idx = 0;
5668         else
5669                 pml_idx++;
5670
5671         pml_buf = page_address(vmx->pml_pg);
5672         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5673                 u64 gpa;
5674
5675                 gpa = pml_buf[pml_idx];
5676                 WARN_ON(gpa & (PAGE_SIZE - 1));
5677                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5678         }
5679
5680         /* reset PML index */
5681         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5682 }
5683
5684 static void vmx_dump_sel(char *name, uint32_t sel)
5685 {
5686         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5687                name, vmcs_read16(sel),
5688                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5689                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5690                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5691 }
5692
5693 static void vmx_dump_dtsel(char *name, uint32_t limit)
5694 {
5695         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5696                name, vmcs_read32(limit),
5697                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5698 }
5699
5700 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
5701 {
5702         unsigned int i;
5703         struct vmx_msr_entry *e;
5704
5705         pr_err("MSR %s:\n", name);
5706         for (i = 0, e = m->val; i < m->nr; ++i, ++e)
5707                 pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
5708 }
5709
5710 void dump_vmcs(struct kvm_vcpu *vcpu)
5711 {
5712         struct vcpu_vmx *vmx = to_vmx(vcpu);
5713         u32 vmentry_ctl, vmexit_ctl;
5714         u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5715         unsigned long cr4;
5716         int efer_slot;
5717
5718         if (!dump_invalid_vmcs) {
5719                 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5720                 return;
5721         }
5722
5723         vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5724         vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5725         cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5726         pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5727         cr4 = vmcs_readl(GUEST_CR4);
5728         secondary_exec_control = 0;
5729         if (cpu_has_secondary_exec_ctrls())
5730                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5731
5732         pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
5733                vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
5734         pr_err("*** Guest State ***\n");
5735         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5736                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5737                vmcs_readl(CR0_GUEST_HOST_MASK));
5738         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5739                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5740         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5741         if (cpu_has_vmx_ept()) {
5742                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5743                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5744                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5745                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5746         }
5747         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5748                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5749         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5750                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5751         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5752                vmcs_readl(GUEST_SYSENTER_ESP),
5753                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5754         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5755         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5756         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5757         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5758         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5759         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5760         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5761         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5762         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5763         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5764         efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
5765         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
5766                 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
5767         else if (efer_slot >= 0)
5768                 pr_err("EFER= 0x%016llx (autoload)\n",
5769                        vmx->msr_autoload.guest.val[efer_slot].value);
5770         else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
5771                 pr_err("EFER= 0x%016llx (effective)\n",
5772                        vcpu->arch.efer | (EFER_LMA | EFER_LME));
5773         else
5774                 pr_err("EFER= 0x%016llx (effective)\n",
5775                        vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
5776         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
5777                 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
5778         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5779                vmcs_read64(GUEST_IA32_DEBUGCTL),
5780                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5781         if (cpu_has_load_perf_global_ctrl() &&
5782             vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5783                 pr_err("PerfGlobCtl = 0x%016llx\n",
5784                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5785         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5786                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5787         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5788                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5789                vmcs_read32(GUEST_ACTIVITY_STATE));
5790         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5791                 pr_err("InterruptStatus = %04x\n",
5792                        vmcs_read16(GUEST_INTR_STATUS));
5793         if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
5794                 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
5795         if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
5796                 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
5797
5798         pr_err("*** Host State ***\n");
5799         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5800                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5801         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5802                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5803                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5804                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5805                vmcs_read16(HOST_TR_SELECTOR));
5806         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5807                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5808                vmcs_readl(HOST_TR_BASE));
5809         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5810                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5811         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5812                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5813                vmcs_readl(HOST_CR4));
5814         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5815                vmcs_readl(HOST_IA32_SYSENTER_ESP),
5816                vmcs_read32(HOST_IA32_SYSENTER_CS),
5817                vmcs_readl(HOST_IA32_SYSENTER_EIP));
5818         if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
5819                 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
5820         if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
5821                 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
5822         if (cpu_has_load_perf_global_ctrl() &&
5823             vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5824                 pr_err("PerfGlobCtl = 0x%016llx\n",
5825                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5826         if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
5827                 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
5828
5829         pr_err("*** Control State ***\n");
5830         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5831                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5832         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5833         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5834                vmcs_read32(EXCEPTION_BITMAP),
5835                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5836                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5837         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5838                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5839                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5840                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5841         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5842                vmcs_read32(VM_EXIT_INTR_INFO),
5843                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5844                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5845         pr_err("        reason=%08x qualification=%016lx\n",
5846                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5847         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5848                vmcs_read32(IDT_VECTORING_INFO_FIELD),
5849                vmcs_read32(IDT_VECTORING_ERROR_CODE));
5850         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5851         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5852                 pr_err("TSC Multiplier = 0x%016llx\n",
5853                        vmcs_read64(TSC_MULTIPLIER));
5854         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5855                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5856                         u16 status = vmcs_read16(GUEST_INTR_STATUS);
5857                         pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5858                 }
5859                 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5860                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5861                         pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5862                 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5863         }
5864         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5865                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5866         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5867                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5868         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5869                 pr_err("PLE Gap=%08x Window=%08x\n",
5870                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5871         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5872                 pr_err("Virtual processor ID = 0x%04x\n",
5873                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
5874 }
5875
5876 /*
5877  * The guest has exited.  See if we can fix it or if we need userspace
5878  * assistance.
5879  */
5880 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
5881 {
5882         struct vcpu_vmx *vmx = to_vmx(vcpu);
5883         union vmx_exit_reason exit_reason = vmx->exit_reason;
5884         u32 vectoring_info = vmx->idt_vectoring_info;
5885         u16 exit_handler_index;
5886
5887         /*
5888          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5889          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5890          * querying dirty_bitmap, we only need to kick all vcpus out of guest
5891          * mode as if vcpus is in root mode, the PML buffer must has been
5892          * flushed already.  Note, PML is never enabled in hardware while
5893          * running L2.
5894          */
5895         if (enable_pml && !is_guest_mode(vcpu))
5896                 vmx_flush_pml_buffer(vcpu);
5897
5898         /*
5899          * We should never reach this point with a pending nested VM-Enter, and
5900          * more specifically emulation of L2 due to invalid guest state (see
5901          * below) should never happen as that means we incorrectly allowed a
5902          * nested VM-Enter with an invalid vmcs12.
5903          */
5904         if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
5905                 return -EIO;
5906
5907         /* If guest state is invalid, start emulating */
5908         if (vmx->emulation_required)
5909                 return handle_invalid_guest_state(vcpu);
5910
5911         if (is_guest_mode(vcpu)) {
5912                 /*
5913                  * PML is never enabled when running L2, bail immediately if a
5914                  * PML full exit occurs as something is horribly wrong.
5915                  */
5916                 if (exit_reason.basic == EXIT_REASON_PML_FULL)
5917                         goto unexpected_vmexit;
5918
5919                 /*
5920                  * The host physical addresses of some pages of guest memory
5921                  * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5922                  * Page). The CPU may write to these pages via their host
5923                  * physical address while L2 is running, bypassing any
5924                  * address-translation-based dirty tracking (e.g. EPT write
5925                  * protection).
5926                  *
5927                  * Mark them dirty on every exit from L2 to prevent them from
5928                  * getting out of sync with dirty tracking.
5929                  */
5930                 nested_mark_vmcs12_pages_dirty(vcpu);
5931
5932                 if (nested_vmx_reflect_vmexit(vcpu))
5933                         return 1;
5934         }
5935
5936         if (exit_reason.failed_vmentry) {
5937                 dump_vmcs(vcpu);
5938                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5939                 vcpu->run->fail_entry.hardware_entry_failure_reason
5940                         = exit_reason.full;
5941                 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
5942                 return 0;
5943         }
5944
5945         if (unlikely(vmx->fail)) {
5946                 dump_vmcs(vcpu);
5947                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5948                 vcpu->run->fail_entry.hardware_entry_failure_reason
5949                         = vmcs_read32(VM_INSTRUCTION_ERROR);
5950                 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
5951                 return 0;
5952         }
5953
5954         /*
5955          * Note:
5956          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5957          * delivery event since it indicates guest is accessing MMIO.
5958          * The vm-exit can be triggered again after return to guest that
5959          * will cause infinite loop.
5960          */
5961         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5962             (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
5963              exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
5964              exit_reason.basic != EXIT_REASON_PML_FULL &&
5965              exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
5966              exit_reason.basic != EXIT_REASON_TASK_SWITCH)) {
5967                 int ndata = 3;
5968
5969                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5970                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5971                 vcpu->run->internal.data[0] = vectoring_info;
5972                 vcpu->run->internal.data[1] = exit_reason.full;
5973                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5974                 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
5975                         vcpu->run->internal.data[ndata++] =
5976                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5977                 }
5978                 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
5979                 vcpu->run->internal.ndata = ndata;
5980                 return 0;
5981         }
5982
5983         if (unlikely(!enable_vnmi &&
5984                      vmx->loaded_vmcs->soft_vnmi_blocked)) {
5985                 if (!vmx_interrupt_blocked(vcpu)) {
5986                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5987                 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5988                            vcpu->arch.nmi_pending) {
5989                         /*
5990                          * This CPU don't support us in finding the end of an
5991                          * NMI-blocked window if the guest runs with IRQs
5992                          * disabled. So we pull the trigger after 1 s of
5993                          * futile waiting, but inform the user about this.
5994                          */
5995                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5996                                "state on VCPU %d after 1 s timeout\n",
5997                                __func__, vcpu->vcpu_id);
5998                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5999                 }
6000         }
6001
6002         if (exit_fastpath != EXIT_FASTPATH_NONE)
6003                 return 1;
6004
6005         if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6006                 goto unexpected_vmexit;
6007 #ifdef CONFIG_RETPOLINE
6008         if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6009                 return kvm_emulate_wrmsr(vcpu);
6010         else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6011                 return handle_preemption_timer(vcpu);
6012         else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6013                 return handle_interrupt_window(vcpu);
6014         else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6015                 return handle_external_interrupt(vcpu);
6016         else if (exit_reason.basic == EXIT_REASON_HLT)
6017                 return kvm_emulate_halt(vcpu);
6018         else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6019                 return handle_ept_misconfig(vcpu);
6020 #endif
6021
6022         exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6023                                                 kvm_vmx_max_exit_handlers);
6024         if (!kvm_vmx_exit_handlers[exit_handler_index])
6025                 goto unexpected_vmexit;
6026
6027         return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6028
6029 unexpected_vmexit:
6030         vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6031                     exit_reason.full);
6032         dump_vmcs(vcpu);
6033         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6034         vcpu->run->internal.suberror =
6035                         KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6036         vcpu->run->internal.ndata = 2;
6037         vcpu->run->internal.data[0] = exit_reason.full;
6038         vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6039         return 0;
6040 }
6041
6042 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6043 {
6044         int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6045
6046         /*
6047          * Even when current exit reason is handled by KVM internally, we
6048          * still need to exit to user space when bus lock detected to inform
6049          * that there is a bus lock in guest.
6050          */
6051         if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6052                 if (ret > 0)
6053                         vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6054
6055                 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6056                 return 0;
6057         }
6058         return ret;
6059 }
6060
6061 /*
6062  * Software based L1D cache flush which is used when microcode providing
6063  * the cache control MSR is not loaded.
6064  *
6065  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6066  * flush it is required to read in 64 KiB because the replacement algorithm
6067  * is not exactly LRU. This could be sized at runtime via topology
6068  * information but as all relevant affected CPUs have 32KiB L1D cache size
6069  * there is no point in doing so.
6070  */
6071 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6072 {
6073         int size = PAGE_SIZE << L1D_CACHE_ORDER;
6074
6075         /*
6076          * This code is only executed when the the flush mode is 'cond' or
6077          * 'always'
6078          */
6079         if (static_branch_likely(&vmx_l1d_flush_cond)) {
6080                 bool flush_l1d;
6081
6082                 /*
6083                  * Clear the per-vcpu flush bit, it gets set again
6084                  * either from vcpu_run() or from one of the unsafe
6085                  * VMEXIT handlers.
6086                  */
6087                 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6088                 vcpu->arch.l1tf_flush_l1d = false;
6089
6090                 /*
6091                  * Clear the per-cpu flush bit, it gets set again from
6092                  * the interrupt handlers.
6093                  */
6094                 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6095                 kvm_clear_cpu_l1tf_flush_l1d();
6096
6097                 if (!flush_l1d)
6098                         return;
6099         }
6100
6101         vcpu->stat.l1d_flush++;
6102
6103         if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6104                 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6105                 return;
6106         }
6107
6108         asm volatile(
6109                 /* First ensure the pages are in the TLB */
6110                 "xorl   %%eax, %%eax\n"
6111                 ".Lpopulate_tlb:\n\t"
6112                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6113                 "addl   $4096, %%eax\n\t"
6114                 "cmpl   %%eax, %[size]\n\t"
6115                 "jne    .Lpopulate_tlb\n\t"
6116                 "xorl   %%eax, %%eax\n\t"
6117                 "cpuid\n\t"
6118                 /* Now fill the cache */
6119                 "xorl   %%eax, %%eax\n"
6120                 ".Lfill_cache:\n"
6121                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6122                 "addl   $64, %%eax\n\t"
6123                 "cmpl   %%eax, %[size]\n\t"
6124                 "jne    .Lfill_cache\n\t"
6125                 "lfence\n"
6126                 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6127                     [size] "r" (size)
6128                 : "eax", "ebx", "ecx", "edx");
6129 }
6130
6131 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6132 {
6133         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6134         int tpr_threshold;
6135
6136         if (is_guest_mode(vcpu) &&
6137                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6138                 return;
6139
6140         tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6141         if (is_guest_mode(vcpu))
6142                 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6143         else
6144                 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6145 }
6146
6147 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6148 {
6149         struct vcpu_vmx *vmx = to_vmx(vcpu);
6150         u32 sec_exec_control;
6151
6152         if (!lapic_in_kernel(vcpu))
6153                 return;
6154
6155         if (!flexpriority_enabled &&
6156             !cpu_has_vmx_virtualize_x2apic_mode())
6157                 return;
6158
6159         /* Postpone execution until vmcs01 is the current VMCS. */
6160         if (is_guest_mode(vcpu)) {
6161                 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6162                 return;
6163         }
6164
6165         sec_exec_control = secondary_exec_controls_get(vmx);
6166         sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6167                               SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6168
6169         switch (kvm_get_apic_mode(vcpu)) {
6170         case LAPIC_MODE_INVALID:
6171                 WARN_ONCE(true, "Invalid local APIC state");
6172                 break;
6173         case LAPIC_MODE_DISABLED:
6174                 break;
6175         case LAPIC_MODE_XAPIC:
6176                 if (flexpriority_enabled) {
6177                         sec_exec_control |=
6178                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6179                         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6180
6181                         /*
6182                          * Flush the TLB, reloading the APIC access page will
6183                          * only do so if its physical address has changed, but
6184                          * the guest may have inserted a non-APIC mapping into
6185                          * the TLB while the APIC access page was disabled.
6186                          */
6187                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6188                 }
6189                 break;
6190         case LAPIC_MODE_X2APIC:
6191                 if (cpu_has_vmx_virtualize_x2apic_mode())
6192                         sec_exec_control |=
6193                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6194                 break;
6195         }
6196         secondary_exec_controls_set(vmx, sec_exec_control);
6197
6198         vmx_update_msr_bitmap(vcpu);
6199 }
6200
6201 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6202 {
6203         struct page *page;
6204
6205         /* Defer reload until vmcs01 is the current VMCS. */
6206         if (is_guest_mode(vcpu)) {
6207                 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6208                 return;
6209         }
6210
6211         if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6212             SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6213                 return;
6214
6215         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6216         if (is_error_page(page))
6217                 return;
6218
6219         vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6220         vmx_flush_tlb_current(vcpu);
6221
6222         /*
6223          * Do not pin apic access page in memory, the MMU notifier
6224          * will call us again if it is migrated or swapped out.
6225          */
6226         put_page(page);
6227 }
6228
6229 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6230 {
6231         u16 status;
6232         u8 old;
6233
6234         if (max_isr == -1)
6235                 max_isr = 0;
6236
6237         status = vmcs_read16(GUEST_INTR_STATUS);
6238         old = status >> 8;
6239         if (max_isr != old) {
6240                 status &= 0xff;
6241                 status |= max_isr << 8;
6242                 vmcs_write16(GUEST_INTR_STATUS, status);
6243         }
6244 }
6245
6246 static void vmx_set_rvi(int vector)
6247 {
6248         u16 status;
6249         u8 old;
6250
6251         if (vector == -1)
6252                 vector = 0;
6253
6254         status = vmcs_read16(GUEST_INTR_STATUS);
6255         old = (u8)status & 0xff;
6256         if ((u8)vector != old) {
6257                 status &= ~0xff;
6258                 status |= (u8)vector;
6259                 vmcs_write16(GUEST_INTR_STATUS, status);
6260         }
6261 }
6262
6263 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6264 {
6265         /*
6266          * When running L2, updating RVI is only relevant when
6267          * vmcs12 virtual-interrupt-delivery enabled.
6268          * However, it can be enabled only when L1 also
6269          * intercepts external-interrupts and in that case
6270          * we should not update vmcs02 RVI but instead intercept
6271          * interrupt. Therefore, do nothing when running L2.
6272          */
6273         if (!is_guest_mode(vcpu))
6274                 vmx_set_rvi(max_irr);
6275 }
6276
6277 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6278 {
6279         struct vcpu_vmx *vmx = to_vmx(vcpu);
6280         int max_irr;
6281         bool max_irr_updated;
6282
6283         if (KVM_BUG_ON(!vcpu->arch.apicv_active, vcpu->kvm))
6284                 return -EIO;
6285
6286         if (pi_test_on(&vmx->pi_desc)) {
6287                 pi_clear_on(&vmx->pi_desc);
6288                 /*
6289                  * IOMMU can write to PID.ON, so the barrier matters even on UP.
6290                  * But on x86 this is just a compiler barrier anyway.
6291                  */
6292                 smp_mb__after_atomic();
6293                 max_irr_updated =
6294                         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6295
6296                 /*
6297                  * If we are running L2 and L1 has a new pending interrupt
6298                  * which can be injected, we should re-evaluate
6299                  * what should be done with this new L1 interrupt.
6300                  * If L1 intercepts external-interrupts, we should
6301                  * exit from L2 to L1. Otherwise, interrupt should be
6302                  * delivered directly to L2.
6303                  */
6304                 if (is_guest_mode(vcpu) && max_irr_updated) {
6305                         if (nested_exit_on_intr(vcpu))
6306                                 kvm_vcpu_exiting_guest_mode(vcpu);
6307                         else
6308                                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6309                 }
6310         } else {
6311                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6312         }
6313         vmx_hwapic_irr_update(vcpu, max_irr);
6314         return max_irr;
6315 }
6316
6317 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6318 {
6319         if (!kvm_vcpu_apicv_active(vcpu))
6320                 return;
6321
6322         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6323         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6324         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6325         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6326 }
6327
6328 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6329 {
6330         struct vcpu_vmx *vmx = to_vmx(vcpu);
6331
6332         pi_clear_on(&vmx->pi_desc);
6333         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6334 }
6335
6336 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6337
6338 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu,
6339                                         unsigned long entry)
6340 {
6341         kvm_before_interrupt(vcpu);
6342         vmx_do_interrupt_nmi_irqoff(entry);
6343         kvm_after_interrupt(vcpu);
6344 }
6345
6346 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6347 {
6348         const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist;
6349         u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6350
6351         /* if exit due to PF check for async PF */
6352         if (is_page_fault(intr_info))
6353                 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6354         /* Handle machine checks before interrupts are enabled */
6355         else if (is_machine_check(intr_info))
6356                 kvm_machine_check();
6357         /* We need to handle NMIs before interrupts are enabled */
6358         else if (is_nmi(intr_info))
6359                 handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry);
6360 }
6361
6362 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6363 {
6364         u32 intr_info = vmx_get_intr_info(vcpu);
6365         unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6366         gate_desc *desc = (gate_desc *)host_idt_base + vector;
6367
6368         if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6369             "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6370                 return;
6371
6372         handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
6373 }
6374
6375 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6376 {
6377         struct vcpu_vmx *vmx = to_vmx(vcpu);
6378
6379         if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6380                 handle_external_interrupt_irqoff(vcpu);
6381         else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6382                 handle_exception_nmi_irqoff(vmx);
6383 }
6384
6385 /*
6386  * The kvm parameter can be NULL (module initialization, or invocation before
6387  * VM creation). Be sure to check the kvm parameter before using it.
6388  */
6389 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6390 {
6391         switch (index) {
6392         case MSR_IA32_SMBASE:
6393                 /*
6394                  * We cannot do SMM unless we can run the guest in big
6395                  * real mode.
6396                  */
6397                 return enable_unrestricted_guest || emulate_invalid_guest_state;
6398         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6399                 return nested;
6400         case MSR_AMD64_VIRT_SPEC_CTRL:
6401                 /* This is AMD only.  */
6402                 return false;
6403         default:
6404                 return true;
6405         }
6406 }
6407
6408 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6409 {
6410         u32 exit_intr_info;
6411         bool unblock_nmi;
6412         u8 vector;
6413         bool idtv_info_valid;
6414
6415         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6416
6417         if (enable_vnmi) {
6418                 if (vmx->loaded_vmcs->nmi_known_unmasked)
6419                         return;
6420
6421                 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6422                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6423                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6424                 /*
6425                  * SDM 3: 27.7.1.2 (September 2008)
6426                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
6427                  * a guest IRET fault.
6428                  * SDM 3: 23.2.2 (September 2008)
6429                  * Bit 12 is undefined in any of the following cases:
6430                  *  If the VM exit sets the valid bit in the IDT-vectoring
6431                  *   information field.
6432                  *  If the VM exit is due to a double fault.
6433                  */
6434                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6435                     vector != DF_VECTOR && !idtv_info_valid)
6436                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6437                                       GUEST_INTR_STATE_NMI);
6438                 else
6439                         vmx->loaded_vmcs->nmi_known_unmasked =
6440                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6441                                   & GUEST_INTR_STATE_NMI);
6442         } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6443                 vmx->loaded_vmcs->vnmi_blocked_time +=
6444                         ktime_to_ns(ktime_sub(ktime_get(),
6445                                               vmx->loaded_vmcs->entry_time));
6446 }
6447
6448 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6449                                       u32 idt_vectoring_info,
6450                                       int instr_len_field,
6451                                       int error_code_field)
6452 {
6453         u8 vector;
6454         int type;
6455         bool idtv_info_valid;
6456
6457         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6458
6459         vcpu->arch.nmi_injected = false;
6460         kvm_clear_exception_queue(vcpu);
6461         kvm_clear_interrupt_queue(vcpu);
6462
6463         if (!idtv_info_valid)
6464                 return;
6465
6466         kvm_make_request(KVM_REQ_EVENT, vcpu);
6467
6468         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6469         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6470
6471         switch (type) {
6472         case INTR_TYPE_NMI_INTR:
6473                 vcpu->arch.nmi_injected = true;
6474                 /*
6475                  * SDM 3: 27.7.1.2 (September 2008)
6476                  * Clear bit "block by NMI" before VM entry if a NMI
6477                  * delivery faulted.
6478                  */
6479                 vmx_set_nmi_mask(vcpu, false);
6480                 break;
6481         case INTR_TYPE_SOFT_EXCEPTION:
6482                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6483                 fallthrough;
6484         case INTR_TYPE_HARD_EXCEPTION:
6485                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6486                         u32 err = vmcs_read32(error_code_field);
6487                         kvm_requeue_exception_e(vcpu, vector, err);
6488                 } else
6489                         kvm_requeue_exception(vcpu, vector);
6490                 break;
6491         case INTR_TYPE_SOFT_INTR:
6492                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6493                 fallthrough;
6494         case INTR_TYPE_EXT_INTR:
6495                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6496                 break;
6497         default:
6498                 break;
6499         }
6500 }
6501
6502 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6503 {
6504         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6505                                   VM_EXIT_INSTRUCTION_LEN,
6506                                   IDT_VECTORING_ERROR_CODE);
6507 }
6508
6509 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6510 {
6511         __vmx_complete_interrupts(vcpu,
6512                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6513                                   VM_ENTRY_INSTRUCTION_LEN,
6514                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
6515
6516         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6517 }
6518
6519 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6520 {
6521         int i, nr_msrs;
6522         struct perf_guest_switch_msr *msrs;
6523
6524         /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
6525         msrs = perf_guest_get_msrs(&nr_msrs);
6526         if (!msrs)
6527                 return;
6528
6529         for (i = 0; i < nr_msrs; i++)
6530                 if (msrs[i].host == msrs[i].guest)
6531                         clear_atomic_switch_msr(vmx, msrs[i].msr);
6532                 else
6533                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6534                                         msrs[i].host, false);
6535 }
6536
6537 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6538 {
6539         struct vcpu_vmx *vmx = to_vmx(vcpu);
6540         u64 tscl;
6541         u32 delta_tsc;
6542
6543         if (vmx->req_immediate_exit) {
6544                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6545                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6546         } else if (vmx->hv_deadline_tsc != -1) {
6547                 tscl = rdtsc();
6548                 if (vmx->hv_deadline_tsc > tscl)
6549                         /* set_hv_timer ensures the delta fits in 32-bits */
6550                         delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6551                                 cpu_preemption_timer_multi);
6552                 else
6553                         delta_tsc = 0;
6554
6555                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6556                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6557         } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6558                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6559                 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6560         }
6561 }
6562
6563 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6564 {
6565         if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6566                 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6567                 vmcs_writel(HOST_RSP, host_rsp);
6568         }
6569 }
6570
6571 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6572 {
6573         switch (to_vmx(vcpu)->exit_reason.basic) {
6574         case EXIT_REASON_MSR_WRITE:
6575                 return handle_fastpath_set_msr_irqoff(vcpu);
6576         case EXIT_REASON_PREEMPTION_TIMER:
6577                 return handle_fastpath_preemption_timer(vcpu);
6578         default:
6579                 return EXIT_FASTPATH_NONE;
6580         }
6581 }
6582
6583 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
6584                                         struct vcpu_vmx *vmx)
6585 {
6586         kvm_guest_enter_irqoff();
6587
6588         /* L1D Flush includes CPU buffer clear to mitigate MDS */
6589         if (static_branch_unlikely(&vmx_l1d_should_flush))
6590                 vmx_l1d_flush(vcpu);
6591         else if (static_branch_unlikely(&mds_user_clear))
6592                 mds_clear_cpu_buffers();
6593
6594         if (vcpu->arch.cr2 != native_read_cr2())
6595                 native_write_cr2(vcpu->arch.cr2);
6596
6597         vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6598                                    vmx->loaded_vmcs->launched);
6599
6600         vcpu->arch.cr2 = native_read_cr2();
6601
6602         kvm_guest_exit_irqoff();
6603 }
6604
6605 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6606 {
6607         struct vcpu_vmx *vmx = to_vmx(vcpu);
6608         unsigned long cr3, cr4;
6609
6610         /* Record the guest's net vcpu time for enforced NMI injections. */
6611         if (unlikely(!enable_vnmi &&
6612                      vmx->loaded_vmcs->soft_vnmi_blocked))
6613                 vmx->loaded_vmcs->entry_time = ktime_get();
6614
6615         /* Don't enter VMX if guest state is invalid, let the exit handler
6616            start emulation until we arrive back to a valid state */
6617         if (vmx->emulation_required)
6618                 return EXIT_FASTPATH_NONE;
6619
6620         trace_kvm_entry(vcpu);
6621
6622         if (vmx->ple_window_dirty) {
6623                 vmx->ple_window_dirty = false;
6624                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6625         }
6626
6627         /*
6628          * We did this in prepare_switch_to_guest, because it needs to
6629          * be within srcu_read_lock.
6630          */
6631         WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6632
6633         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6634                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6635         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6636                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6637
6638         cr3 = __get_current_cr3_fast();
6639         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6640                 vmcs_writel(HOST_CR3, cr3);
6641                 vmx->loaded_vmcs->host_state.cr3 = cr3;
6642         }
6643
6644         cr4 = cr4_read_shadow();
6645         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6646                 vmcs_writel(HOST_CR4, cr4);
6647                 vmx->loaded_vmcs->host_state.cr4 = cr4;
6648         }
6649
6650         /* When single-stepping over STI and MOV SS, we must clear the
6651          * corresponding interruptibility bits in the guest state. Otherwise
6652          * vmentry fails as it then expects bit 14 (BS) in pending debug
6653          * exceptions being set, but that's not correct for the guest debugging
6654          * case. */
6655         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6656                 vmx_set_interrupt_shadow(vcpu, 0);
6657
6658         kvm_load_guest_xsave_state(vcpu);
6659
6660         pt_guest_enter(vmx);
6661
6662         atomic_switch_perf_msrs(vmx);
6663         if (intel_pmu_lbr_is_enabled(vcpu))
6664                 vmx_passthrough_lbr_msrs(vcpu);
6665
6666         if (enable_preemption_timer)
6667                 vmx_update_hv_timer(vcpu);
6668
6669         kvm_wait_lapic_expire(vcpu);
6670
6671         /*
6672          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6673          * it's non-zero. Since vmentry is serialising on affected CPUs, there
6674          * is no need to worry about the conditional branch over the wrmsr
6675          * being speculatively taken.
6676          */
6677         x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6678
6679         /* The actual VMENTER/EXIT is in the .noinstr.text section. */
6680         vmx_vcpu_enter_exit(vcpu, vmx);
6681
6682         /*
6683          * We do not use IBRS in the kernel. If this vCPU has used the
6684          * SPEC_CTRL MSR it may have left it on; save the value and
6685          * turn it off. This is much more efficient than blindly adding
6686          * it to the atomic save/restore list. Especially as the former
6687          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6688          *
6689          * For non-nested case:
6690          * If the L01 MSR bitmap does not intercept the MSR, then we need to
6691          * save it.
6692          *
6693          * For nested case:
6694          * If the L02 MSR bitmap does not intercept the MSR, then we need to
6695          * save it.
6696          */
6697         if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6698                 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6699
6700         x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6701
6702         /* All fields are clean at this point */
6703         if (static_branch_unlikely(&enable_evmcs)) {
6704                 current_evmcs->hv_clean_fields |=
6705                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6706
6707                 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
6708         }
6709
6710         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6711         if (vmx->host_debugctlmsr)
6712                 update_debugctlmsr(vmx->host_debugctlmsr);
6713
6714 #ifndef CONFIG_X86_64
6715         /*
6716          * The sysexit path does not restore ds/es, so we must set them to
6717          * a reasonable value ourselves.
6718          *
6719          * We can't defer this to vmx_prepare_switch_to_host() since that
6720          * function may be executed in interrupt context, which saves and
6721          * restore segments around it, nullifying its effect.
6722          */
6723         loadsegment(ds, __USER_DS);
6724         loadsegment(es, __USER_DS);
6725 #endif
6726
6727         vmx_register_cache_reset(vcpu);
6728
6729         pt_guest_exit(vmx);
6730
6731         kvm_load_host_xsave_state(vcpu);
6732
6733         if (is_guest_mode(vcpu)) {
6734                 /*
6735                  * Track VMLAUNCH/VMRESUME that have made past guest state
6736                  * checking.
6737                  */
6738                 if (vmx->nested.nested_run_pending &&
6739                     !vmx->exit_reason.failed_vmentry)
6740                         ++vcpu->stat.nested_run;
6741
6742                 vmx->nested.nested_run_pending = 0;
6743         }
6744
6745         vmx->idt_vectoring_info = 0;
6746
6747         if (unlikely(vmx->fail)) {
6748                 vmx->exit_reason.full = 0xdead;
6749                 return EXIT_FASTPATH_NONE;
6750         }
6751
6752         vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
6753         if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
6754                 kvm_machine_check();
6755
6756         if (likely(!vmx->exit_reason.failed_vmentry))
6757                 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6758
6759         trace_kvm_exit(vmx->exit_reason.full, vcpu, KVM_ISA_VMX);
6760
6761         if (unlikely(vmx->exit_reason.failed_vmentry))
6762                 return EXIT_FASTPATH_NONE;
6763
6764         vmx->loaded_vmcs->launched = 1;
6765
6766         vmx_recover_nmi_blocking(vmx);
6767         vmx_complete_interrupts(vmx);
6768
6769         if (is_guest_mode(vcpu))
6770                 return EXIT_FASTPATH_NONE;
6771
6772         return vmx_exit_handlers_fastpath(vcpu);
6773 }
6774
6775 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6776 {
6777         struct vcpu_vmx *vmx = to_vmx(vcpu);
6778
6779         if (enable_pml)
6780                 vmx_destroy_pml_buffer(vmx);
6781         free_vpid(vmx->vpid);
6782         nested_vmx_free_vcpu(vcpu);
6783         free_loaded_vmcs(vmx->loaded_vmcs);
6784 }
6785
6786 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6787 {
6788         struct vmx_uret_msr *tsx_ctrl;
6789         struct vcpu_vmx *vmx;
6790         int i, cpu, err;
6791
6792         BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6793         vmx = to_vmx(vcpu);
6794
6795         err = -ENOMEM;
6796
6797         vmx->vpid = allocate_vpid();
6798
6799         /*
6800          * If PML is turned on, failure on enabling PML just results in failure
6801          * of creating the vcpu, therefore we can simplify PML logic (by
6802          * avoiding dealing with cases, such as enabling PML partially on vcpus
6803          * for the guest), etc.
6804          */
6805         if (enable_pml) {
6806                 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6807                 if (!vmx->pml_pg)
6808                         goto free_vpid;
6809         }
6810
6811         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
6812                 vmx->guest_uret_msrs[i].data = 0;
6813                 vmx->guest_uret_msrs[i].mask = -1ull;
6814         }
6815         if (boot_cpu_has(X86_FEATURE_RTM)) {
6816                 /*
6817                  * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
6818                  * Keep the host value unchanged to avoid changing CPUID bits
6819                  * under the host kernel's feet.
6820                  */
6821                 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
6822                 if (tsx_ctrl)
6823                         vmx->guest_uret_msrs[i].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6824         }
6825
6826         err = alloc_loaded_vmcs(&vmx->vmcs01);
6827         if (err < 0)
6828                 goto free_pml;
6829
6830         /* The MSR bitmap starts with all ones */
6831         bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6832         bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6833
6834         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
6835 #ifdef CONFIG_X86_64
6836         vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
6837         vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
6838         vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6839 #endif
6840         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6841         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6842         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6843         if (kvm_cstate_in_guest(vcpu->kvm)) {
6844                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
6845                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6846                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6847                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6848         }
6849         vmx->msr_bitmap_mode = 0;
6850
6851         vmx->loaded_vmcs = &vmx->vmcs01;
6852         cpu = get_cpu();
6853         vmx_vcpu_load(vcpu, cpu);
6854         vcpu->cpu = cpu;
6855         init_vmcs(vmx);
6856         vmx_vcpu_put(vcpu);
6857         put_cpu();
6858         if (cpu_need_virtualize_apic_accesses(vcpu)) {
6859                 err = alloc_apic_access_page(vcpu->kvm);
6860                 if (err)
6861                         goto free_vmcs;
6862         }
6863
6864         if (enable_ept && !enable_unrestricted_guest) {
6865                 err = init_rmode_identity_map(vcpu->kvm);
6866                 if (err)
6867                         goto free_vmcs;
6868         }
6869
6870         if (nested)
6871                 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
6872         else
6873                 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6874
6875         vcpu_setup_sgx_lepubkeyhash(vcpu);
6876
6877         vmx->nested.posted_intr_nv = -1;
6878         vmx->nested.current_vmptr = -1ull;
6879         vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
6880
6881         vcpu->arch.microcode_version = 0x100000000ULL;
6882         vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
6883
6884         /*
6885          * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6886          * or POSTED_INTR_WAKEUP_VECTOR.
6887          */
6888         vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6889         vmx->pi_desc.sn = 1;
6890
6891         return 0;
6892
6893 free_vmcs:
6894         free_loaded_vmcs(vmx->loaded_vmcs);
6895 free_pml:
6896         vmx_destroy_pml_buffer(vmx);
6897 free_vpid:
6898         free_vpid(vmx->vpid);
6899         return err;
6900 }
6901
6902 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6903 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6904
6905 static int vmx_vm_init(struct kvm *kvm)
6906 {
6907         if (!ple_gap)
6908                 kvm->arch.pause_in_guest = true;
6909
6910         if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6911                 switch (l1tf_mitigation) {
6912                 case L1TF_MITIGATION_OFF:
6913                 case L1TF_MITIGATION_FLUSH_NOWARN:
6914                         /* 'I explicitly don't care' is set */
6915                         break;
6916                 case L1TF_MITIGATION_FLUSH:
6917                 case L1TF_MITIGATION_FLUSH_NOSMT:
6918                 case L1TF_MITIGATION_FULL:
6919                         /*
6920                          * Warn upon starting the first VM in a potentially
6921                          * insecure environment.
6922                          */
6923                         if (sched_smt_active())
6924                                 pr_warn_once(L1TF_MSG_SMT);
6925                         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6926                                 pr_warn_once(L1TF_MSG_L1D);
6927                         break;
6928                 case L1TF_MITIGATION_FULL_FORCE:
6929                         /* Flush is enforced */
6930                         break;
6931                 }
6932         }
6933         return 0;
6934 }
6935
6936 static int __init vmx_check_processor_compat(void)
6937 {
6938         struct vmcs_config vmcs_conf;
6939         struct vmx_capability vmx_cap;
6940
6941         if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
6942             !this_cpu_has(X86_FEATURE_VMX)) {
6943                 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
6944                 return -EIO;
6945         }
6946
6947         if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6948                 return -EIO;
6949         if (nested)
6950                 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
6951         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6952                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6953                                 smp_processor_id());
6954                 return -EIO;
6955         }
6956         return 0;
6957 }
6958
6959 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6960 {
6961         u8 cache;
6962         u64 ipat = 0;
6963
6964         /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
6965          * memory aliases with conflicting memory types and sometimes MCEs.
6966          * We have to be careful as to what are honored and when.
6967          *
6968          * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
6969          * UC.  The effective memory type is UC or WC depending on guest PAT.
6970          * This was historically the source of MCEs and we want to be
6971          * conservative.
6972          *
6973          * When there is no need to deal with noncoherent DMA (e.g., no VT-d
6974          * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
6975          * EPT memory type is set to WB.  The effective memory type is forced
6976          * WB.
6977          *
6978          * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
6979          * EPT memory type is used to emulate guest CD/MTRR.
6980          */
6981
6982         if (is_mmio) {
6983                 cache = MTRR_TYPE_UNCACHABLE;
6984                 goto exit;
6985         }
6986
6987         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6988                 ipat = VMX_EPT_IPAT_BIT;
6989                 cache = MTRR_TYPE_WRBACK;
6990                 goto exit;
6991         }
6992
6993         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6994                 ipat = VMX_EPT_IPAT_BIT;
6995                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6996                         cache = MTRR_TYPE_WRBACK;
6997                 else
6998                         cache = MTRR_TYPE_UNCACHABLE;
6999                 goto exit;
7000         }
7001
7002         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
7003
7004 exit:
7005         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
7006 }
7007
7008 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
7009 {
7010         /*
7011          * These bits in the secondary execution controls field
7012          * are dynamic, the others are mostly based on the hypervisor
7013          * architecture and the guest's CPUID.  Do not touch the
7014          * dynamic bits.
7015          */
7016         u32 mask =
7017                 SECONDARY_EXEC_SHADOW_VMCS |
7018                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7019                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7020                 SECONDARY_EXEC_DESC;
7021
7022         u32 new_ctl = vmx->secondary_exec_control;
7023         u32 cur_ctl = secondary_exec_controls_get(vmx);
7024
7025         secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7026 }
7027
7028 /*
7029  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7030  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7031  */
7032 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7033 {
7034         struct vcpu_vmx *vmx = to_vmx(vcpu);
7035         struct kvm_cpuid_entry2 *entry;
7036
7037         vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7038         vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7039
7040 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
7041         if (entry && (entry->_reg & (_cpuid_mask)))                     \
7042                 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);     \
7043 } while (0)
7044
7045         entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7046         cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7047         cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7048         cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7049         cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7050         cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7051         cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7052         cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7053         cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7054         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7055         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7056         cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7057         cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7058         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7059         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7060
7061         entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7062         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7063         cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7064         cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7065         cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7066         cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7067         cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7068
7069 #undef cr4_fixed1_update
7070 }
7071
7072 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7073 {
7074         struct vcpu_vmx *vmx = to_vmx(vcpu);
7075
7076         if (kvm_mpx_supported()) {
7077                 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7078
7079                 if (mpx_enabled) {
7080                         vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7081                         vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7082                 } else {
7083                         vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7084                         vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7085                 }
7086         }
7087 }
7088
7089 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7090 {
7091         struct vcpu_vmx *vmx = to_vmx(vcpu);
7092         struct kvm_cpuid_entry2 *best = NULL;
7093         int i;
7094
7095         for (i = 0; i < PT_CPUID_LEAVES; i++) {
7096                 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7097                 if (!best)
7098                         return;
7099                 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7100                 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7101                 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7102                 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7103         }
7104
7105         /* Get the number of configurable Address Ranges for filtering */
7106         vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7107                                                 PT_CAP_num_address_ranges);
7108
7109         /* Initialize and clear the no dependency bits */
7110         vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7111                         RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7112
7113         /*
7114          * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7115          * will inject an #GP
7116          */
7117         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7118                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7119
7120         /*
7121          * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7122          * PSBFreq can be set
7123          */
7124         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7125                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7126                                 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7127
7128         /*
7129          * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7130          * MTCFreq can be set
7131          */
7132         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7133                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7134                                 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7135
7136         /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7137         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7138                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7139                                                         RTIT_CTL_PTW_EN);
7140
7141         /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7142         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7143                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7144
7145         /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7146         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7147                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7148
7149         /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7150         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7151                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7152
7153         /* unmask address range configure area */
7154         for (i = 0; i < vmx->pt_desc.addr_range; i++)
7155                 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7156 }
7157
7158 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7159 {
7160         struct vcpu_vmx *vmx = to_vmx(vcpu);
7161
7162         /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7163         vcpu->arch.xsaves_enabled = false;
7164
7165         if (cpu_has_secondary_exec_ctrls()) {
7166                 vmx_compute_secondary_exec_control(vmx);
7167                 vmcs_set_secondary_exec_control(vmx);
7168         }
7169
7170         if (nested_vmx_allowed(vcpu))
7171                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7172                         FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7173                         FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7174         else
7175                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7176                         ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7177                           FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7178
7179         if (nested_vmx_allowed(vcpu)) {
7180                 nested_vmx_cr_fixed1_bits_update(vcpu);
7181                 nested_vmx_entry_exit_ctls_update(vcpu);
7182         }
7183
7184         if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7185                         guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7186                 update_intel_pt_cfg(vcpu);
7187
7188         if (boot_cpu_has(X86_FEATURE_RTM)) {
7189                 struct vmx_uret_msr *msr;
7190                 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7191                 if (msr) {
7192                         bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7193                         vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7194                 }
7195         }
7196
7197         set_cr4_guest_host_mask(vmx);
7198
7199         vmx_write_encls_bitmap(vcpu, NULL);
7200         if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7201                 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7202         else
7203                 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7204
7205         if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7206                 vmx->msr_ia32_feature_control_valid_bits |=
7207                         FEAT_CTL_SGX_LC_ENABLED;
7208         else
7209                 vmx->msr_ia32_feature_control_valid_bits &=
7210                         ~FEAT_CTL_SGX_LC_ENABLED;
7211
7212         /* Refresh #PF interception to account for MAXPHYADDR changes. */
7213         vmx_update_exception_bitmap(vcpu);
7214 }
7215
7216 static __init void vmx_set_cpu_caps(void)
7217 {
7218         kvm_set_cpu_caps();
7219
7220         /* CPUID 0x1 */
7221         if (nested)
7222                 kvm_cpu_cap_set(X86_FEATURE_VMX);
7223
7224         /* CPUID 0x7 */
7225         if (kvm_mpx_supported())
7226                 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7227         if (!cpu_has_vmx_invpcid())
7228                 kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7229         if (vmx_pt_mode_is_host_guest())
7230                 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7231
7232         if (!enable_sgx) {
7233                 kvm_cpu_cap_clear(X86_FEATURE_SGX);
7234                 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7235                 kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7236                 kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7237         }
7238
7239         if (vmx_umip_emulated())
7240                 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7241
7242         /* CPUID 0xD.1 */
7243         supported_xss = 0;
7244         if (!cpu_has_vmx_xsaves())
7245                 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7246
7247         /* CPUID 0x80000001 and 0x7 (RDPID) */
7248         if (!cpu_has_vmx_rdtscp()) {
7249                 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7250                 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7251         }
7252
7253         if (cpu_has_vmx_waitpkg())
7254                 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7255 }
7256
7257 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7258 {
7259         to_vmx(vcpu)->req_immediate_exit = true;
7260 }
7261
7262 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7263                                   struct x86_instruction_info *info)
7264 {
7265         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7266         unsigned short port;
7267         bool intercept;
7268         int size;
7269
7270         if (info->intercept == x86_intercept_in ||
7271             info->intercept == x86_intercept_ins) {
7272                 port = info->src_val;
7273                 size = info->dst_bytes;
7274         } else {
7275                 port = info->dst_val;
7276                 size = info->src_bytes;
7277         }
7278
7279         /*
7280          * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7281          * VM-exits depend on the 'unconditional IO exiting' VM-execution
7282          * control.
7283          *
7284          * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7285          */
7286         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7287                 intercept = nested_cpu_has(vmcs12,
7288                                            CPU_BASED_UNCOND_IO_EXITING);
7289         else
7290                 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7291
7292         /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7293         return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7294 }
7295
7296 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7297                                struct x86_instruction_info *info,
7298                                enum x86_intercept_stage stage,
7299                                struct x86_exception *exception)
7300 {
7301         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7302
7303         switch (info->intercept) {
7304         /*
7305          * RDPID causes #UD if disabled through secondary execution controls.
7306          * Because it is marked as EmulateOnUD, we need to intercept it here.
7307          * Note, RDPID is hidden behind ENABLE_RDTSCP.
7308          */
7309         case x86_intercept_rdpid:
7310                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7311                         exception->vector = UD_VECTOR;
7312                         exception->error_code_valid = false;
7313                         return X86EMUL_PROPAGATE_FAULT;
7314                 }
7315                 break;
7316
7317         case x86_intercept_in:
7318         case x86_intercept_ins:
7319         case x86_intercept_out:
7320         case x86_intercept_outs:
7321                 return vmx_check_intercept_io(vcpu, info);
7322
7323         case x86_intercept_lgdt:
7324         case x86_intercept_lidt:
7325         case x86_intercept_lldt:
7326         case x86_intercept_ltr:
7327         case x86_intercept_sgdt:
7328         case x86_intercept_sidt:
7329         case x86_intercept_sldt:
7330         case x86_intercept_str:
7331                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7332                         return X86EMUL_CONTINUE;
7333
7334                 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7335                 break;
7336
7337         /* TODO: check more intercepts... */
7338         default:
7339                 break;
7340         }
7341
7342         return X86EMUL_UNHANDLEABLE;
7343 }
7344
7345 #ifdef CONFIG_X86_64
7346 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7347 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7348                                   u64 divisor, u64 *result)
7349 {
7350         u64 low = a << shift, high = a >> (64 - shift);
7351
7352         /* To avoid the overflow on divq */
7353         if (high >= divisor)
7354                 return 1;
7355
7356         /* Low hold the result, high hold rem which is discarded */
7357         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7358             "rm" (divisor), "0" (low), "1" (high));
7359         *result = low;
7360
7361         return 0;
7362 }
7363
7364 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7365                             bool *expired)
7366 {
7367         struct vcpu_vmx *vmx;
7368         u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7369         struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7370
7371         vmx = to_vmx(vcpu);
7372         tscl = rdtsc();
7373         guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7374         delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7375         lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7376                                                     ktimer->timer_advance_ns);
7377
7378         if (delta_tsc > lapic_timer_advance_cycles)
7379                 delta_tsc -= lapic_timer_advance_cycles;
7380         else
7381                 delta_tsc = 0;
7382
7383         /* Convert to host delta tsc if tsc scaling is enabled */
7384         if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7385             delta_tsc && u64_shl_div_u64(delta_tsc,
7386                                 kvm_tsc_scaling_ratio_frac_bits,
7387                                 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
7388                 return -ERANGE;
7389
7390         /*
7391          * If the delta tsc can't fit in the 32 bit after the multi shift,
7392          * we can't use the preemption timer.
7393          * It's possible that it fits on later vmentries, but checking
7394          * on every vmentry is costly so we just use an hrtimer.
7395          */
7396         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7397                 return -ERANGE;
7398
7399         vmx->hv_deadline_tsc = tscl + delta_tsc;
7400         *expired = !delta_tsc;
7401         return 0;
7402 }
7403
7404 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7405 {
7406         to_vmx(vcpu)->hv_deadline_tsc = -1;
7407 }
7408 #endif
7409
7410 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7411 {
7412         if (!kvm_pause_in_guest(vcpu->kvm))
7413                 shrink_ple_window(vcpu);
7414 }
7415
7416 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
7417 {
7418         struct vcpu_vmx *vmx = to_vmx(vcpu);
7419
7420         if (is_guest_mode(vcpu)) {
7421                 vmx->nested.update_vmcs01_cpu_dirty_logging = true;
7422                 return;
7423         }
7424
7425         /*
7426          * Note, cpu_dirty_logging_count can be changed concurrent with this
7427          * code, but in that case another update request will be made and so
7428          * the guest will never run with a stale PML value.
7429          */
7430         if (vcpu->kvm->arch.cpu_dirty_logging_count)
7431                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7432         else
7433                 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7434 }
7435
7436 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7437 {
7438         if (pi_pre_block(vcpu))
7439                 return 1;
7440
7441         if (kvm_lapic_hv_timer_in_use(vcpu))
7442                 kvm_lapic_switch_to_sw_timer(vcpu);
7443
7444         return 0;
7445 }
7446
7447 static void vmx_post_block(struct kvm_vcpu *vcpu)
7448 {
7449         if (kvm_x86_ops.set_hv_timer)
7450                 kvm_lapic_switch_to_hv_timer(vcpu);
7451
7452         pi_post_block(vcpu);
7453 }
7454
7455 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7456 {
7457         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7458                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7459                         FEAT_CTL_LMCE_ENABLED;
7460         else
7461                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7462                         ~FEAT_CTL_LMCE_ENABLED;
7463 }
7464
7465 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7466 {
7467         /* we need a nested vmexit to enter SMM, postpone if run is pending */
7468         if (to_vmx(vcpu)->nested.nested_run_pending)
7469                 return -EBUSY;
7470         return !is_smm(vcpu);
7471 }
7472
7473 static int vmx_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7474 {
7475         struct vcpu_vmx *vmx = to_vmx(vcpu);
7476
7477         vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7478         if (vmx->nested.smm.guest_mode)
7479                 nested_vmx_vmexit(vcpu, -1, 0, 0);
7480
7481         vmx->nested.smm.vmxon = vmx->nested.vmxon;
7482         vmx->nested.vmxon = false;
7483         vmx_clear_hlt(vcpu);
7484         return 0;
7485 }
7486
7487 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7488 {
7489         struct vcpu_vmx *vmx = to_vmx(vcpu);
7490         int ret;
7491
7492         if (vmx->nested.smm.vmxon) {
7493                 vmx->nested.vmxon = true;
7494                 vmx->nested.smm.vmxon = false;
7495         }
7496
7497         if (vmx->nested.smm.guest_mode) {
7498                 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7499                 if (ret)
7500                         return ret;
7501
7502                 vmx->nested.smm.guest_mode = false;
7503         }
7504         return 0;
7505 }
7506
7507 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
7508 {
7509         /* RSM will cause a vmexit anyway.  */
7510 }
7511
7512 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7513 {
7514         return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
7515 }
7516
7517 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7518 {
7519         if (is_guest_mode(vcpu)) {
7520                 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7521
7522                 if (hrtimer_try_to_cancel(timer) == 1)
7523                         hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7524         }
7525 }
7526
7527 static void hardware_unsetup(void)
7528 {
7529         if (nested)
7530                 nested_vmx_hardware_unsetup();
7531
7532         free_kvm_area();
7533 }
7534
7535 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7536 {
7537         ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7538                           BIT(APICV_INHIBIT_REASON_HYPERV);
7539
7540         return supported & BIT(bit);
7541 }
7542
7543 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7544         .hardware_unsetup = hardware_unsetup,
7545
7546         .hardware_enable = hardware_enable,
7547         .hardware_disable = hardware_disable,
7548         .cpu_has_accelerated_tpr = report_flexpriority,
7549         .has_emulated_msr = vmx_has_emulated_msr,
7550
7551         .vm_size = sizeof(struct kvm_vmx),
7552         .vm_init = vmx_vm_init,
7553
7554         .vcpu_create = vmx_create_vcpu,
7555         .vcpu_free = vmx_free_vcpu,
7556         .vcpu_reset = vmx_vcpu_reset,
7557
7558         .prepare_guest_switch = vmx_prepare_switch_to_guest,
7559         .vcpu_load = vmx_vcpu_load,
7560         .vcpu_put = vmx_vcpu_put,
7561
7562         .update_exception_bitmap = vmx_update_exception_bitmap,
7563         .get_msr_feature = vmx_get_msr_feature,
7564         .get_msr = vmx_get_msr,
7565         .set_msr = vmx_set_msr,
7566         .get_segment_base = vmx_get_segment_base,
7567         .get_segment = vmx_get_segment,
7568         .set_segment = vmx_set_segment,
7569         .get_cpl = vmx_get_cpl,
7570         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7571         .set_cr0 = vmx_set_cr0,
7572         .is_valid_cr4 = vmx_is_valid_cr4,
7573         .set_cr4 = vmx_set_cr4,
7574         .set_efer = vmx_set_efer,
7575         .get_idt = vmx_get_idt,
7576         .set_idt = vmx_set_idt,
7577         .get_gdt = vmx_get_gdt,
7578         .set_gdt = vmx_set_gdt,
7579         .set_dr7 = vmx_set_dr7,
7580         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7581         .cache_reg = vmx_cache_reg,
7582         .get_rflags = vmx_get_rflags,
7583         .set_rflags = vmx_set_rflags,
7584
7585         .tlb_flush_all = vmx_flush_tlb_all,
7586         .tlb_flush_current = vmx_flush_tlb_current,
7587         .tlb_flush_gva = vmx_flush_tlb_gva,
7588         .tlb_flush_guest = vmx_flush_tlb_guest,
7589
7590         .run = vmx_vcpu_run,
7591         .handle_exit = vmx_handle_exit,
7592         .skip_emulated_instruction = vmx_skip_emulated_instruction,
7593         .update_emulated_instruction = vmx_update_emulated_instruction,
7594         .set_interrupt_shadow = vmx_set_interrupt_shadow,
7595         .get_interrupt_shadow = vmx_get_interrupt_shadow,
7596         .patch_hypercall = vmx_patch_hypercall,
7597         .set_irq = vmx_inject_irq,
7598         .set_nmi = vmx_inject_nmi,
7599         .queue_exception = vmx_queue_exception,
7600         .cancel_injection = vmx_cancel_injection,
7601         .interrupt_allowed = vmx_interrupt_allowed,
7602         .nmi_allowed = vmx_nmi_allowed,
7603         .get_nmi_mask = vmx_get_nmi_mask,
7604         .set_nmi_mask = vmx_set_nmi_mask,
7605         .enable_nmi_window = vmx_enable_nmi_window,
7606         .enable_irq_window = vmx_enable_irq_window,
7607         .update_cr8_intercept = vmx_update_cr8_intercept,
7608         .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7609         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7610         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7611         .load_eoi_exitmap = vmx_load_eoi_exitmap,
7612         .apicv_post_state_restore = vmx_apicv_post_state_restore,
7613         .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7614         .hwapic_irr_update = vmx_hwapic_irr_update,
7615         .hwapic_isr_update = vmx_hwapic_isr_update,
7616         .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7617         .sync_pir_to_irr = vmx_sync_pir_to_irr,
7618         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7619         .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
7620
7621         .set_tss_addr = vmx_set_tss_addr,
7622         .set_identity_map_addr = vmx_set_identity_map_addr,
7623         .get_mt_mask = vmx_get_mt_mask,
7624
7625         .get_exit_info = vmx_get_exit_info,
7626
7627         .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
7628
7629         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7630
7631         .get_l2_tsc_offset = vmx_get_l2_tsc_offset,
7632         .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
7633         .write_tsc_offset = vmx_write_tsc_offset,
7634         .write_tsc_multiplier = vmx_write_tsc_multiplier,
7635
7636         .load_mmu_pgd = vmx_load_mmu_pgd,
7637
7638         .check_intercept = vmx_check_intercept,
7639         .handle_exit_irqoff = vmx_handle_exit_irqoff,
7640
7641         .request_immediate_exit = vmx_request_immediate_exit,
7642
7643         .sched_in = vmx_sched_in,
7644
7645         .cpu_dirty_log_size = PML_ENTITY_NUM,
7646         .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
7647
7648         .pre_block = vmx_pre_block,
7649         .post_block = vmx_post_block,
7650
7651         .pmu_ops = &intel_pmu_ops,
7652         .nested_ops = &vmx_nested_ops,
7653
7654         .update_pi_irte = pi_update_irte,
7655         .start_assignment = vmx_pi_start_assignment,
7656
7657 #ifdef CONFIG_X86_64
7658         .set_hv_timer = vmx_set_hv_timer,
7659         .cancel_hv_timer = vmx_cancel_hv_timer,
7660 #endif
7661
7662         .setup_mce = vmx_setup_mce,
7663
7664         .smi_allowed = vmx_smi_allowed,
7665         .enter_smm = vmx_enter_smm,
7666         .leave_smm = vmx_leave_smm,
7667         .enable_smi_window = vmx_enable_smi_window,
7668
7669         .can_emulate_instruction = vmx_can_emulate_instruction,
7670         .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7671         .migrate_timers = vmx_migrate_timers,
7672
7673         .msr_filter_changed = vmx_msr_filter_changed,
7674         .complete_emulated_msr = kvm_complete_insn_gp,
7675
7676         .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
7677 };
7678
7679 static __init void vmx_setup_user_return_msrs(void)
7680 {
7681
7682         /*
7683          * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
7684          * will emulate SYSCALL in legacy mode if the vendor string in guest
7685          * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
7686          * support this emulation, MSR_STAR is included in the list for i386,
7687          * but is never loaded into hardware.  MSR_CSTAR is also never loaded
7688          * into hardware and is here purely for emulation purposes.
7689          */
7690         const u32 vmx_uret_msrs_list[] = {
7691         #ifdef CONFIG_X86_64
7692                 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
7693         #endif
7694                 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
7695                 MSR_IA32_TSX_CTRL,
7696         };
7697         int i;
7698
7699         BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
7700
7701         for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
7702                 kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
7703 }
7704
7705 static __init int hardware_setup(void)
7706 {
7707         unsigned long host_bndcfgs;
7708         struct desc_ptr dt;
7709         int r, ept_lpage_level;
7710
7711         store_idt(&dt);
7712         host_idt_base = dt.address;
7713
7714         vmx_setup_user_return_msrs();
7715
7716         if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7717                 return -EIO;
7718
7719         if (boot_cpu_has(X86_FEATURE_NX))
7720                 kvm_enable_efer_bits(EFER_NX);
7721
7722         if (boot_cpu_has(X86_FEATURE_MPX)) {
7723                 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7724                 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7725         }
7726
7727         if (!cpu_has_vmx_mpx())
7728                 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7729                                     XFEATURE_MASK_BNDCSR);
7730
7731         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7732             !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7733                 enable_vpid = 0;
7734
7735         if (!cpu_has_vmx_ept() ||
7736             !cpu_has_vmx_ept_4levels() ||
7737             !cpu_has_vmx_ept_mt_wb() ||
7738             !cpu_has_vmx_invept_global())
7739                 enable_ept = 0;
7740
7741         /* NX support is required for shadow paging. */
7742         if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
7743                 pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n");
7744                 return -EOPNOTSUPP;
7745         }
7746
7747         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7748                 enable_ept_ad_bits = 0;
7749
7750         if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7751                 enable_unrestricted_guest = 0;
7752
7753         if (!cpu_has_vmx_flexpriority())
7754                 flexpriority_enabled = 0;
7755
7756         if (!cpu_has_virtual_nmis())
7757                 enable_vnmi = 0;
7758
7759         /*
7760          * set_apic_access_page_addr() is used to reload apic access
7761          * page upon invalidation.  No need to do anything if not
7762          * using the APIC_ACCESS_ADDR VMCS field.
7763          */
7764         if (!flexpriority_enabled)
7765                 vmx_x86_ops.set_apic_access_page_addr = NULL;
7766
7767         if (!cpu_has_vmx_tpr_shadow())
7768                 vmx_x86_ops.update_cr8_intercept = NULL;
7769
7770 #if IS_ENABLED(CONFIG_HYPERV)
7771         if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7772             && enable_ept) {
7773                 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7774                 vmx_x86_ops.tlb_remote_flush_with_range =
7775                                 hv_remote_flush_tlb_with_range;
7776         }
7777 #endif
7778
7779         if (!cpu_has_vmx_ple()) {
7780                 ple_gap = 0;
7781                 ple_window = 0;
7782                 ple_window_grow = 0;
7783                 ple_window_max = 0;
7784                 ple_window_shrink = 0;
7785         }
7786
7787         if (!cpu_has_vmx_apicv()) {
7788                 enable_apicv = 0;
7789                 vmx_x86_ops.sync_pir_to_irr = NULL;
7790         }
7791
7792         if (cpu_has_vmx_tsc_scaling()) {
7793                 kvm_has_tsc_control = true;
7794                 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7795                 kvm_tsc_scaling_ratio_frac_bits = 48;
7796         }
7797
7798         kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
7799
7800         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7801
7802         if (enable_ept)
7803                 kvm_mmu_set_ept_masks(enable_ept_ad_bits,
7804                                       cpu_has_vmx_ept_execute_only());
7805
7806         if (!enable_ept)
7807                 ept_lpage_level = 0;
7808         else if (cpu_has_vmx_ept_1g_page())
7809                 ept_lpage_level = PG_LEVEL_1G;
7810         else if (cpu_has_vmx_ept_2m_page())
7811                 ept_lpage_level = PG_LEVEL_2M;
7812         else
7813                 ept_lpage_level = PG_LEVEL_4K;
7814         kvm_configure_mmu(enable_ept, vmx_get_max_tdp_level(), ept_lpage_level);
7815
7816         /*
7817          * Only enable PML when hardware supports PML feature, and both EPT
7818          * and EPT A/D bit features are enabled -- PML depends on them to work.
7819          */
7820         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7821                 enable_pml = 0;
7822
7823         if (!enable_pml)
7824                 vmx_x86_ops.cpu_dirty_log_size = 0;
7825
7826         if (!cpu_has_vmx_preemption_timer())
7827                 enable_preemption_timer = false;
7828
7829         if (enable_preemption_timer) {
7830                 u64 use_timer_freq = 5000ULL * 1000 * 1000;
7831                 u64 vmx_msr;
7832
7833                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7834                 cpu_preemption_timer_multi =
7835                         vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7836
7837                 if (tsc_khz)
7838                         use_timer_freq = (u64)tsc_khz * 1000;
7839                 use_timer_freq >>= cpu_preemption_timer_multi;
7840
7841                 /*
7842                  * KVM "disables" the preemption timer by setting it to its max
7843                  * value.  Don't use the timer if it might cause spurious exits
7844                  * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7845                  */
7846                 if (use_timer_freq > 0xffffffffu / 10)
7847                         enable_preemption_timer = false;
7848         }
7849
7850         if (!enable_preemption_timer) {
7851                 vmx_x86_ops.set_hv_timer = NULL;
7852                 vmx_x86_ops.cancel_hv_timer = NULL;
7853                 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
7854         }
7855
7856         kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
7857
7858         kvm_mce_cap_supported |= MCG_LMCE_P;
7859
7860         if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7861                 return -EINVAL;
7862         if (!enable_ept || !cpu_has_vmx_intel_pt())
7863                 pt_mode = PT_MODE_SYSTEM;
7864
7865         setup_default_sgx_lepubkeyhash();
7866
7867         if (nested) {
7868                 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7869                                            vmx_capability.ept);
7870
7871                 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7872                 if (r)
7873                         return r;
7874         }
7875
7876         vmx_set_cpu_caps();
7877
7878         r = alloc_kvm_area();
7879         if (r)
7880                 nested_vmx_hardware_unsetup();
7881         return r;
7882 }
7883
7884 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
7885         .cpu_has_kvm_support = cpu_has_kvm_support,
7886         .disabled_by_bios = vmx_disabled_by_bios,
7887         .check_processor_compatibility = vmx_check_processor_compat,
7888         .hardware_setup = hardware_setup,
7889
7890         .runtime_ops = &vmx_x86_ops,
7891 };
7892
7893 static void vmx_cleanup_l1d_flush(void)
7894 {
7895         if (vmx_l1d_flush_pages) {
7896                 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7897                 vmx_l1d_flush_pages = NULL;
7898         }
7899         /* Restore state so sysfs ignores VMX */
7900         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7901 }
7902
7903 static void vmx_exit(void)
7904 {
7905 #ifdef CONFIG_KEXEC_CORE
7906         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7907         synchronize_rcu();
7908 #endif
7909
7910         kvm_exit();
7911
7912 #if IS_ENABLED(CONFIG_HYPERV)
7913         if (static_branch_unlikely(&enable_evmcs)) {
7914                 int cpu;
7915                 struct hv_vp_assist_page *vp_ap;
7916                 /*
7917                  * Reset everything to support using non-enlightened VMCS
7918                  * access later (e.g. when we reload the module with
7919                  * enlightened_vmcs=0)
7920                  */
7921                 for_each_online_cpu(cpu) {
7922                         vp_ap = hv_get_vp_assist_page(cpu);
7923
7924                         if (!vp_ap)
7925                                 continue;
7926
7927                         vp_ap->nested_control.features.directhypercall = 0;
7928                         vp_ap->current_nested_vmcs = 0;
7929                         vp_ap->enlighten_vmentry = 0;
7930                 }
7931
7932                 static_branch_disable(&enable_evmcs);
7933         }
7934 #endif
7935         vmx_cleanup_l1d_flush();
7936
7937         allow_smaller_maxphyaddr = false;
7938 }
7939 module_exit(vmx_exit);
7940
7941 static int __init vmx_init(void)
7942 {
7943         int r, cpu;
7944
7945 #if IS_ENABLED(CONFIG_HYPERV)
7946         /*
7947          * Enlightened VMCS usage should be recommended and the host needs
7948          * to support eVMCS v1 or above. We can also disable eVMCS support
7949          * with module parameter.
7950          */
7951         if (enlightened_vmcs &&
7952             ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7953             (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7954             KVM_EVMCS_VERSION) {
7955                 int cpu;
7956
7957                 /* Check that we have assist pages on all online CPUs */
7958                 for_each_online_cpu(cpu) {
7959                         if (!hv_get_vp_assist_page(cpu)) {
7960                                 enlightened_vmcs = false;
7961                                 break;
7962                         }
7963                 }
7964
7965                 if (enlightened_vmcs) {
7966                         pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7967                         static_branch_enable(&enable_evmcs);
7968                 }
7969
7970                 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
7971                         vmx_x86_ops.enable_direct_tlbflush
7972                                 = hv_enable_direct_tlbflush;
7973
7974         } else {
7975                 enlightened_vmcs = false;
7976         }
7977 #endif
7978
7979         r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
7980                      __alignof__(struct vcpu_vmx), THIS_MODULE);
7981         if (r)
7982                 return r;
7983
7984         /*
7985          * Must be called after kvm_init() so enable_ept is properly set
7986          * up. Hand the parameter mitigation value in which was stored in
7987          * the pre module init parser. If no parameter was given, it will
7988          * contain 'auto' which will be turned into the default 'cond'
7989          * mitigation mode.
7990          */
7991         r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
7992         if (r) {
7993                 vmx_exit();
7994                 return r;
7995         }
7996
7997         for_each_possible_cpu(cpu) {
7998                 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
7999
8000                 pi_init_cpu(cpu);
8001         }
8002
8003 #ifdef CONFIG_KEXEC_CORE
8004         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8005                            crash_vmclear_local_loaded_vmcss);
8006 #endif
8007         vmx_check_vmcs12_offsets();
8008
8009         /*
8010          * Shadow paging doesn't have a (further) performance penalty
8011          * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8012          * by default
8013          */
8014         if (!enable_ept)
8015                 allow_smaller_maxphyaddr = true;
8016
8017         return 0;
8018 }
8019 module_init(vmx_init);