9d97c9a2a15d
[linux.git] /
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37
38 #include <asm/page.h>
39 #include <asm/pgalloc.h>
40 #include <asm/tlb.h>
41
42 #include <linux/io.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
47 #include "internal.h"
48 #include "hugetlb_vmemmap.h"
49
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
53
54 #ifdef CONFIG_CMA
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_page(struct page *page, unsigned int order)
58 {
59         return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
60                                 1 << order);
61 }
62 #else
63 static bool hugetlb_cma_page(struct page *page, unsigned int order)
64 {
65         return false;
66 }
67 #endif
68 static unsigned long hugetlb_cma_size __initdata;
69
70 __initdata LIST_HEAD(huge_boot_pages);
71
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
78
79 /*
80  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81  * free_huge_pages, and surplus_huge_pages.
82  */
83 DEFINE_SPINLOCK(hugetlb_lock);
84
85 /*
86  * Serializes faults on the same logical page.  This is used to
87  * prevent spurious OOMs when the hugepage pool is fully utilized.
88  */
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
91
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97
98 static inline bool subpool_is_free(struct hugepage_subpool *spool)
99 {
100         if (spool->count)
101                 return false;
102         if (spool->max_hpages != -1)
103                 return spool->used_hpages == 0;
104         if (spool->min_hpages != -1)
105                 return spool->rsv_hpages == spool->min_hpages;
106
107         return true;
108 }
109
110 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
111                                                 unsigned long irq_flags)
112 {
113         spin_unlock_irqrestore(&spool->lock, irq_flags);
114
115         /* If no pages are used, and no other handles to the subpool
116          * remain, give up any reservations based on minimum size and
117          * free the subpool */
118         if (subpool_is_free(spool)) {
119                 if (spool->min_hpages != -1)
120                         hugetlb_acct_memory(spool->hstate,
121                                                 -spool->min_hpages);
122                 kfree(spool);
123         }
124 }
125
126 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
127                                                 long min_hpages)
128 {
129         struct hugepage_subpool *spool;
130
131         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
132         if (!spool)
133                 return NULL;
134
135         spin_lock_init(&spool->lock);
136         spool->count = 1;
137         spool->max_hpages = max_hpages;
138         spool->hstate = h;
139         spool->min_hpages = min_hpages;
140
141         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
142                 kfree(spool);
143                 return NULL;
144         }
145         spool->rsv_hpages = min_hpages;
146
147         return spool;
148 }
149
150 void hugepage_put_subpool(struct hugepage_subpool *spool)
151 {
152         unsigned long flags;
153
154         spin_lock_irqsave(&spool->lock, flags);
155         BUG_ON(!spool->count);
156         spool->count--;
157         unlock_or_release_subpool(spool, flags);
158 }
159
160 /*
161  * Subpool accounting for allocating and reserving pages.
162  * Return -ENOMEM if there are not enough resources to satisfy the
163  * request.  Otherwise, return the number of pages by which the
164  * global pools must be adjusted (upward).  The returned value may
165  * only be different than the passed value (delta) in the case where
166  * a subpool minimum size must be maintained.
167  */
168 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
169                                       long delta)
170 {
171         long ret = delta;
172
173         if (!spool)
174                 return ret;
175
176         spin_lock_irq(&spool->lock);
177
178         if (spool->max_hpages != -1) {          /* maximum size accounting */
179                 if ((spool->used_hpages + delta) <= spool->max_hpages)
180                         spool->used_hpages += delta;
181                 else {
182                         ret = -ENOMEM;
183                         goto unlock_ret;
184                 }
185         }
186
187         /* minimum size accounting */
188         if (spool->min_hpages != -1 && spool->rsv_hpages) {
189                 if (delta > spool->rsv_hpages) {
190                         /*
191                          * Asking for more reserves than those already taken on
192                          * behalf of subpool.  Return difference.
193                          */
194                         ret = delta - spool->rsv_hpages;
195                         spool->rsv_hpages = 0;
196                 } else {
197                         ret = 0;        /* reserves already accounted for */
198                         spool->rsv_hpages -= delta;
199                 }
200         }
201
202 unlock_ret:
203         spin_unlock_irq(&spool->lock);
204         return ret;
205 }
206
207 /*
208  * Subpool accounting for freeing and unreserving pages.
209  * Return the number of global page reservations that must be dropped.
210  * The return value may only be different than the passed value (delta)
211  * in the case where a subpool minimum size must be maintained.
212  */
213 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
214                                        long delta)
215 {
216         long ret = delta;
217         unsigned long flags;
218
219         if (!spool)
220                 return delta;
221
222         spin_lock_irqsave(&spool->lock, flags);
223
224         if (spool->max_hpages != -1)            /* maximum size accounting */
225                 spool->used_hpages -= delta;
226
227          /* minimum size accounting */
228         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
229                 if (spool->rsv_hpages + delta <= spool->min_hpages)
230                         ret = 0;
231                 else
232                         ret = spool->rsv_hpages + delta - spool->min_hpages;
233
234                 spool->rsv_hpages += delta;
235                 if (spool->rsv_hpages > spool->min_hpages)
236                         spool->rsv_hpages = spool->min_hpages;
237         }
238
239         /*
240          * If hugetlbfs_put_super couldn't free spool due to an outstanding
241          * quota reference, free it now.
242          */
243         unlock_or_release_subpool(spool, flags);
244
245         return ret;
246 }
247
248 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
249 {
250         return HUGETLBFS_SB(inode->i_sb)->spool;
251 }
252
253 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
254 {
255         return subpool_inode(file_inode(vma->vm_file));
256 }
257
258 /* Helper that removes a struct file_region from the resv_map cache and returns
259  * it for use.
260  */
261 static struct file_region *
262 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
263 {
264         struct file_region *nrg;
265
266         VM_BUG_ON(resv->region_cache_count <= 0);
267
268         resv->region_cache_count--;
269         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
270         list_del(&nrg->link);
271
272         nrg->from = from;
273         nrg->to = to;
274
275         return nrg;
276 }
277
278 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
279                                               struct file_region *rg)
280 {
281 #ifdef CONFIG_CGROUP_HUGETLB
282         nrg->reservation_counter = rg->reservation_counter;
283         nrg->css = rg->css;
284         if (rg->css)
285                 css_get(rg->css);
286 #endif
287 }
288
289 /* Helper that records hugetlb_cgroup uncharge info. */
290 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
291                                                 struct hstate *h,
292                                                 struct resv_map *resv,
293                                                 struct file_region *nrg)
294 {
295 #ifdef CONFIG_CGROUP_HUGETLB
296         if (h_cg) {
297                 nrg->reservation_counter =
298                         &h_cg->rsvd_hugepage[hstate_index(h)];
299                 nrg->css = &h_cg->css;
300                 /*
301                  * The caller will hold exactly one h_cg->css reference for the
302                  * whole contiguous reservation region. But this area might be
303                  * scattered when there are already some file_regions reside in
304                  * it. As a result, many file_regions may share only one css
305                  * reference. In order to ensure that one file_region must hold
306                  * exactly one h_cg->css reference, we should do css_get for
307                  * each file_region and leave the reference held by caller
308                  * untouched.
309                  */
310                 css_get(&h_cg->css);
311                 if (!resv->pages_per_hpage)
312                         resv->pages_per_hpage = pages_per_huge_page(h);
313                 /* pages_per_hpage should be the same for all entries in
314                  * a resv_map.
315                  */
316                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
317         } else {
318                 nrg->reservation_counter = NULL;
319                 nrg->css = NULL;
320         }
321 #endif
322 }
323
324 static void put_uncharge_info(struct file_region *rg)
325 {
326 #ifdef CONFIG_CGROUP_HUGETLB
327         if (rg->css)
328                 css_put(rg->css);
329 #endif
330 }
331
332 static bool has_same_uncharge_info(struct file_region *rg,
333                                    struct file_region *org)
334 {
335 #ifdef CONFIG_CGROUP_HUGETLB
336         return rg->reservation_counter == org->reservation_counter &&
337                rg->css == org->css;
338
339 #else
340         return true;
341 #endif
342 }
343
344 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
345 {
346         struct file_region *nrg, *prg;
347
348         prg = list_prev_entry(rg, link);
349         if (&prg->link != &resv->regions && prg->to == rg->from &&
350             has_same_uncharge_info(prg, rg)) {
351                 prg->to = rg->to;
352
353                 list_del(&rg->link);
354                 put_uncharge_info(rg);
355                 kfree(rg);
356
357                 rg = prg;
358         }
359
360         nrg = list_next_entry(rg, link);
361         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
362             has_same_uncharge_info(nrg, rg)) {
363                 nrg->from = rg->from;
364
365                 list_del(&rg->link);
366                 put_uncharge_info(rg);
367                 kfree(rg);
368         }
369 }
370
371 static inline long
372 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
373                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
374                      long *regions_needed)
375 {
376         struct file_region *nrg;
377
378         if (!regions_needed) {
379                 nrg = get_file_region_entry_from_cache(map, from, to);
380                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
381                 list_add(&nrg->link, rg);
382                 coalesce_file_region(map, nrg);
383         } else
384                 *regions_needed += 1;
385
386         return to - from;
387 }
388
389 /*
390  * Must be called with resv->lock held.
391  *
392  * Calling this with regions_needed != NULL will count the number of pages
393  * to be added but will not modify the linked list. And regions_needed will
394  * indicate the number of file_regions needed in the cache to carry out to add
395  * the regions for this range.
396  */
397 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
398                                      struct hugetlb_cgroup *h_cg,
399                                      struct hstate *h, long *regions_needed)
400 {
401         long add = 0;
402         struct list_head *head = &resv->regions;
403         long last_accounted_offset = f;
404         struct file_region *iter, *trg = NULL;
405         struct list_head *rg = NULL;
406
407         if (regions_needed)
408                 *regions_needed = 0;
409
410         /* In this loop, we essentially handle an entry for the range
411          * [last_accounted_offset, iter->from), at every iteration, with some
412          * bounds checking.
413          */
414         list_for_each_entry_safe(iter, trg, head, link) {
415                 /* Skip irrelevant regions that start before our range. */
416                 if (iter->from < f) {
417                         /* If this region ends after the last accounted offset,
418                          * then we need to update last_accounted_offset.
419                          */
420                         if (iter->to > last_accounted_offset)
421                                 last_accounted_offset = iter->to;
422                         continue;
423                 }
424
425                 /* When we find a region that starts beyond our range, we've
426                  * finished.
427                  */
428                 if (iter->from >= t) {
429                         rg = iter->link.prev;
430                         break;
431                 }
432
433                 /* Add an entry for last_accounted_offset -> iter->from, and
434                  * update last_accounted_offset.
435                  */
436                 if (iter->from > last_accounted_offset)
437                         add += hugetlb_resv_map_add(resv, iter->link.prev,
438                                                     last_accounted_offset,
439                                                     iter->from, h, h_cg,
440                                                     regions_needed);
441
442                 last_accounted_offset = iter->to;
443         }
444
445         /* Handle the case where our range extends beyond
446          * last_accounted_offset.
447          */
448         if (!rg)
449                 rg = head->prev;
450         if (last_accounted_offset < t)
451                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
452                                             t, h, h_cg, regions_needed);
453
454         return add;
455 }
456
457 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
458  */
459 static int allocate_file_region_entries(struct resv_map *resv,
460                                         int regions_needed)
461         __must_hold(&resv->lock)
462 {
463         LIST_HEAD(allocated_regions);
464         int to_allocate = 0, i = 0;
465         struct file_region *trg = NULL, *rg = NULL;
466
467         VM_BUG_ON(regions_needed < 0);
468
469         /*
470          * Check for sufficient descriptors in the cache to accommodate
471          * the number of in progress add operations plus regions_needed.
472          *
473          * This is a while loop because when we drop the lock, some other call
474          * to region_add or region_del may have consumed some region_entries,
475          * so we keep looping here until we finally have enough entries for
476          * (adds_in_progress + regions_needed).
477          */
478         while (resv->region_cache_count <
479                (resv->adds_in_progress + regions_needed)) {
480                 to_allocate = resv->adds_in_progress + regions_needed -
481                               resv->region_cache_count;
482
483                 /* At this point, we should have enough entries in the cache
484                  * for all the existing adds_in_progress. We should only be
485                  * needing to allocate for regions_needed.
486                  */
487                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
488
489                 spin_unlock(&resv->lock);
490                 for (i = 0; i < to_allocate; i++) {
491                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
492                         if (!trg)
493                                 goto out_of_memory;
494                         list_add(&trg->link, &allocated_regions);
495                 }
496
497                 spin_lock(&resv->lock);
498
499                 list_splice(&allocated_regions, &resv->region_cache);
500                 resv->region_cache_count += to_allocate;
501         }
502
503         return 0;
504
505 out_of_memory:
506         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
507                 list_del(&rg->link);
508                 kfree(rg);
509         }
510         return -ENOMEM;
511 }
512
513 /*
514  * Add the huge page range represented by [f, t) to the reserve
515  * map.  Regions will be taken from the cache to fill in this range.
516  * Sufficient regions should exist in the cache due to the previous
517  * call to region_chg with the same range, but in some cases the cache will not
518  * have sufficient entries due to races with other code doing region_add or
519  * region_del.  The extra needed entries will be allocated.
520  *
521  * regions_needed is the out value provided by a previous call to region_chg.
522  *
523  * Return the number of new huge pages added to the map.  This number is greater
524  * than or equal to zero.  If file_region entries needed to be allocated for
525  * this operation and we were not able to allocate, it returns -ENOMEM.
526  * region_add of regions of length 1 never allocate file_regions and cannot
527  * fail; region_chg will always allocate at least 1 entry and a region_add for
528  * 1 page will only require at most 1 entry.
529  */
530 static long region_add(struct resv_map *resv, long f, long t,
531                        long in_regions_needed, struct hstate *h,
532                        struct hugetlb_cgroup *h_cg)
533 {
534         long add = 0, actual_regions_needed = 0;
535
536         spin_lock(&resv->lock);
537 retry:
538
539         /* Count how many regions are actually needed to execute this add. */
540         add_reservation_in_range(resv, f, t, NULL, NULL,
541                                  &actual_regions_needed);
542
543         /*
544          * Check for sufficient descriptors in the cache to accommodate
545          * this add operation. Note that actual_regions_needed may be greater
546          * than in_regions_needed, as the resv_map may have been modified since
547          * the region_chg call. In this case, we need to make sure that we
548          * allocate extra entries, such that we have enough for all the
549          * existing adds_in_progress, plus the excess needed for this
550          * operation.
551          */
552         if (actual_regions_needed > in_regions_needed &&
553             resv->region_cache_count <
554                     resv->adds_in_progress +
555                             (actual_regions_needed - in_regions_needed)) {
556                 /* region_add operation of range 1 should never need to
557                  * allocate file_region entries.
558                  */
559                 VM_BUG_ON(t - f <= 1);
560
561                 if (allocate_file_region_entries(
562                             resv, actual_regions_needed - in_regions_needed)) {
563                         return -ENOMEM;
564                 }
565
566                 goto retry;
567         }
568
569         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
570
571         resv->adds_in_progress -= in_regions_needed;
572
573         spin_unlock(&resv->lock);
574         return add;
575 }
576
577 /*
578  * Examine the existing reserve map and determine how many
579  * huge pages in the specified range [f, t) are NOT currently
580  * represented.  This routine is called before a subsequent
581  * call to region_add that will actually modify the reserve
582  * map to add the specified range [f, t).  region_chg does
583  * not change the number of huge pages represented by the
584  * map.  A number of new file_region structures is added to the cache as a
585  * placeholder, for the subsequent region_add call to use. At least 1
586  * file_region structure is added.
587  *
588  * out_regions_needed is the number of regions added to the
589  * resv->adds_in_progress.  This value needs to be provided to a follow up call
590  * to region_add or region_abort for proper accounting.
591  *
592  * Returns the number of huge pages that need to be added to the existing
593  * reservation map for the range [f, t).  This number is greater or equal to
594  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
595  * is needed and can not be allocated.
596  */
597 static long region_chg(struct resv_map *resv, long f, long t,
598                        long *out_regions_needed)
599 {
600         long chg = 0;
601
602         spin_lock(&resv->lock);
603
604         /* Count how many hugepages in this range are NOT represented. */
605         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
606                                        out_regions_needed);
607
608         if (*out_regions_needed == 0)
609                 *out_regions_needed = 1;
610
611         if (allocate_file_region_entries(resv, *out_regions_needed))
612                 return -ENOMEM;
613
614         resv->adds_in_progress += *out_regions_needed;
615
616         spin_unlock(&resv->lock);
617         return chg;
618 }
619
620 /*
621  * Abort the in progress add operation.  The adds_in_progress field
622  * of the resv_map keeps track of the operations in progress between
623  * calls to region_chg and region_add.  Operations are sometimes
624  * aborted after the call to region_chg.  In such cases, region_abort
625  * is called to decrement the adds_in_progress counter. regions_needed
626  * is the value returned by the region_chg call, it is used to decrement
627  * the adds_in_progress counter.
628  *
629  * NOTE: The range arguments [f, t) are not needed or used in this
630  * routine.  They are kept to make reading the calling code easier as
631  * arguments will match the associated region_chg call.
632  */
633 static void region_abort(struct resv_map *resv, long f, long t,
634                          long regions_needed)
635 {
636         spin_lock(&resv->lock);
637         VM_BUG_ON(!resv->region_cache_count);
638         resv->adds_in_progress -= regions_needed;
639         spin_unlock(&resv->lock);
640 }
641
642 /*
643  * Delete the specified range [f, t) from the reserve map.  If the
644  * t parameter is LONG_MAX, this indicates that ALL regions after f
645  * should be deleted.  Locate the regions which intersect [f, t)
646  * and either trim, delete or split the existing regions.
647  *
648  * Returns the number of huge pages deleted from the reserve map.
649  * In the normal case, the return value is zero or more.  In the
650  * case where a region must be split, a new region descriptor must
651  * be allocated.  If the allocation fails, -ENOMEM will be returned.
652  * NOTE: If the parameter t == LONG_MAX, then we will never split
653  * a region and possibly return -ENOMEM.  Callers specifying
654  * t == LONG_MAX do not need to check for -ENOMEM error.
655  */
656 static long region_del(struct resv_map *resv, long f, long t)
657 {
658         struct list_head *head = &resv->regions;
659         struct file_region *rg, *trg;
660         struct file_region *nrg = NULL;
661         long del = 0;
662
663 retry:
664         spin_lock(&resv->lock);
665         list_for_each_entry_safe(rg, trg, head, link) {
666                 /*
667                  * Skip regions before the range to be deleted.  file_region
668                  * ranges are normally of the form [from, to).  However, there
669                  * may be a "placeholder" entry in the map which is of the form
670                  * (from, to) with from == to.  Check for placeholder entries
671                  * at the beginning of the range to be deleted.
672                  */
673                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
674                         continue;
675
676                 if (rg->from >= t)
677                         break;
678
679                 if (f > rg->from && t < rg->to) { /* Must split region */
680                         /*
681                          * Check for an entry in the cache before dropping
682                          * lock and attempting allocation.
683                          */
684                         if (!nrg &&
685                             resv->region_cache_count > resv->adds_in_progress) {
686                                 nrg = list_first_entry(&resv->region_cache,
687                                                         struct file_region,
688                                                         link);
689                                 list_del(&nrg->link);
690                                 resv->region_cache_count--;
691                         }
692
693                         if (!nrg) {
694                                 spin_unlock(&resv->lock);
695                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
696                                 if (!nrg)
697                                         return -ENOMEM;
698                                 goto retry;
699                         }
700
701                         del += t - f;
702                         hugetlb_cgroup_uncharge_file_region(
703                                 resv, rg, t - f, false);
704
705                         /* New entry for end of split region */
706                         nrg->from = t;
707                         nrg->to = rg->to;
708
709                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
710
711                         INIT_LIST_HEAD(&nrg->link);
712
713                         /* Original entry is trimmed */
714                         rg->to = f;
715
716                         list_add(&nrg->link, &rg->link);
717                         nrg = NULL;
718                         break;
719                 }
720
721                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
722                         del += rg->to - rg->from;
723                         hugetlb_cgroup_uncharge_file_region(resv, rg,
724                                                             rg->to - rg->from, true);
725                         list_del(&rg->link);
726                         kfree(rg);
727                         continue;
728                 }
729
730                 if (f <= rg->from) {    /* Trim beginning of region */
731                         hugetlb_cgroup_uncharge_file_region(resv, rg,
732                                                             t - rg->from, false);
733
734                         del += t - rg->from;
735                         rg->from = t;
736                 } else {                /* Trim end of region */
737                         hugetlb_cgroup_uncharge_file_region(resv, rg,
738                                                             rg->to - f, false);
739
740                         del += rg->to - f;
741                         rg->to = f;
742                 }
743         }
744
745         spin_unlock(&resv->lock);
746         kfree(nrg);
747         return del;
748 }
749
750 /*
751  * A rare out of memory error was encountered which prevented removal of
752  * the reserve map region for a page.  The huge page itself was free'ed
753  * and removed from the page cache.  This routine will adjust the subpool
754  * usage count, and the global reserve count if needed.  By incrementing
755  * these counts, the reserve map entry which could not be deleted will
756  * appear as a "reserved" entry instead of simply dangling with incorrect
757  * counts.
758  */
759 void hugetlb_fix_reserve_counts(struct inode *inode)
760 {
761         struct hugepage_subpool *spool = subpool_inode(inode);
762         long rsv_adjust;
763         bool reserved = false;
764
765         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
766         if (rsv_adjust > 0) {
767                 struct hstate *h = hstate_inode(inode);
768
769                 if (!hugetlb_acct_memory(h, 1))
770                         reserved = true;
771         } else if (!rsv_adjust) {
772                 reserved = true;
773         }
774
775         if (!reserved)
776                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
777 }
778
779 /*
780  * Count and return the number of huge pages in the reserve map
781  * that intersect with the range [f, t).
782  */
783 static long region_count(struct resv_map *resv, long f, long t)
784 {
785         struct list_head *head = &resv->regions;
786         struct file_region *rg;
787         long chg = 0;
788
789         spin_lock(&resv->lock);
790         /* Locate each segment we overlap with, and count that overlap. */
791         list_for_each_entry(rg, head, link) {
792                 long seg_from;
793                 long seg_to;
794
795                 if (rg->to <= f)
796                         continue;
797                 if (rg->from >= t)
798                         break;
799
800                 seg_from = max(rg->from, f);
801                 seg_to = min(rg->to, t);
802
803                 chg += seg_to - seg_from;
804         }
805         spin_unlock(&resv->lock);
806
807         return chg;
808 }
809
810 /*
811  * Convert the address within this vma to the page offset within
812  * the mapping, in pagecache page units; huge pages here.
813  */
814 static pgoff_t vma_hugecache_offset(struct hstate *h,
815                         struct vm_area_struct *vma, unsigned long address)
816 {
817         return ((address - vma->vm_start) >> huge_page_shift(h)) +
818                         (vma->vm_pgoff >> huge_page_order(h));
819 }
820
821 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
822                                      unsigned long address)
823 {
824         return vma_hugecache_offset(hstate_vma(vma), vma, address);
825 }
826 EXPORT_SYMBOL_GPL(linear_hugepage_index);
827
828 /*
829  * Return the size of the pages allocated when backing a VMA. In the majority
830  * cases this will be same size as used by the page table entries.
831  */
832 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
833 {
834         if (vma->vm_ops && vma->vm_ops->pagesize)
835                 return vma->vm_ops->pagesize(vma);
836         return PAGE_SIZE;
837 }
838 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
839
840 /*
841  * Return the page size being used by the MMU to back a VMA. In the majority
842  * of cases, the page size used by the kernel matches the MMU size. On
843  * architectures where it differs, an architecture-specific 'strong'
844  * version of this symbol is required.
845  */
846 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
847 {
848         return vma_kernel_pagesize(vma);
849 }
850
851 /*
852  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
853  * bits of the reservation map pointer, which are always clear due to
854  * alignment.
855  */
856 #define HPAGE_RESV_OWNER    (1UL << 0)
857 #define HPAGE_RESV_UNMAPPED (1UL << 1)
858 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
859
860 /*
861  * These helpers are used to track how many pages are reserved for
862  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
863  * is guaranteed to have their future faults succeed.
864  *
865  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
866  * the reserve counters are updated with the hugetlb_lock held. It is safe
867  * to reset the VMA at fork() time as it is not in use yet and there is no
868  * chance of the global counters getting corrupted as a result of the values.
869  *
870  * The private mapping reservation is represented in a subtly different
871  * manner to a shared mapping.  A shared mapping has a region map associated
872  * with the underlying file, this region map represents the backing file
873  * pages which have ever had a reservation assigned which this persists even
874  * after the page is instantiated.  A private mapping has a region map
875  * associated with the original mmap which is attached to all VMAs which
876  * reference it, this region map represents those offsets which have consumed
877  * reservation ie. where pages have been instantiated.
878  */
879 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
880 {
881         return (unsigned long)vma->vm_private_data;
882 }
883
884 static void set_vma_private_data(struct vm_area_struct *vma,
885                                                         unsigned long value)
886 {
887         vma->vm_private_data = (void *)value;
888 }
889
890 static void
891 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
892                                           struct hugetlb_cgroup *h_cg,
893                                           struct hstate *h)
894 {
895 #ifdef CONFIG_CGROUP_HUGETLB
896         if (!h_cg || !h) {
897                 resv_map->reservation_counter = NULL;
898                 resv_map->pages_per_hpage = 0;
899                 resv_map->css = NULL;
900         } else {
901                 resv_map->reservation_counter =
902                         &h_cg->rsvd_hugepage[hstate_index(h)];
903                 resv_map->pages_per_hpage = pages_per_huge_page(h);
904                 resv_map->css = &h_cg->css;
905         }
906 #endif
907 }
908
909 struct resv_map *resv_map_alloc(void)
910 {
911         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
912         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
913
914         if (!resv_map || !rg) {
915                 kfree(resv_map);
916                 kfree(rg);
917                 return NULL;
918         }
919
920         kref_init(&resv_map->refs);
921         spin_lock_init(&resv_map->lock);
922         INIT_LIST_HEAD(&resv_map->regions);
923
924         resv_map->adds_in_progress = 0;
925         /*
926          * Initialize these to 0. On shared mappings, 0's here indicate these
927          * fields don't do cgroup accounting. On private mappings, these will be
928          * re-initialized to the proper values, to indicate that hugetlb cgroup
929          * reservations are to be un-charged from here.
930          */
931         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
932
933         INIT_LIST_HEAD(&resv_map->region_cache);
934         list_add(&rg->link, &resv_map->region_cache);
935         resv_map->region_cache_count = 1;
936
937         return resv_map;
938 }
939
940 void resv_map_release(struct kref *ref)
941 {
942         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
943         struct list_head *head = &resv_map->region_cache;
944         struct file_region *rg, *trg;
945
946         /* Clear out any active regions before we release the map. */
947         region_del(resv_map, 0, LONG_MAX);
948
949         /* ... and any entries left in the cache */
950         list_for_each_entry_safe(rg, trg, head, link) {
951                 list_del(&rg->link);
952                 kfree(rg);
953         }
954
955         VM_BUG_ON(resv_map->adds_in_progress);
956
957         kfree(resv_map);
958 }
959
960 static inline struct resv_map *inode_resv_map(struct inode *inode)
961 {
962         /*
963          * At inode evict time, i_mapping may not point to the original
964          * address space within the inode.  This original address space
965          * contains the pointer to the resv_map.  So, always use the
966          * address space embedded within the inode.
967          * The VERY common case is inode->mapping == &inode->i_data but,
968          * this may not be true for device special inodes.
969          */
970         return (struct resv_map *)(&inode->i_data)->private_data;
971 }
972
973 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
974 {
975         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
976         if (vma->vm_flags & VM_MAYSHARE) {
977                 struct address_space *mapping = vma->vm_file->f_mapping;
978                 struct inode *inode = mapping->host;
979
980                 return inode_resv_map(inode);
981
982         } else {
983                 return (struct resv_map *)(get_vma_private_data(vma) &
984                                                         ~HPAGE_RESV_MASK);
985         }
986 }
987
988 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
989 {
990         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
991         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
992
993         set_vma_private_data(vma, (get_vma_private_data(vma) &
994                                 HPAGE_RESV_MASK) | (unsigned long)map);
995 }
996
997 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
998 {
999         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1000         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1001
1002         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1003 }
1004
1005 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1006 {
1007         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1008
1009         return (get_vma_private_data(vma) & flag) != 0;
1010 }
1011
1012 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1013 {
1014         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1015         /*
1016          * Clear vm_private_data
1017          * - For shared mappings this is a per-vma semaphore that may be
1018          *   allocated in a subsequent call to hugetlb_vm_op_open.
1019          *   Before clearing, make sure pointer is not associated with vma
1020          *   as this will leak the structure.  This is the case when called
1021          *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1022          *   been called to allocate a new structure.
1023          * - For MAP_PRIVATE mappings, this is the reserve map which does
1024          *   not apply to children.  Faults generated by the children are
1025          *   not guaranteed to succeed, even if read-only.
1026          */
1027         if (vma->vm_flags & VM_MAYSHARE) {
1028                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1029
1030                 if (vma_lock && vma_lock->vma != vma)
1031                         vma->vm_private_data = NULL;
1032         } else
1033                 vma->vm_private_data = NULL;
1034 }
1035
1036 /*
1037  * Reset and decrement one ref on hugepage private reservation.
1038  * Called with mm->mmap_sem writer semaphore held.
1039  * This function should be only used by move_vma() and operate on
1040  * same sized vma. It should never come here with last ref on the
1041  * reservation.
1042  */
1043 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1044 {
1045         /*
1046          * Clear the old hugetlb private page reservation.
1047          * It has already been transferred to new_vma.
1048          *
1049          * During a mremap() operation of a hugetlb vma we call move_vma()
1050          * which copies vma into new_vma and unmaps vma. After the copy
1051          * operation both new_vma and vma share a reference to the resv_map
1052          * struct, and at that point vma is about to be unmapped. We don't
1053          * want to return the reservation to the pool at unmap of vma because
1054          * the reservation still lives on in new_vma, so simply decrement the
1055          * ref here and remove the resv_map reference from this vma.
1056          */
1057         struct resv_map *reservations = vma_resv_map(vma);
1058
1059         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1060                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1061                 kref_put(&reservations->refs, resv_map_release);
1062         }
1063
1064         hugetlb_dup_vma_private(vma);
1065 }
1066
1067 /* Returns true if the VMA has associated reserve pages */
1068 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1069 {
1070         if (vma->vm_flags & VM_NORESERVE) {
1071                 /*
1072                  * This address is already reserved by other process(chg == 0),
1073                  * so, we should decrement reserved count. Without decrementing,
1074                  * reserve count remains after releasing inode, because this
1075                  * allocated page will go into page cache and is regarded as
1076                  * coming from reserved pool in releasing step.  Currently, we
1077                  * don't have any other solution to deal with this situation
1078                  * properly, so add work-around here.
1079                  */
1080                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1081                         return true;
1082                 else
1083                         return false;
1084         }
1085
1086         /* Shared mappings always use reserves */
1087         if (vma->vm_flags & VM_MAYSHARE) {
1088                 /*
1089                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1090                  * be a region map for all pages.  The only situation where
1091                  * there is no region map is if a hole was punched via
1092                  * fallocate.  In this case, there really are no reserves to
1093                  * use.  This situation is indicated if chg != 0.
1094                  */
1095                 if (chg)
1096                         return false;
1097                 else
1098                         return true;
1099         }
1100
1101         /*
1102          * Only the process that called mmap() has reserves for
1103          * private mappings.
1104          */
1105         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1106                 /*
1107                  * Like the shared case above, a hole punch or truncate
1108                  * could have been performed on the private mapping.
1109                  * Examine the value of chg to determine if reserves
1110                  * actually exist or were previously consumed.
1111                  * Very Subtle - The value of chg comes from a previous
1112                  * call to vma_needs_reserves().  The reserve map for
1113                  * private mappings has different (opposite) semantics
1114                  * than that of shared mappings.  vma_needs_reserves()
1115                  * has already taken this difference in semantics into
1116                  * account.  Therefore, the meaning of chg is the same
1117                  * as in the shared case above.  Code could easily be
1118                  * combined, but keeping it separate draws attention to
1119                  * subtle differences.
1120                  */
1121                 if (chg)
1122                         return false;
1123                 else
1124                         return true;
1125         }
1126
1127         return false;
1128 }
1129
1130 static void enqueue_huge_page(struct hstate *h, struct page *page)
1131 {
1132         int nid = page_to_nid(page);
1133
1134         lockdep_assert_held(&hugetlb_lock);
1135         VM_BUG_ON_PAGE(page_count(page), page);
1136
1137         list_move(&page->lru, &h->hugepage_freelists[nid]);
1138         h->free_huge_pages++;
1139         h->free_huge_pages_node[nid]++;
1140         SetHPageFreed(page);
1141 }
1142
1143 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1144 {
1145         struct page *page;
1146         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1147
1148         lockdep_assert_held(&hugetlb_lock);
1149         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1150                 if (pin && !is_longterm_pinnable_page(page))
1151                         continue;
1152
1153                 if (PageHWPoison(page))
1154                         continue;
1155
1156                 list_move(&page->lru, &h->hugepage_activelist);
1157                 set_page_refcounted(page);
1158                 ClearHPageFreed(page);
1159                 h->free_huge_pages--;
1160                 h->free_huge_pages_node[nid]--;
1161                 return page;
1162         }
1163
1164         return NULL;
1165 }
1166
1167 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1168                 nodemask_t *nmask)
1169 {
1170         unsigned int cpuset_mems_cookie;
1171         struct zonelist *zonelist;
1172         struct zone *zone;
1173         struct zoneref *z;
1174         int node = NUMA_NO_NODE;
1175
1176         zonelist = node_zonelist(nid, gfp_mask);
1177
1178 retry_cpuset:
1179         cpuset_mems_cookie = read_mems_allowed_begin();
1180         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1181                 struct page *page;
1182
1183                 if (!cpuset_zone_allowed(zone, gfp_mask))
1184                         continue;
1185                 /*
1186                  * no need to ask again on the same node. Pool is node rather than
1187                  * zone aware
1188                  */
1189                 if (zone_to_nid(zone) == node)
1190                         continue;
1191                 node = zone_to_nid(zone);
1192
1193                 page = dequeue_huge_page_node_exact(h, node);
1194                 if (page)
1195                         return page;
1196         }
1197         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1198                 goto retry_cpuset;
1199
1200         return NULL;
1201 }
1202
1203 static unsigned long available_huge_pages(struct hstate *h)
1204 {
1205         return h->free_huge_pages - h->resv_huge_pages;
1206 }
1207
1208 static struct page *dequeue_huge_page_vma(struct hstate *h,
1209                                 struct vm_area_struct *vma,
1210                                 unsigned long address, int avoid_reserve,
1211                                 long chg)
1212 {
1213         struct page *page = NULL;
1214         struct mempolicy *mpol;
1215         gfp_t gfp_mask;
1216         nodemask_t *nodemask;
1217         int nid;
1218
1219         /*
1220          * A child process with MAP_PRIVATE mappings created by their parent
1221          * have no page reserves. This check ensures that reservations are
1222          * not "stolen". The child may still get SIGKILLed
1223          */
1224         if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1225                 goto err;
1226
1227         /* If reserves cannot be used, ensure enough pages are in the pool */
1228         if (avoid_reserve && !available_huge_pages(h))
1229                 goto err;
1230
1231         gfp_mask = htlb_alloc_mask(h);
1232         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1233
1234         if (mpol_is_preferred_many(mpol)) {
1235                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1236
1237                 /* Fallback to all nodes if page==NULL */
1238                 nodemask = NULL;
1239         }
1240
1241         if (!page)
1242                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1243
1244         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1245                 SetHPageRestoreReserve(page);
1246                 h->resv_huge_pages--;
1247         }
1248
1249         mpol_cond_put(mpol);
1250         return page;
1251
1252 err:
1253         return NULL;
1254 }
1255
1256 /*
1257  * common helper functions for hstate_next_node_to_{alloc|free}.
1258  * We may have allocated or freed a huge page based on a different
1259  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1260  * be outside of *nodes_allowed.  Ensure that we use an allowed
1261  * node for alloc or free.
1262  */
1263 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1264 {
1265         nid = next_node_in(nid, *nodes_allowed);
1266         VM_BUG_ON(nid >= MAX_NUMNODES);
1267
1268         return nid;
1269 }
1270
1271 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1272 {
1273         if (!node_isset(nid, *nodes_allowed))
1274                 nid = next_node_allowed(nid, nodes_allowed);
1275         return nid;
1276 }
1277
1278 /*
1279  * returns the previously saved node ["this node"] from which to
1280  * allocate a persistent huge page for the pool and advance the
1281  * next node from which to allocate, handling wrap at end of node
1282  * mask.
1283  */
1284 static int hstate_next_node_to_alloc(struct hstate *h,
1285                                         nodemask_t *nodes_allowed)
1286 {
1287         int nid;
1288
1289         VM_BUG_ON(!nodes_allowed);
1290
1291         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1292         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1293
1294         return nid;
1295 }
1296
1297 /*
1298  * helper for remove_pool_huge_page() - return the previously saved
1299  * node ["this node"] from which to free a huge page.  Advance the
1300  * next node id whether or not we find a free huge page to free so
1301  * that the next attempt to free addresses the next node.
1302  */
1303 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1304 {
1305         int nid;
1306
1307         VM_BUG_ON(!nodes_allowed);
1308
1309         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1310         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1311
1312         return nid;
1313 }
1314
1315 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1316         for (nr_nodes = nodes_weight(*mask);                            \
1317                 nr_nodes > 0 &&                                         \
1318                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1319                 nr_nodes--)
1320
1321 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1322         for (nr_nodes = nodes_weight(*mask);                            \
1323                 nr_nodes > 0 &&                                         \
1324                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1325                 nr_nodes--)
1326
1327 /* used to demote non-gigantic_huge pages as well */
1328 static void __destroy_compound_gigantic_page(struct page *page,
1329                                         unsigned int order, bool demote)
1330 {
1331         int i;
1332         int nr_pages = 1 << order;
1333         struct page *p;
1334
1335         atomic_set(compound_mapcount_ptr(page), 0);
1336         atomic_set(subpages_mapcount_ptr(page), 0);
1337         atomic_set(compound_pincount_ptr(page), 0);
1338
1339         for (i = 1; i < nr_pages; i++) {
1340                 p = nth_page(page, i);
1341                 p->mapping = NULL;
1342                 clear_compound_head(p);
1343                 if (!demote)
1344                         set_page_refcounted(p);
1345         }
1346
1347         set_compound_order(page, 0);
1348 #ifdef CONFIG_64BIT
1349         page[1].compound_nr = 0;
1350 #endif
1351         __ClearPageHead(page);
1352 }
1353
1354 static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1355                                         unsigned int order)
1356 {
1357         __destroy_compound_gigantic_page(page, order, true);
1358 }
1359
1360 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1361 static void destroy_compound_gigantic_page(struct page *page,
1362                                         unsigned int order)
1363 {
1364         __destroy_compound_gigantic_page(page, order, false);
1365 }
1366
1367 static void free_gigantic_page(struct page *page, unsigned int order)
1368 {
1369         /*
1370          * If the page isn't allocated using the cma allocator,
1371          * cma_release() returns false.
1372          */
1373 #ifdef CONFIG_CMA
1374         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1375                 return;
1376 #endif
1377
1378         free_contig_range(page_to_pfn(page), 1 << order);
1379 }
1380
1381 #ifdef CONFIG_CONTIG_ALLOC
1382 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1383                 int nid, nodemask_t *nodemask)
1384 {
1385         unsigned long nr_pages = pages_per_huge_page(h);
1386         if (nid == NUMA_NO_NODE)
1387                 nid = numa_mem_id();
1388
1389 #ifdef CONFIG_CMA
1390         {
1391                 struct page *page;
1392                 int node;
1393
1394                 if (hugetlb_cma[nid]) {
1395                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1396                                         huge_page_order(h), true);
1397                         if (page)
1398                                 return page;
1399                 }
1400
1401                 if (!(gfp_mask & __GFP_THISNODE)) {
1402                         for_each_node_mask(node, *nodemask) {
1403                                 if (node == nid || !hugetlb_cma[node])
1404                                         continue;
1405
1406                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1407                                                 huge_page_order(h), true);
1408                                 if (page)
1409                                         return page;
1410                         }
1411                 }
1412         }
1413 #endif
1414
1415         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1416 }
1417
1418 #else /* !CONFIG_CONTIG_ALLOC */
1419 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1420                                         int nid, nodemask_t *nodemask)
1421 {
1422         return NULL;
1423 }
1424 #endif /* CONFIG_CONTIG_ALLOC */
1425
1426 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1427 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1428                                         int nid, nodemask_t *nodemask)
1429 {
1430         return NULL;
1431 }
1432 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1433 static inline void destroy_compound_gigantic_page(struct page *page,
1434                                                 unsigned int order) { }
1435 #endif
1436
1437 /*
1438  * Remove hugetlb page from lists, and update dtor so that page appears
1439  * as just a compound page.
1440  *
1441  * A reference is held on the page, except in the case of demote.
1442  *
1443  * Must be called with hugetlb lock held.
1444  */
1445 static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1446                                                         bool adjust_surplus,
1447                                                         bool demote)
1448 {
1449         int nid = page_to_nid(page);
1450         struct folio *folio = page_folio(page);
1451
1452         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1453         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1454
1455         lockdep_assert_held(&hugetlb_lock);
1456         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1457                 return;
1458
1459         list_del(&page->lru);
1460
1461         if (HPageFreed(page)) {
1462                 h->free_huge_pages--;
1463                 h->free_huge_pages_node[nid]--;
1464         }
1465         if (adjust_surplus) {
1466                 h->surplus_huge_pages--;
1467                 h->surplus_huge_pages_node[nid]--;
1468         }
1469
1470         /*
1471          * Very subtle
1472          *
1473          * For non-gigantic pages set the destructor to the normal compound
1474          * page dtor.  This is needed in case someone takes an additional
1475          * temporary ref to the page, and freeing is delayed until they drop
1476          * their reference.
1477          *
1478          * For gigantic pages set the destructor to the null dtor.  This
1479          * destructor will never be called.  Before freeing the gigantic
1480          * page destroy_compound_gigantic_page will turn the compound page
1481          * into a simple group of pages.  After this the destructor does not
1482          * apply.
1483          *
1484          * This handles the case where more than one ref is held when and
1485          * after update_and_free_page is called.
1486          *
1487          * In the case of demote we do not ref count the page as it will soon
1488          * be turned into a page of smaller size.
1489          */
1490         if (!demote)
1491                 set_page_refcounted(page);
1492         if (hstate_is_gigantic(h))
1493                 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1494         else
1495                 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1496
1497         h->nr_huge_pages--;
1498         h->nr_huge_pages_node[nid]--;
1499 }
1500
1501 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1502                                                         bool adjust_surplus)
1503 {
1504         __remove_hugetlb_page(h, page, adjust_surplus, false);
1505 }
1506
1507 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1508                                                         bool adjust_surplus)
1509 {
1510         __remove_hugetlb_page(h, page, adjust_surplus, true);
1511 }
1512
1513 static void add_hugetlb_page(struct hstate *h, struct page *page,
1514                              bool adjust_surplus)
1515 {
1516         int zeroed;
1517         int nid = page_to_nid(page);
1518
1519         VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1520
1521         lockdep_assert_held(&hugetlb_lock);
1522
1523         INIT_LIST_HEAD(&page->lru);
1524         h->nr_huge_pages++;
1525         h->nr_huge_pages_node[nid]++;
1526
1527         if (adjust_surplus) {
1528                 h->surplus_huge_pages++;
1529                 h->surplus_huge_pages_node[nid]++;
1530         }
1531
1532         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1533         set_page_private(page, 0);
1534         /*
1535          * We have to set HPageVmemmapOptimized again as above
1536          * set_page_private(page, 0) cleared it.
1537          */
1538         SetHPageVmemmapOptimized(page);
1539
1540         /*
1541          * This page is about to be managed by the hugetlb allocator and
1542          * should have no users.  Drop our reference, and check for others
1543          * just in case.
1544          */
1545         zeroed = put_page_testzero(page);
1546         if (!zeroed)
1547                 /*
1548                  * It is VERY unlikely soneone else has taken a ref on
1549                  * the page.  In this case, we simply return as the
1550                  * hugetlb destructor (free_huge_page) will be called
1551                  * when this other ref is dropped.
1552                  */
1553                 return;
1554
1555         arch_clear_hugepage_flags(page);
1556         enqueue_huge_page(h, page);
1557 }
1558
1559 static void __update_and_free_page(struct hstate *h, struct page *page)
1560 {
1561         int i;
1562         struct page *subpage;
1563
1564         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1565                 return;
1566
1567         /*
1568          * If we don't know which subpages are hwpoisoned, we can't free
1569          * the hugepage, so it's leaked intentionally.
1570          */
1571         if (HPageRawHwpUnreliable(page))
1572                 return;
1573
1574         if (hugetlb_vmemmap_restore(h, page)) {
1575                 spin_lock_irq(&hugetlb_lock);
1576                 /*
1577                  * If we cannot allocate vmemmap pages, just refuse to free the
1578                  * page and put the page back on the hugetlb free list and treat
1579                  * as a surplus page.
1580                  */
1581                 add_hugetlb_page(h, page, true);
1582                 spin_unlock_irq(&hugetlb_lock);
1583                 return;
1584         }
1585
1586         /*
1587          * Move PageHWPoison flag from head page to the raw error pages,
1588          * which makes any healthy subpages reusable.
1589          */
1590         if (unlikely(PageHWPoison(page)))
1591                 hugetlb_clear_page_hwpoison(page);
1592
1593         for (i = 0; i < pages_per_huge_page(h); i++) {
1594                 subpage = nth_page(page, i);
1595                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1596                                 1 << PG_referenced | 1 << PG_dirty |
1597                                 1 << PG_active | 1 << PG_private |
1598                                 1 << PG_writeback);
1599         }
1600
1601         /*
1602          * Non-gigantic pages demoted from CMA allocated gigantic pages
1603          * need to be given back to CMA in free_gigantic_page.
1604          */
1605         if (hstate_is_gigantic(h) ||
1606             hugetlb_cma_page(page, huge_page_order(h))) {
1607                 destroy_compound_gigantic_page(page, huge_page_order(h));
1608                 free_gigantic_page(page, huge_page_order(h));
1609         } else {
1610                 __free_pages(page, huge_page_order(h));
1611         }
1612 }
1613
1614 /*
1615  * As update_and_free_page() can be called under any context, so we cannot
1616  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1617  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1618  * the vmemmap pages.
1619  *
1620  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1621  * freed and frees them one-by-one. As the page->mapping pointer is going
1622  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1623  * structure of a lockless linked list of huge pages to be freed.
1624  */
1625 static LLIST_HEAD(hpage_freelist);
1626
1627 static void free_hpage_workfn(struct work_struct *work)
1628 {
1629         struct llist_node *node;
1630
1631         node = llist_del_all(&hpage_freelist);
1632
1633         while (node) {
1634                 struct page *page;
1635                 struct hstate *h;
1636
1637                 page = container_of((struct address_space **)node,
1638                                      struct page, mapping);
1639                 node = node->next;
1640                 page->mapping = NULL;
1641                 /*
1642                  * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1643                  * is going to trigger because a previous call to
1644                  * remove_hugetlb_page() will set_compound_page_dtor(page,
1645                  * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1646                  */
1647                 h = size_to_hstate(page_size(page));
1648
1649                 __update_and_free_page(h, page);
1650
1651                 cond_resched();
1652         }
1653 }
1654 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1655
1656 static inline void flush_free_hpage_work(struct hstate *h)
1657 {
1658         if (hugetlb_vmemmap_optimizable(h))
1659                 flush_work(&free_hpage_work);
1660 }
1661
1662 static void update_and_free_page(struct hstate *h, struct page *page,
1663                                  bool atomic)
1664 {
1665         if (!HPageVmemmapOptimized(page) || !atomic) {
1666                 __update_and_free_page(h, page);
1667                 return;
1668         }
1669
1670         /*
1671          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1672          *
1673          * Only call schedule_work() if hpage_freelist is previously
1674          * empty. Otherwise, schedule_work() had been called but the workfn
1675          * hasn't retrieved the list yet.
1676          */
1677         if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1678                 schedule_work(&free_hpage_work);
1679 }
1680
1681 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1682 {
1683         struct page *page, *t_page;
1684
1685         list_for_each_entry_safe(page, t_page, list, lru) {
1686                 update_and_free_page(h, page, false);
1687                 cond_resched();
1688         }
1689 }
1690
1691 struct hstate *size_to_hstate(unsigned long size)
1692 {
1693         struct hstate *h;
1694
1695         for_each_hstate(h) {
1696                 if (huge_page_size(h) == size)
1697                         return h;
1698         }
1699         return NULL;
1700 }
1701
1702 void free_huge_page(struct page *page)
1703 {
1704         /*
1705          * Can't pass hstate in here because it is called from the
1706          * compound page destructor.
1707          */
1708         struct folio *folio = page_folio(page);
1709         struct hstate *h = folio_hstate(folio);
1710         int nid = folio_nid(folio);
1711         struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1712         bool restore_reserve;
1713         unsigned long flags;
1714
1715         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1716         VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1717
1718         hugetlb_set_folio_subpool(folio, NULL);
1719         if (folio_test_anon(folio))
1720                 __ClearPageAnonExclusive(&folio->page);
1721         folio->mapping = NULL;
1722         restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1723         folio_clear_hugetlb_restore_reserve(folio);
1724
1725         /*
1726          * If HPageRestoreReserve was set on page, page allocation consumed a
1727          * reservation.  If the page was associated with a subpool, there
1728          * would have been a page reserved in the subpool before allocation
1729          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1730          * reservation, do not call hugepage_subpool_put_pages() as this will
1731          * remove the reserved page from the subpool.
1732          */
1733         if (!restore_reserve) {
1734                 /*
1735                  * A return code of zero implies that the subpool will be
1736                  * under its minimum size if the reservation is not restored
1737                  * after page is free.  Therefore, force restore_reserve
1738                  * operation.
1739                  */
1740                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1741                         restore_reserve = true;
1742         }
1743
1744         spin_lock_irqsave(&hugetlb_lock, flags);
1745         folio_clear_hugetlb_migratable(folio);
1746         hugetlb_cgroup_uncharge_folio(hstate_index(h),
1747                                      pages_per_huge_page(h), folio);
1748         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1749                                           pages_per_huge_page(h), folio);
1750         if (restore_reserve)
1751                 h->resv_huge_pages++;
1752
1753         if (folio_test_hugetlb_temporary(folio)) {
1754                 remove_hugetlb_page(h, page, false);
1755                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1756                 update_and_free_page(h, page, true);
1757         } else if (h->surplus_huge_pages_node[nid]) {
1758                 /* remove the page from active list */
1759                 remove_hugetlb_page(h, page, true);
1760                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1761                 update_and_free_page(h, page, true);
1762         } else {
1763                 arch_clear_hugepage_flags(page);
1764                 enqueue_huge_page(h, page);
1765                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1766         }
1767 }
1768
1769 /*
1770  * Must be called with the hugetlb lock held
1771  */
1772 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1773 {
1774         lockdep_assert_held(&hugetlb_lock);
1775         h->nr_huge_pages++;
1776         h->nr_huge_pages_node[nid]++;
1777 }
1778
1779 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1780 {
1781         hugetlb_vmemmap_optimize(h, &folio->page);
1782         INIT_LIST_HEAD(&folio->lru);
1783         folio->_folio_dtor = HUGETLB_PAGE_DTOR;
1784         hugetlb_set_folio_subpool(folio, NULL);
1785         set_hugetlb_cgroup(folio, NULL);
1786         set_hugetlb_cgroup_rsvd(folio, NULL);
1787 }
1788
1789 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1790 {
1791         struct folio *folio = page_folio(page);
1792
1793         __prep_new_hugetlb_folio(h, folio);
1794         spin_lock_irq(&hugetlb_lock);
1795         __prep_account_new_huge_page(h, nid);
1796         spin_unlock_irq(&hugetlb_lock);
1797 }
1798
1799 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1800                                                                 bool demote)
1801 {
1802         int i, j;
1803         int nr_pages = 1 << order;
1804         struct page *p;
1805
1806         /* we rely on prep_new_huge_page to set the destructor */
1807         set_compound_order(page, order);
1808         __ClearPageReserved(page);
1809         __SetPageHead(page);
1810         for (i = 0; i < nr_pages; i++) {
1811                 p = nth_page(page, i);
1812
1813                 /*
1814                  * For gigantic hugepages allocated through bootmem at
1815                  * boot, it's safer to be consistent with the not-gigantic
1816                  * hugepages and clear the PG_reserved bit from all tail pages
1817                  * too.  Otherwise drivers using get_user_pages() to access tail
1818                  * pages may get the reference counting wrong if they see
1819                  * PG_reserved set on a tail page (despite the head page not
1820                  * having PG_reserved set).  Enforcing this consistency between
1821                  * head and tail pages allows drivers to optimize away a check
1822                  * on the head page when they need know if put_page() is needed
1823                  * after get_user_pages().
1824                  */
1825                 if (i != 0)     /* head page cleared above */
1826                         __ClearPageReserved(p);
1827                 /*
1828                  * Subtle and very unlikely
1829                  *
1830                  * Gigantic 'page allocators' such as memblock or cma will
1831                  * return a set of pages with each page ref counted.  We need
1832                  * to turn this set of pages into a compound page with tail
1833                  * page ref counts set to zero.  Code such as speculative page
1834                  * cache adding could take a ref on a 'to be' tail page.
1835                  * We need to respect any increased ref count, and only set
1836                  * the ref count to zero if count is currently 1.  If count
1837                  * is not 1, we return an error.  An error return indicates
1838                  * the set of pages can not be converted to a gigantic page.
1839                  * The caller who allocated the pages should then discard the
1840                  * pages using the appropriate free interface.
1841                  *
1842                  * In the case of demote, the ref count will be zero.
1843                  */
1844                 if (!demote) {
1845                         if (!page_ref_freeze(p, 1)) {
1846                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1847                                 goto out_error;
1848                         }
1849                 } else {
1850                         VM_BUG_ON_PAGE(page_count(p), p);
1851                 }
1852                 if (i != 0)
1853                         set_compound_head(p, page);
1854         }
1855         atomic_set(compound_mapcount_ptr(page), -1);
1856         atomic_set(subpages_mapcount_ptr(page), 0);
1857         atomic_set(compound_pincount_ptr(page), 0);
1858         return true;
1859
1860 out_error:
1861         /* undo page modifications made above */
1862         for (j = 0; j < i; j++) {
1863                 p = nth_page(page, j);
1864                 if (j != 0)
1865                         clear_compound_head(p);
1866                 set_page_refcounted(p);
1867         }
1868         /* need to clear PG_reserved on remaining tail pages  */
1869         for (; j < nr_pages; j++) {
1870                 p = nth_page(page, j);
1871                 __ClearPageReserved(p);
1872         }
1873         set_compound_order(page, 0);
1874 #ifdef CONFIG_64BIT
1875         page[1].compound_nr = 0;
1876 #endif
1877         __ClearPageHead(page);
1878         return false;
1879 }
1880
1881 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1882 {
1883         return __prep_compound_gigantic_page(page, order, false);
1884 }
1885
1886 static bool prep_compound_gigantic_page_for_demote(struct page *page,
1887                                                         unsigned int order)
1888 {
1889         return __prep_compound_gigantic_page(page, order, true);
1890 }
1891
1892 /*
1893  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1894  * transparent huge pages.  See the PageTransHuge() documentation for more
1895  * details.
1896  */
1897 int PageHuge(struct page *page)
1898 {
1899         if (!PageCompound(page))
1900                 return 0;
1901
1902         page = compound_head(page);
1903         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1904 }
1905 EXPORT_SYMBOL_GPL(PageHuge);
1906
1907 /*
1908  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1909  * normal or transparent huge pages.
1910  */
1911 int PageHeadHuge(struct page *page_head)
1912 {
1913         if (!PageHead(page_head))
1914                 return 0;
1915
1916         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1917 }
1918 EXPORT_SYMBOL_GPL(PageHeadHuge);
1919
1920 /*
1921  * Find and lock address space (mapping) in write mode.
1922  *
1923  * Upon entry, the page is locked which means that page_mapping() is
1924  * stable.  Due to locking order, we can only trylock_write.  If we can
1925  * not get the lock, simply return NULL to caller.
1926  */
1927 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1928 {
1929         struct address_space *mapping = page_mapping(hpage);
1930
1931         if (!mapping)
1932                 return mapping;
1933
1934         if (i_mmap_trylock_write(mapping))
1935                 return mapping;
1936
1937         return NULL;
1938 }
1939
1940 pgoff_t hugetlb_basepage_index(struct page *page)
1941 {
1942         struct page *page_head = compound_head(page);
1943         pgoff_t index = page_index(page_head);
1944         unsigned long compound_idx;
1945
1946         if (compound_order(page_head) >= MAX_ORDER)
1947                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1948         else
1949                 compound_idx = page - page_head;
1950
1951         return (index << compound_order(page_head)) + compound_idx;
1952 }
1953
1954 static struct page *alloc_buddy_huge_page(struct hstate *h,
1955                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1956                 nodemask_t *node_alloc_noretry)
1957 {
1958         int order = huge_page_order(h);
1959         struct page *page;
1960         bool alloc_try_hard = true;
1961         bool retry = true;
1962
1963         /*
1964          * By default we always try hard to allocate the page with
1965          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1966          * a loop (to adjust global huge page counts) and previous allocation
1967          * failed, do not continue to try hard on the same node.  Use the
1968          * node_alloc_noretry bitmap to manage this state information.
1969          */
1970         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1971                 alloc_try_hard = false;
1972         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1973         if (alloc_try_hard)
1974                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1975         if (nid == NUMA_NO_NODE)
1976                 nid = numa_mem_id();
1977 retry:
1978         page = __alloc_pages(gfp_mask, order, nid, nmask);
1979
1980         /* Freeze head page */
1981         if (page && !page_ref_freeze(page, 1)) {
1982                 __free_pages(page, order);
1983                 if (retry) {    /* retry once */
1984                         retry = false;
1985                         goto retry;
1986                 }
1987                 /* WOW!  twice in a row. */
1988                 pr_warn("HugeTLB head page unexpected inflated ref count\n");
1989                 page = NULL;
1990         }
1991
1992         if (page)
1993                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1994         else
1995                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1996
1997         /*
1998          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1999          * indicates an overall state change.  Clear bit so that we resume
2000          * normal 'try hard' allocations.
2001          */
2002         if (node_alloc_noretry && page && !alloc_try_hard)
2003                 node_clear(nid, *node_alloc_noretry);
2004
2005         /*
2006          * If we tried hard to get a page but failed, set bit so that
2007          * subsequent attempts will not try as hard until there is an
2008          * overall state change.
2009          */
2010         if (node_alloc_noretry && !page && alloc_try_hard)
2011                 node_set(nid, *node_alloc_noretry);
2012
2013         return page;
2014 }
2015
2016 /*
2017  * Common helper to allocate a fresh hugetlb page. All specific allocators
2018  * should use this function to get new hugetlb pages
2019  *
2020  * Note that returned page is 'frozen':  ref count of head page and all tail
2021  * pages is zero.
2022  */
2023 static struct page *alloc_fresh_huge_page(struct hstate *h,
2024                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2025                 nodemask_t *node_alloc_noretry)
2026 {
2027         struct page *page;
2028         bool retry = false;
2029
2030 retry:
2031         if (hstate_is_gigantic(h))
2032                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
2033         else
2034                 page = alloc_buddy_huge_page(h, gfp_mask,
2035                                 nid, nmask, node_alloc_noretry);
2036         if (!page)
2037                 return NULL;
2038
2039         if (hstate_is_gigantic(h)) {
2040                 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
2041                         /*
2042                          * Rare failure to convert pages to compound page.
2043                          * Free pages and try again - ONCE!
2044                          */
2045                         free_gigantic_page(page, huge_page_order(h));
2046                         if (!retry) {
2047                                 retry = true;
2048                                 goto retry;
2049                         }
2050                         return NULL;
2051                 }
2052         }
2053         prep_new_huge_page(h, page, page_to_nid(page));
2054
2055         return page;
2056 }
2057
2058 /*
2059  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2060  * manner.
2061  */
2062 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2063                                 nodemask_t *node_alloc_noretry)
2064 {
2065         struct page *page;
2066         int nr_nodes, node;
2067         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2068
2069         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2070                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
2071                                                 node_alloc_noretry);
2072                 if (page)
2073                         break;
2074         }
2075
2076         if (!page)
2077                 return 0;
2078
2079         free_huge_page(page); /* free it into the hugepage allocator */
2080
2081         return 1;
2082 }
2083
2084 /*
2085  * Remove huge page from pool from next node to free.  Attempt to keep
2086  * persistent huge pages more or less balanced over allowed nodes.
2087  * This routine only 'removes' the hugetlb page.  The caller must make
2088  * an additional call to free the page to low level allocators.
2089  * Called with hugetlb_lock locked.
2090  */
2091 static struct page *remove_pool_huge_page(struct hstate *h,
2092                                                 nodemask_t *nodes_allowed,
2093                                                  bool acct_surplus)
2094 {
2095         int nr_nodes, node;
2096         struct page *page = NULL;
2097
2098         lockdep_assert_held(&hugetlb_lock);
2099         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2100                 /*
2101                  * If we're returning unused surplus pages, only examine
2102                  * nodes with surplus pages.
2103                  */
2104                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2105                     !list_empty(&h->hugepage_freelists[node])) {
2106                         page = list_entry(h->hugepage_freelists[node].next,
2107                                           struct page, lru);
2108                         remove_hugetlb_page(h, page, acct_surplus);
2109                         break;
2110                 }
2111         }
2112
2113         return page;
2114 }
2115
2116 /*
2117  * Dissolve a given free hugepage into free buddy pages. This function does
2118  * nothing for in-use hugepages and non-hugepages.
2119  * This function returns values like below:
2120  *
2121  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2122  *           when the system is under memory pressure and the feature of
2123  *           freeing unused vmemmap pages associated with each hugetlb page
2124  *           is enabled.
2125  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2126  *           (allocated or reserved.)
2127  *       0:  successfully dissolved free hugepages or the page is not a
2128  *           hugepage (considered as already dissolved)
2129  */
2130 int dissolve_free_huge_page(struct page *page)
2131 {
2132         int rc = -EBUSY;
2133
2134 retry:
2135         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2136         if (!PageHuge(page))
2137                 return 0;
2138
2139         spin_lock_irq(&hugetlb_lock);
2140         if (!PageHuge(page)) {
2141                 rc = 0;
2142                 goto out;
2143         }
2144
2145         if (!page_count(page)) {
2146                 struct page *head = compound_head(page);
2147                 struct hstate *h = page_hstate(head);
2148                 if (!available_huge_pages(h))
2149                         goto out;
2150
2151                 /*
2152                  * We should make sure that the page is already on the free list
2153                  * when it is dissolved.
2154                  */
2155                 if (unlikely(!HPageFreed(head))) {
2156                         spin_unlock_irq(&hugetlb_lock);
2157                         cond_resched();
2158
2159                         /*
2160                          * Theoretically, we should return -EBUSY when we
2161                          * encounter this race. In fact, we have a chance
2162                          * to successfully dissolve the page if we do a
2163                          * retry. Because the race window is quite small.
2164                          * If we seize this opportunity, it is an optimization
2165                          * for increasing the success rate of dissolving page.
2166                          */
2167                         goto retry;
2168                 }
2169
2170                 remove_hugetlb_page(h, head, false);
2171                 h->max_huge_pages--;
2172                 spin_unlock_irq(&hugetlb_lock);
2173
2174                 /*
2175                  * Normally update_and_free_page will allocate required vmemmmap
2176                  * before freeing the page.  update_and_free_page will fail to
2177                  * free the page if it can not allocate required vmemmap.  We
2178                  * need to adjust max_huge_pages if the page is not freed.
2179                  * Attempt to allocate vmemmmap here so that we can take
2180                  * appropriate action on failure.
2181                  */
2182                 rc = hugetlb_vmemmap_restore(h, head);
2183                 if (!rc) {
2184                         update_and_free_page(h, head, false);
2185                 } else {
2186                         spin_lock_irq(&hugetlb_lock);
2187                         add_hugetlb_page(h, head, false);
2188                         h->max_huge_pages++;
2189                         spin_unlock_irq(&hugetlb_lock);
2190                 }
2191
2192                 return rc;
2193         }
2194 out:
2195         spin_unlock_irq(&hugetlb_lock);
2196         return rc;
2197 }
2198
2199 /*
2200  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2201  * make specified memory blocks removable from the system.
2202  * Note that this will dissolve a free gigantic hugepage completely, if any
2203  * part of it lies within the given range.
2204  * Also note that if dissolve_free_huge_page() returns with an error, all
2205  * free hugepages that were dissolved before that error are lost.
2206  */
2207 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2208 {
2209         unsigned long pfn;
2210         struct page *page;
2211         int rc = 0;
2212         unsigned int order;
2213         struct hstate *h;
2214
2215         if (!hugepages_supported())
2216                 return rc;
2217
2218         order = huge_page_order(&default_hstate);
2219         for_each_hstate(h)
2220                 order = min(order, huge_page_order(h));
2221
2222         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2223                 page = pfn_to_page(pfn);
2224                 rc = dissolve_free_huge_page(page);
2225                 if (rc)
2226                         break;
2227         }
2228
2229         return rc;
2230 }
2231
2232 /*
2233  * Allocates a fresh surplus page from the page allocator.
2234  */
2235 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2236                                                 int nid, nodemask_t *nmask)
2237 {
2238         struct page *page = NULL;
2239
2240         if (hstate_is_gigantic(h))
2241                 return NULL;
2242
2243         spin_lock_irq(&hugetlb_lock);
2244         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2245                 goto out_unlock;
2246         spin_unlock_irq(&hugetlb_lock);
2247
2248         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2249         if (!page)
2250                 return NULL;
2251
2252         spin_lock_irq(&hugetlb_lock);
2253         /*
2254          * We could have raced with the pool size change.
2255          * Double check that and simply deallocate the new page
2256          * if we would end up overcommiting the surpluses. Abuse
2257          * temporary page to workaround the nasty free_huge_page
2258          * codeflow
2259          */
2260         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2261                 SetHPageTemporary(page);
2262                 spin_unlock_irq(&hugetlb_lock);
2263                 free_huge_page(page);
2264                 return NULL;
2265         }
2266
2267         h->surplus_huge_pages++;
2268         h->surplus_huge_pages_node[page_to_nid(page)]++;
2269
2270 out_unlock:
2271         spin_unlock_irq(&hugetlb_lock);
2272
2273         return page;
2274 }
2275
2276 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2277                                      int nid, nodemask_t *nmask)
2278 {
2279         struct page *page;
2280
2281         if (hstate_is_gigantic(h))
2282                 return NULL;
2283
2284         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2285         if (!page)
2286                 return NULL;
2287
2288         /* fresh huge pages are frozen */
2289         set_page_refcounted(page);
2290
2291         /*
2292          * We do not account these pages as surplus because they are only
2293          * temporary and will be released properly on the last reference
2294          */
2295         SetHPageTemporary(page);
2296
2297         return page;
2298 }
2299
2300 /*
2301  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2302  */
2303 static
2304 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2305                 struct vm_area_struct *vma, unsigned long addr)
2306 {
2307         struct page *page = NULL;
2308         struct mempolicy *mpol;
2309         gfp_t gfp_mask = htlb_alloc_mask(h);
2310         int nid;
2311         nodemask_t *nodemask;
2312
2313         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2314         if (mpol_is_preferred_many(mpol)) {
2315                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2316
2317                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2318                 page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
2319
2320                 /* Fallback to all nodes if page==NULL */
2321                 nodemask = NULL;
2322         }
2323
2324         if (!page)
2325                 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2326         mpol_cond_put(mpol);
2327         return page;
2328 }
2329
2330 /* page migration callback function */
2331 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2332                 nodemask_t *nmask, gfp_t gfp_mask)
2333 {
2334         spin_lock_irq(&hugetlb_lock);
2335         if (available_huge_pages(h)) {
2336                 struct page *page;
2337
2338                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2339                 if (page) {
2340                         spin_unlock_irq(&hugetlb_lock);
2341                         return page;
2342                 }
2343         }
2344         spin_unlock_irq(&hugetlb_lock);
2345
2346         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2347 }
2348
2349 /* mempolicy aware migration callback */
2350 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2351                 unsigned long address)
2352 {
2353         struct mempolicy *mpol;
2354         nodemask_t *nodemask;
2355         struct page *page;
2356         gfp_t gfp_mask;
2357         int node;
2358
2359         gfp_mask = htlb_alloc_mask(h);
2360         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2361         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2362         mpol_cond_put(mpol);
2363
2364         return page;
2365 }
2366
2367 /*
2368  * Increase the hugetlb pool such that it can accommodate a reservation
2369  * of size 'delta'.
2370  */
2371 static int gather_surplus_pages(struct hstate *h, long delta)
2372         __must_hold(&hugetlb_lock)
2373 {
2374         LIST_HEAD(surplus_list);
2375         struct page *page, *tmp;
2376         int ret;
2377         long i;
2378         long needed, allocated;
2379         bool alloc_ok = true;
2380
2381         lockdep_assert_held(&hugetlb_lock);
2382         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2383         if (needed <= 0) {
2384                 h->resv_huge_pages += delta;
2385                 return 0;
2386         }
2387
2388         allocated = 0;
2389
2390         ret = -ENOMEM;
2391 retry:
2392         spin_unlock_irq(&hugetlb_lock);
2393         for (i = 0; i < needed; i++) {
2394                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2395                                 NUMA_NO_NODE, NULL);
2396                 if (!page) {
2397                         alloc_ok = false;
2398                         break;
2399                 }
2400                 list_add(&page->lru, &surplus_list);
2401                 cond_resched();
2402         }
2403         allocated += i;
2404
2405         /*
2406          * After retaking hugetlb_lock, we need to recalculate 'needed'
2407          * because either resv_huge_pages or free_huge_pages may have changed.
2408          */
2409         spin_lock_irq(&hugetlb_lock);
2410         needed = (h->resv_huge_pages + delta) -
2411                         (h->free_huge_pages + allocated);
2412         if (needed > 0) {
2413                 if (alloc_ok)
2414                         goto retry;
2415                 /*
2416                  * We were not able to allocate enough pages to
2417                  * satisfy the entire reservation so we free what
2418                  * we've allocated so far.
2419                  */
2420                 goto free;
2421         }
2422         /*
2423          * The surplus_list now contains _at_least_ the number of extra pages
2424          * needed to accommodate the reservation.  Add the appropriate number
2425          * of pages to the hugetlb pool and free the extras back to the buddy
2426          * allocator.  Commit the entire reservation here to prevent another
2427          * process from stealing the pages as they are added to the pool but
2428          * before they are reserved.
2429          */
2430         needed += allocated;
2431         h->resv_huge_pages += delta;
2432         ret = 0;
2433
2434         /* Free the needed pages to the hugetlb pool */
2435         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2436                 if ((--needed) < 0)
2437                         break;
2438                 /* Add the page to the hugetlb allocator */
2439                 enqueue_huge_page(h, page);
2440         }
2441 free:
2442         spin_unlock_irq(&hugetlb_lock);
2443
2444         /*
2445          * Free unnecessary surplus pages to the buddy allocator.
2446          * Pages have no ref count, call free_huge_page directly.
2447          */
2448         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2449                 free_huge_page(page);
2450         spin_lock_irq(&hugetlb_lock);
2451
2452         return ret;
2453 }
2454
2455 /*
2456  * This routine has two main purposes:
2457  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2458  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2459  *    to the associated reservation map.
2460  * 2) Free any unused surplus pages that may have been allocated to satisfy
2461  *    the reservation.  As many as unused_resv_pages may be freed.
2462  */
2463 static void return_unused_surplus_pages(struct hstate *h,
2464                                         unsigned long unused_resv_pages)
2465 {
2466         unsigned long nr_pages;
2467         struct page *page;
2468         LIST_HEAD(page_list);
2469
2470         lockdep_assert_held(&hugetlb_lock);
2471         /* Uncommit the reservation */
2472         h->resv_huge_pages -= unused_resv_pages;
2473
2474         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2475                 goto out;
2476
2477         /*
2478          * Part (or even all) of the reservation could have been backed
2479          * by pre-allocated pages. Only free surplus pages.
2480          */
2481         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2482
2483         /*
2484          * We want to release as many surplus pages as possible, spread
2485          * evenly across all nodes with memory. Iterate across these nodes
2486          * until we can no longer free unreserved surplus pages. This occurs
2487          * when the nodes with surplus pages have no free pages.
2488          * remove_pool_huge_page() will balance the freed pages across the
2489          * on-line nodes with memory and will handle the hstate accounting.
2490          */
2491         while (nr_pages--) {
2492                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2493                 if (!page)
2494                         goto out;
2495
2496                 list_add(&page->lru, &page_list);
2497         }
2498
2499 out:
2500         spin_unlock_irq(&hugetlb_lock);
2501         update_and_free_pages_bulk(h, &page_list);
2502         spin_lock_irq(&hugetlb_lock);
2503 }
2504
2505
2506 /*
2507  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2508  * are used by the huge page allocation routines to manage reservations.
2509  *
2510  * vma_needs_reservation is called to determine if the huge page at addr
2511  * within the vma has an associated reservation.  If a reservation is
2512  * needed, the value 1 is returned.  The caller is then responsible for
2513  * managing the global reservation and subpool usage counts.  After
2514  * the huge page has been allocated, vma_commit_reservation is called
2515  * to add the page to the reservation map.  If the page allocation fails,
2516  * the reservation must be ended instead of committed.  vma_end_reservation
2517  * is called in such cases.
2518  *
2519  * In the normal case, vma_commit_reservation returns the same value
2520  * as the preceding vma_needs_reservation call.  The only time this
2521  * is not the case is if a reserve map was changed between calls.  It
2522  * is the responsibility of the caller to notice the difference and
2523  * take appropriate action.
2524  *
2525  * vma_add_reservation is used in error paths where a reservation must
2526  * be restored when a newly allocated huge page must be freed.  It is
2527  * to be called after calling vma_needs_reservation to determine if a
2528  * reservation exists.
2529  *
2530  * vma_del_reservation is used in error paths where an entry in the reserve
2531  * map was created during huge page allocation and must be removed.  It is to
2532  * be called after calling vma_needs_reservation to determine if a reservation
2533  * exists.
2534  */
2535 enum vma_resv_mode {
2536         VMA_NEEDS_RESV,
2537         VMA_COMMIT_RESV,
2538         VMA_END_RESV,
2539         VMA_ADD_RESV,
2540         VMA_DEL_RESV,
2541 };
2542 static long __vma_reservation_common(struct hstate *h,
2543                                 struct vm_area_struct *vma, unsigned long addr,
2544                                 enum vma_resv_mode mode)
2545 {
2546         struct resv_map *resv;
2547         pgoff_t idx;
2548         long ret;
2549         long dummy_out_regions_needed;
2550
2551         resv = vma_resv_map(vma);
2552         if (!resv)
2553                 return 1;
2554
2555         idx = vma_hugecache_offset(h, vma, addr);
2556         switch (mode) {
2557         case VMA_NEEDS_RESV:
2558                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2559                 /* We assume that vma_reservation_* routines always operate on
2560                  * 1 page, and that adding to resv map a 1 page entry can only
2561                  * ever require 1 region.
2562                  */
2563                 VM_BUG_ON(dummy_out_regions_needed != 1);
2564                 break;
2565         case VMA_COMMIT_RESV:
2566                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2567                 /* region_add calls of range 1 should never fail. */
2568                 VM_BUG_ON(ret < 0);
2569                 break;
2570         case VMA_END_RESV:
2571                 region_abort(resv, idx, idx + 1, 1);
2572                 ret = 0;
2573                 break;
2574         case VMA_ADD_RESV:
2575                 if (vma->vm_flags & VM_MAYSHARE) {
2576                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2577                         /* region_add calls of range 1 should never fail. */
2578                         VM_BUG_ON(ret < 0);
2579                 } else {
2580                         region_abort(resv, idx, idx + 1, 1);
2581                         ret = region_del(resv, idx, idx + 1);
2582                 }
2583                 break;
2584         case VMA_DEL_RESV:
2585                 if (vma->vm_flags & VM_MAYSHARE) {
2586                         region_abort(resv, idx, idx + 1, 1);
2587                         ret = region_del(resv, idx, idx + 1);
2588                 } else {
2589                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2590                         /* region_add calls of range 1 should never fail. */
2591                         VM_BUG_ON(ret < 0);
2592                 }
2593                 break;
2594         default:
2595                 BUG();
2596         }
2597
2598         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2599                 return ret;
2600         /*
2601          * We know private mapping must have HPAGE_RESV_OWNER set.
2602          *
2603          * In most cases, reserves always exist for private mappings.
2604          * However, a file associated with mapping could have been
2605          * hole punched or truncated after reserves were consumed.
2606          * As subsequent fault on such a range will not use reserves.
2607          * Subtle - The reserve map for private mappings has the
2608          * opposite meaning than that of shared mappings.  If NO
2609          * entry is in the reserve map, it means a reservation exists.
2610          * If an entry exists in the reserve map, it means the
2611          * reservation has already been consumed.  As a result, the
2612          * return value of this routine is the opposite of the
2613          * value returned from reserve map manipulation routines above.
2614          */
2615         if (ret > 0)
2616                 return 0;
2617         if (ret == 0)
2618                 return 1;
2619         return ret;
2620 }
2621
2622 static long vma_needs_reservation(struct hstate *h,
2623                         struct vm_area_struct *vma, unsigned long addr)
2624 {
2625         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2626 }
2627
2628 static long vma_commit_reservation(struct hstate *h,
2629                         struct vm_area_struct *vma, unsigned long addr)
2630 {
2631         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2632 }
2633
2634 static void vma_end_reservation(struct hstate *h,
2635                         struct vm_area_struct *vma, unsigned long addr)
2636 {
2637         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2638 }
2639
2640 static long vma_add_reservation(struct hstate *h,
2641                         struct vm_area_struct *vma, unsigned long addr)
2642 {
2643         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2644 }
2645
2646 static long vma_del_reservation(struct hstate *h,
2647                         struct vm_area_struct *vma, unsigned long addr)
2648 {
2649         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2650 }
2651
2652 /*
2653  * This routine is called to restore reservation information on error paths.
2654  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2655  * the hugetlb mutex should remain held when calling this routine.
2656  *
2657  * It handles two specific cases:
2658  * 1) A reservation was in place and the page consumed the reservation.
2659  *    HPageRestoreReserve is set in the page.
2660  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2661  *    not set.  However, alloc_huge_page always updates the reserve map.
2662  *
2663  * In case 1, free_huge_page later in the error path will increment the
2664  * global reserve count.  But, free_huge_page does not have enough context
2665  * to adjust the reservation map.  This case deals primarily with private
2666  * mappings.  Adjust the reserve map here to be consistent with global
2667  * reserve count adjustments to be made by free_huge_page.  Make sure the
2668  * reserve map indicates there is a reservation present.
2669  *
2670  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2671  */
2672 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2673                         unsigned long address, struct page *page)
2674 {
2675         long rc = vma_needs_reservation(h, vma, address);
2676
2677         if (HPageRestoreReserve(page)) {
2678                 if (unlikely(rc < 0))
2679                         /*
2680                          * Rare out of memory condition in reserve map
2681                          * manipulation.  Clear HPageRestoreReserve so that
2682                          * global reserve count will not be incremented
2683                          * by free_huge_page.  This will make it appear
2684                          * as though the reservation for this page was
2685                          * consumed.  This may prevent the task from
2686                          * faulting in the page at a later time.  This
2687                          * is better than inconsistent global huge page
2688                          * accounting of reserve counts.
2689                          */
2690                         ClearHPageRestoreReserve(page);
2691                 else if (rc)
2692                         (void)vma_add_reservation(h, vma, address);
2693                 else
2694                         vma_end_reservation(h, vma, address);
2695         } else {
2696                 if (!rc) {
2697                         /*
2698                          * This indicates there is an entry in the reserve map
2699                          * not added by alloc_huge_page.  We know it was added
2700                          * before the alloc_huge_page call, otherwise
2701                          * HPageRestoreReserve would be set on the page.
2702                          * Remove the entry so that a subsequent allocation
2703                          * does not consume a reservation.
2704                          */
2705                         rc = vma_del_reservation(h, vma, address);
2706                         if (rc < 0)
2707                                 /*
2708                                  * VERY rare out of memory condition.  Since
2709                                  * we can not delete the entry, set
2710                                  * HPageRestoreReserve so that the reserve
2711                                  * count will be incremented when the page
2712                                  * is freed.  This reserve will be consumed
2713                                  * on a subsequent allocation.
2714                                  */
2715                                 SetHPageRestoreReserve(page);
2716                 } else if (rc < 0) {
2717                         /*
2718                          * Rare out of memory condition from
2719                          * vma_needs_reservation call.  Memory allocation is
2720                          * only attempted if a new entry is needed.  Therefore,
2721                          * this implies there is not an entry in the
2722                          * reserve map.
2723                          *
2724                          * For shared mappings, no entry in the map indicates
2725                          * no reservation.  We are done.
2726                          */
2727                         if (!(vma->vm_flags & VM_MAYSHARE))
2728                                 /*
2729                                  * For private mappings, no entry indicates
2730                                  * a reservation is present.  Since we can
2731                                  * not add an entry, set SetHPageRestoreReserve
2732                                  * on the page so reserve count will be
2733                                  * incremented when freed.  This reserve will
2734                                  * be consumed on a subsequent allocation.
2735                                  */
2736                                 SetHPageRestoreReserve(page);
2737                 } else
2738                         /*
2739                          * No reservation present, do nothing
2740                          */
2741                          vma_end_reservation(h, vma, address);
2742         }
2743 }
2744
2745 /*
2746  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2747  * @h: struct hstate old page belongs to
2748  * @old_page: Old page to dissolve
2749  * @list: List to isolate the page in case we need to
2750  * Returns 0 on success, otherwise negated error.
2751  */
2752 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2753                                         struct list_head *list)
2754 {
2755         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2756         struct folio *old_folio = page_folio(old_page);
2757         int nid = folio_nid(old_folio);
2758         struct page *new_page;
2759         struct folio *new_folio;
2760         int ret = 0;
2761
2762         /*
2763          * Before dissolving the page, we need to allocate a new one for the
2764          * pool to remain stable.  Here, we allocate the page and 'prep' it
2765          * by doing everything but actually updating counters and adding to
2766          * the pool.  This simplifies and let us do most of the processing
2767          * under the lock.
2768          */
2769         new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2770         if (!new_page)
2771                 return -ENOMEM;
2772         new_folio = page_folio(new_page);
2773         __prep_new_hugetlb_folio(h, new_folio);
2774
2775 retry:
2776         spin_lock_irq(&hugetlb_lock);
2777         if (!folio_test_hugetlb(old_folio)) {
2778                 /*
2779                  * Freed from under us. Drop new_page too.
2780                  */
2781                 goto free_new;
2782         } else if (folio_ref_count(old_folio)) {
2783                 /*
2784                  * Someone has grabbed the page, try to isolate it here.
2785                  * Fail with -EBUSY if not possible.
2786                  */
2787                 spin_unlock_irq(&hugetlb_lock);
2788                 ret = isolate_hugetlb(old_page, list);
2789                 spin_lock_irq(&hugetlb_lock);
2790                 goto free_new;
2791         } else if (!folio_test_hugetlb_freed(old_folio)) {
2792                 /*
2793                  * Page's refcount is 0 but it has not been enqueued in the
2794                  * freelist yet. Race window is small, so we can succeed here if
2795                  * we retry.
2796                  */
2797                 spin_unlock_irq(&hugetlb_lock);
2798                 cond_resched();
2799                 goto retry;
2800         } else {
2801                 /*
2802                  * Ok, old_page is still a genuine free hugepage. Remove it from
2803                  * the freelist and decrease the counters. These will be
2804                  * incremented again when calling __prep_account_new_huge_page()
2805                  * and enqueue_huge_page() for new_page. The counters will remain
2806                  * stable since this happens under the lock.
2807                  */
2808                 remove_hugetlb_page(h, old_page, false);
2809
2810                 /*
2811                  * Ref count on new page is already zero as it was dropped
2812                  * earlier.  It can be directly added to the pool free list.
2813                  */
2814                 __prep_account_new_huge_page(h, nid);
2815                 enqueue_huge_page(h, new_page);
2816
2817                 /*
2818                  * Pages have been replaced, we can safely free the old one.
2819                  */
2820                 spin_unlock_irq(&hugetlb_lock);
2821                 update_and_free_page(h, old_page, false);
2822         }
2823
2824         return ret;
2825
2826 free_new:
2827         spin_unlock_irq(&hugetlb_lock);
2828         /* Page has a zero ref count, but needs a ref to be freed */
2829         folio_ref_unfreeze(new_folio, 1);
2830         update_and_free_page(h, new_page, false);
2831
2832         return ret;
2833 }
2834
2835 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2836 {
2837         struct hstate *h;
2838         struct folio *folio = page_folio(page);
2839         int ret = -EBUSY;
2840
2841         /*
2842          * The page might have been dissolved from under our feet, so make sure
2843          * to carefully check the state under the lock.
2844          * Return success when racing as if we dissolved the page ourselves.
2845          */
2846         spin_lock_irq(&hugetlb_lock);
2847         if (folio_test_hugetlb(folio)) {
2848                 h = folio_hstate(folio);
2849         } else {
2850                 spin_unlock_irq(&hugetlb_lock);
2851                 return 0;
2852         }
2853         spin_unlock_irq(&hugetlb_lock);
2854
2855         /*
2856          * Fence off gigantic pages as there is a cyclic dependency between
2857          * alloc_contig_range and them. Return -ENOMEM as this has the effect
2858          * of bailing out right away without further retrying.
2859          */
2860         if (hstate_is_gigantic(h))
2861                 return -ENOMEM;
2862
2863         if (folio_ref_count(folio) && !isolate_hugetlb(&folio->page, list))
2864                 ret = 0;
2865         else if (!folio_ref_count(folio))
2866                 ret = alloc_and_dissolve_huge_page(h, &folio->page, list);
2867
2868         return ret;
2869 }
2870
2871 struct page *alloc_huge_page(struct vm_area_struct *vma,
2872                                     unsigned long addr, int avoid_reserve)
2873 {
2874         struct hugepage_subpool *spool = subpool_vma(vma);
2875         struct hstate *h = hstate_vma(vma);
2876         struct page *page;
2877         struct folio *folio;
2878         long map_chg, map_commit;
2879         long gbl_chg;
2880         int ret, idx;
2881         struct hugetlb_cgroup *h_cg;
2882         bool deferred_reserve;
2883
2884         idx = hstate_index(h);
2885         /*
2886          * Examine the region/reserve map to determine if the process
2887          * has a reservation for the page to be allocated.  A return
2888          * code of zero indicates a reservation exists (no change).
2889          */
2890         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2891         if (map_chg < 0)
2892                 return ERR_PTR(-ENOMEM);
2893
2894         /*
2895          * Processes that did not create the mapping will have no
2896          * reserves as indicated by the region/reserve map. Check
2897          * that the allocation will not exceed the subpool limit.
2898          * Allocations for MAP_NORESERVE mappings also need to be
2899          * checked against any subpool limit.
2900          */
2901         if (map_chg || avoid_reserve) {
2902                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2903                 if (gbl_chg < 0) {
2904                         vma_end_reservation(h, vma, addr);
2905                         return ERR_PTR(-ENOSPC);
2906                 }
2907
2908                 /*
2909                  * Even though there was no reservation in the region/reserve
2910                  * map, there could be reservations associated with the
2911                  * subpool that can be used.  This would be indicated if the
2912                  * return value of hugepage_subpool_get_pages() is zero.
2913                  * However, if avoid_reserve is specified we still avoid even
2914                  * the subpool reservations.
2915                  */
2916                 if (avoid_reserve)
2917                         gbl_chg = 1;
2918         }
2919
2920         /* If this allocation is not consuming a reservation, charge it now.
2921          */
2922         deferred_reserve = map_chg || avoid_reserve;
2923         if (deferred_reserve) {
2924                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2925                         idx, pages_per_huge_page(h), &h_cg);
2926                 if (ret)
2927                         goto out_subpool_put;
2928         }
2929
2930         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2931         if (ret)
2932                 goto out_uncharge_cgroup_reservation;
2933
2934         spin_lock_irq(&hugetlb_lock);
2935         /*
2936          * glb_chg is passed to indicate whether or not a page must be taken
2937          * from the global free pool (global change).  gbl_chg == 0 indicates
2938          * a reservation exists for the allocation.
2939          */
2940         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2941
2942         if (!page) {
2943                 spin_unlock_irq(&hugetlb_lock);
2944                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2945                 if (!page)
2946                         goto out_uncharge_cgroup;
2947                 spin_lock_irq(&hugetlb_lock);
2948                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2949                         SetHPageRestoreReserve(page);
2950                         h->resv_huge_pages--;
2951                 }
2952                 list_add(&page->lru, &h->hugepage_activelist);
2953                 set_page_refcounted(page);
2954                 /* Fall through */
2955         }
2956         folio = page_folio(page);
2957         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2958         /* If allocation is not consuming a reservation, also store the
2959          * hugetlb_cgroup pointer on the page.
2960          */
2961         if (deferred_reserve) {
2962                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2963                                                   h_cg, page);
2964         }
2965
2966         spin_unlock_irq(&hugetlb_lock);
2967
2968         hugetlb_set_page_subpool(page, spool);
2969
2970         map_commit = vma_commit_reservation(h, vma, addr);
2971         if (unlikely(map_chg > map_commit)) {
2972                 /*
2973                  * The page was added to the reservation map between
2974                  * vma_needs_reservation and vma_commit_reservation.
2975                  * This indicates a race with hugetlb_reserve_pages.
2976                  * Adjust for the subpool count incremented above AND
2977                  * in hugetlb_reserve_pages for the same page.  Also,
2978                  * the reservation count added in hugetlb_reserve_pages
2979                  * no longer applies.
2980                  */
2981                 long rsv_adjust;
2982
2983                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2984                 hugetlb_acct_memory(h, -rsv_adjust);
2985                 if (deferred_reserve)
2986                         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
2987                                         pages_per_huge_page(h), folio);
2988         }
2989         return page;
2990
2991 out_uncharge_cgroup:
2992         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2993 out_uncharge_cgroup_reservation:
2994         if (deferred_reserve)
2995                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2996                                                     h_cg);
2997 out_subpool_put:
2998         if (map_chg || avoid_reserve)
2999                 hugepage_subpool_put_pages(spool, 1);
3000         vma_end_reservation(h, vma, addr);
3001         return ERR_PTR(-ENOSPC);
3002 }
3003
3004 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3005         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3006 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3007 {
3008         struct huge_bootmem_page *m = NULL; /* initialize for clang */
3009         int nr_nodes, node;
3010
3011         /* do node specific alloc */
3012         if (nid != NUMA_NO_NODE) {
3013                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3014                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3015                 if (!m)
3016                         return 0;
3017                 goto found;
3018         }
3019         /* allocate from next node when distributing huge pages */
3020         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3021                 m = memblock_alloc_try_nid_raw(
3022                                 huge_page_size(h), huge_page_size(h),
3023                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3024                 /*
3025                  * Use the beginning of the huge page to store the
3026                  * huge_bootmem_page struct (until gather_bootmem
3027                  * puts them into the mem_map).
3028                  */
3029                 if (!m)
3030                         return 0;
3031                 goto found;
3032         }
3033
3034 found:
3035         /* Put them into a private list first because mem_map is not up yet */
3036         INIT_LIST_HEAD(&m->list);
3037         list_add(&m->list, &huge_boot_pages);
3038         m->hstate = h;
3039         return 1;
3040 }
3041
3042 /*
3043  * Put bootmem huge pages into the standard lists after mem_map is up.
3044  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3045  */
3046 static void __init gather_bootmem_prealloc(void)
3047 {
3048         struct huge_bootmem_page *m;
3049
3050         list_for_each_entry(m, &huge_boot_pages, list) {
3051                 struct page *page = virt_to_page(m);
3052                 struct hstate *h = m->hstate;
3053
3054                 VM_BUG_ON(!hstate_is_gigantic(h));
3055                 WARN_ON(page_count(page) != 1);
3056                 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3057                         WARN_ON(PageReserved(page));
3058                         prep_new_huge_page(h, page, page_to_nid(page));
3059                         free_huge_page(page); /* add to the hugepage allocator */
3060                 } else {
3061                         /* VERY unlikely inflated ref count on a tail page */
3062                         free_gigantic_page(page, huge_page_order(h));
3063                 }
3064
3065                 /*
3066                  * We need to restore the 'stolen' pages to totalram_pages
3067                  * in order to fix confusing memory reports from free(1) and
3068                  * other side-effects, like CommitLimit going negative.
3069                  */
3070                 adjust_managed_page_count(page, pages_per_huge_page(h));
3071                 cond_resched();
3072         }
3073 }
3074 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3075 {
3076         unsigned long i;
3077         char buf[32];
3078
3079         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3080                 if (hstate_is_gigantic(h)) {
3081                         if (!alloc_bootmem_huge_page(h, nid))
3082                                 break;
3083                 } else {
3084                         struct page *page;
3085                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3086
3087                         page = alloc_fresh_huge_page(h, gfp_mask, nid,
3088                                         &node_states[N_MEMORY], NULL);
3089                         if (!page)
3090                                 break;
3091                         free_huge_page(page); /* free it into the hugepage allocator */
3092                 }
3093                 cond_resched();
3094         }
3095         if (i == h->max_huge_pages_node[nid])
3096                 return;
3097
3098         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3099         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3100                 h->max_huge_pages_node[nid], buf, nid, i);
3101         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3102         h->max_huge_pages_node[nid] = i;
3103 }
3104
3105 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3106 {
3107         unsigned long i;
3108         nodemask_t *node_alloc_noretry;
3109         bool node_specific_alloc = false;
3110
3111         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3112         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3113                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3114                 return;
3115         }
3116
3117         /* do node specific alloc */
3118         for_each_online_node(i) {
3119                 if (h->max_huge_pages_node[i] > 0) {
3120                         hugetlb_hstate_alloc_pages_onenode(h, i);
3121                         node_specific_alloc = true;
3122                 }
3123         }
3124
3125         if (node_specific_alloc)
3126                 return;
3127
3128         /* below will do all node balanced alloc */
3129         if (!hstate_is_gigantic(h)) {
3130                 /*
3131                  * Bit mask controlling how hard we retry per-node allocations.
3132                  * Ignore errors as lower level routines can deal with
3133                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3134                  * time, we are likely in bigger trouble.
3135                  */
3136                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3137                                                 GFP_KERNEL);
3138         } else {
3139                 /* allocations done at boot time */
3140                 node_alloc_noretry = NULL;
3141         }
3142
3143         /* bit mask controlling how hard we retry per-node allocations */
3144         if (node_alloc_noretry)
3145                 nodes_clear(*node_alloc_noretry);
3146
3147         for (i = 0; i < h->max_huge_pages; ++i) {
3148                 if (hstate_is_gigantic(h)) {
3149                         if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3150                                 break;
3151                 } else if (!alloc_pool_huge_page(h,
3152                                          &node_states[N_MEMORY],
3153                                          node_alloc_noretry))
3154                         break;
3155                 cond_resched();
3156         }
3157         if (i < h->max_huge_pages) {
3158                 char buf[32];
3159
3160                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3161                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3162                         h->max_huge_pages, buf, i);
3163                 h->max_huge_pages = i;
3164         }
3165         kfree(node_alloc_noretry);
3166 }
3167
3168 static void __init hugetlb_init_hstates(void)
3169 {
3170         struct hstate *h, *h2;
3171
3172         for_each_hstate(h) {
3173                 /* oversize hugepages were init'ed in early boot */
3174                 if (!hstate_is_gigantic(h))
3175                         hugetlb_hstate_alloc_pages(h);
3176
3177                 /*
3178                  * Set demote order for each hstate.  Note that
3179                  * h->demote_order is initially 0.
3180                  * - We can not demote gigantic pages if runtime freeing
3181                  *   is not supported, so skip this.
3182                  * - If CMA allocation is possible, we can not demote
3183                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3184                  */
3185                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3186                         continue;
3187                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3188                         continue;
3189                 for_each_hstate(h2) {
3190                         if (h2 == h)
3191                                 continue;
3192                         if (h2->order < h->order &&
3193                             h2->order > h->demote_order)
3194                                 h->demote_order = h2->order;
3195                 }
3196         }
3197 }
3198
3199 static void __init report_hugepages(void)
3200 {
3201         struct hstate *h;
3202
3203         for_each_hstate(h) {
3204                 char buf[32];
3205
3206                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3207                 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3208                         buf, h->free_huge_pages);
3209                 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3210                         hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3211         }
3212 }
3213
3214 #ifdef CONFIG_HIGHMEM
3215 static void try_to_free_low(struct hstate *h, unsigned long count,
3216                                                 nodemask_t *nodes_allowed)
3217 {
3218         int i;
3219         LIST_HEAD(page_list);
3220
3221         lockdep_assert_held(&hugetlb_lock);
3222         if (hstate_is_gigantic(h))
3223                 return;
3224
3225         /*
3226          * Collect pages to be freed on a list, and free after dropping lock
3227          */
3228         for_each_node_mask(i, *nodes_allowed) {
3229                 struct page *page, *next;
3230                 struct list_head *freel = &h->hugepage_freelists[i];
3231                 list_for_each_entry_safe(page, next, freel, lru) {
3232                         if (count >= h->nr_huge_pages)
3233                                 goto out;
3234                         if (PageHighMem(page))
3235                                 continue;
3236                         remove_hugetlb_page(h, page, false);
3237                         list_add(&page->lru, &page_list);
3238                 }
3239         }
3240
3241 out:
3242         spin_unlock_irq(&hugetlb_lock);
3243         update_and_free_pages_bulk(h, &page_list);
3244         spin_lock_irq(&hugetlb_lock);
3245 }
3246 #else
3247 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3248                                                 nodemask_t *nodes_allowed)
3249 {
3250 }
3251 #endif
3252
3253 /*
3254  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3255  * balanced by operating on them in a round-robin fashion.
3256  * Returns 1 if an adjustment was made.
3257  */
3258 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3259                                 int delta)
3260 {
3261         int nr_nodes, node;
3262
3263         lockdep_assert_held(&hugetlb_lock);
3264         VM_BUG_ON(delta != -1 && delta != 1);
3265
3266         if (delta < 0) {
3267                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3268                         if (h->surplus_huge_pages_node[node])
3269                                 goto found;
3270                 }
3271         } else {
3272                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3273                         if (h->surplus_huge_pages_node[node] <
3274                                         h->nr_huge_pages_node[node])
3275                                 goto found;
3276                 }
3277         }
3278         return 0;
3279
3280 found:
3281         h->surplus_huge_pages += delta;
3282         h->surplus_huge_pages_node[node] += delta;
3283         return 1;
3284 }
3285
3286 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3287 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3288                               nodemask_t *nodes_allowed)
3289 {
3290         unsigned long min_count, ret;
3291         struct page *page;
3292         LIST_HEAD(page_list);
3293         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3294
3295         /*
3296          * Bit mask controlling how hard we retry per-node allocations.
3297          * If we can not allocate the bit mask, do not attempt to allocate
3298          * the requested huge pages.
3299          */
3300         if (node_alloc_noretry)
3301                 nodes_clear(*node_alloc_noretry);
3302         else
3303                 return -ENOMEM;
3304
3305         /*
3306          * resize_lock mutex prevents concurrent adjustments to number of
3307          * pages in hstate via the proc/sysfs interfaces.
3308          */
3309         mutex_lock(&h->resize_lock);
3310         flush_free_hpage_work(h);
3311         spin_lock_irq(&hugetlb_lock);
3312
3313         /*
3314          * Check for a node specific request.
3315          * Changing node specific huge page count may require a corresponding
3316          * change to the global count.  In any case, the passed node mask
3317          * (nodes_allowed) will restrict alloc/free to the specified node.
3318          */
3319         if (nid != NUMA_NO_NODE) {
3320                 unsigned long old_count = count;
3321
3322                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3323                 /*
3324                  * User may have specified a large count value which caused the
3325                  * above calculation to overflow.  In this case, they wanted
3326                  * to allocate as many huge pages as possible.  Set count to
3327                  * largest possible value to align with their intention.
3328                  */
3329                 if (count < old_count)
3330                         count = ULONG_MAX;
3331         }
3332
3333         /*
3334          * Gigantic pages runtime allocation depend on the capability for large
3335          * page range allocation.
3336          * If the system does not provide this feature, return an error when
3337          * the user tries to allocate gigantic pages but let the user free the
3338          * boottime allocated gigantic pages.
3339          */
3340         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3341                 if (count > persistent_huge_pages(h)) {
3342                         spin_unlock_irq(&hugetlb_lock);
3343                         mutex_unlock(&h->resize_lock);
3344                         NODEMASK_FREE(node_alloc_noretry);
3345                         return -EINVAL;
3346                 }
3347                 /* Fall through to decrease pool */
3348         }
3349
3350         /*
3351          * Increase the pool size
3352          * First take pages out of surplus state.  Then make up the
3353          * remaining difference by allocating fresh huge pages.
3354          *
3355          * We might race with alloc_surplus_huge_page() here and be unable
3356          * to convert a surplus huge page to a normal huge page. That is
3357          * not critical, though, it just means the overall size of the
3358          * pool might be one hugepage larger than it needs to be, but
3359          * within all the constraints specified by the sysctls.
3360          */
3361         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3362                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3363                         break;
3364         }
3365
3366         while (count > persistent_huge_pages(h)) {
3367                 /*
3368                  * If this allocation races such that we no longer need the
3369                  * page, free_huge_page will handle it by freeing the page
3370                  * and reducing the surplus.
3371                  */
3372                 spin_unlock_irq(&hugetlb_lock);
3373
3374                 /* yield cpu to avoid soft lockup */
3375                 cond_resched();
3376
3377                 ret = alloc_pool_huge_page(h, nodes_allowed,
3378                                                 node_alloc_noretry);
3379                 spin_lock_irq(&hugetlb_lock);
3380                 if (!ret)
3381                         goto out;
3382
3383                 /* Bail for signals. Probably ctrl-c from user */
3384                 if (signal_pending(current))
3385                         goto out;
3386         }
3387
3388         /*
3389          * Decrease the pool size
3390          * First return free pages to the buddy allocator (being careful
3391          * to keep enough around to satisfy reservations).  Then place
3392          * pages into surplus state as needed so the pool will shrink
3393          * to the desired size as pages become free.
3394          *
3395          * By placing pages into the surplus state independent of the
3396          * overcommit value, we are allowing the surplus pool size to
3397          * exceed overcommit. There are few sane options here. Since
3398          * alloc_surplus_huge_page() is checking the global counter,
3399          * though, we'll note that we're not allowed to exceed surplus
3400          * and won't grow the pool anywhere else. Not until one of the
3401          * sysctls are changed, or the surplus pages go out of use.
3402          */
3403         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3404         min_count = max(count, min_count);
3405         try_to_free_low(h, min_count, nodes_allowed);
3406
3407         /*
3408          * Collect pages to be removed on list without dropping lock
3409          */
3410         while (min_count < persistent_huge_pages(h)) {
3411                 page = remove_pool_huge_page(h, nodes_allowed, 0);
3412                 if (!page)
3413                         break;
3414
3415                 list_add(&page->lru, &page_list);
3416         }
3417         /* free the pages after dropping lock */
3418         spin_unlock_irq(&hugetlb_lock);
3419         update_and_free_pages_bulk(h, &page_list);
3420         flush_free_hpage_work(h);
3421         spin_lock_irq(&hugetlb_lock);
3422
3423         while (count < persistent_huge_pages(h)) {
3424                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3425                         break;
3426         }
3427 out:
3428         h->max_huge_pages = persistent_huge_pages(h);
3429         spin_unlock_irq(&hugetlb_lock);
3430         mutex_unlock(&h->resize_lock);
3431
3432         NODEMASK_FREE(node_alloc_noretry);
3433
3434         return 0;
3435 }
3436
3437 static int demote_free_huge_page(struct hstate *h, struct page *page)
3438 {
3439         int i, nid = page_to_nid(page);
3440         struct hstate *target_hstate;
3441         struct page *subpage;
3442         int rc = 0;
3443
3444         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3445
3446         remove_hugetlb_page_for_demote(h, page, false);
3447         spin_unlock_irq(&hugetlb_lock);
3448
3449         rc = hugetlb_vmemmap_restore(h, page);
3450         if (rc) {
3451                 /* Allocation of vmemmmap failed, we can not demote page */
3452                 spin_lock_irq(&hugetlb_lock);
3453                 set_page_refcounted(page);
3454                 add_hugetlb_page(h, page, false);
3455                 return rc;
3456         }
3457
3458         /*
3459          * Use destroy_compound_hugetlb_page_for_demote for all huge page
3460          * sizes as it will not ref count pages.
3461          */
3462         destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3463
3464         /*
3465          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3466          * Without the mutex, pages added to target hstate could be marked
3467          * as surplus.
3468          *
3469          * Note that we already hold h->resize_lock.  To prevent deadlock,
3470          * use the convention of always taking larger size hstate mutex first.
3471          */
3472         mutex_lock(&target_hstate->resize_lock);
3473         for (i = 0; i < pages_per_huge_page(h);
3474                                 i += pages_per_huge_page(target_hstate)) {
3475                 subpage = nth_page(page, i);
3476                 if (hstate_is_gigantic(target_hstate))
3477                         prep_compound_gigantic_page_for_demote(subpage,
3478                                                         target_hstate->order);
3479                 else
3480                         prep_compound_page(subpage, target_hstate->order);
3481                 set_page_private(subpage, 0);
3482                 prep_new_huge_page(target_hstate, subpage, nid);
3483                 free_huge_page(subpage);
3484         }
3485         mutex_unlock(&target_hstate->resize_lock);
3486
3487         spin_lock_irq(&hugetlb_lock);
3488
3489         /*
3490          * Not absolutely necessary, but for consistency update max_huge_pages
3491          * based on pool changes for the demoted page.
3492          */
3493         h->max_huge_pages--;
3494         target_hstate->max_huge_pages +=
3495                 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3496
3497         return rc;
3498 }
3499
3500 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3501         __must_hold(&hugetlb_lock)
3502 {
3503         int nr_nodes, node;
3504         struct page *page;
3505
3506         lockdep_assert_held(&hugetlb_lock);
3507
3508         /* We should never get here if no demote order */
3509         if (!h->demote_order) {
3510                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3511                 return -EINVAL;         /* internal error */
3512         }
3513
3514         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3515                 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3516                         if (PageHWPoison(page))
3517                                 continue;
3518
3519                         return demote_free_huge_page(h, page);
3520                 }
3521         }
3522
3523         /*
3524          * Only way to get here is if all pages on free lists are poisoned.
3525          * Return -EBUSY so that caller will not retry.
3526          */
3527         return -EBUSY;
3528 }
3529
3530 #define HSTATE_ATTR_RO(_name) \
3531         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3532
3533 #define HSTATE_ATTR_WO(_name) \
3534         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3535
3536 #define HSTATE_ATTR(_name) \
3537         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3538
3539 static struct kobject *hugepages_kobj;
3540 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3541
3542 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3543
3544 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3545 {
3546         int i;
3547
3548         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3549                 if (hstate_kobjs[i] == kobj) {
3550                         if (nidp)
3551                                 *nidp = NUMA_NO_NODE;
3552                         return &hstates[i];
3553                 }
3554
3555         return kobj_to_node_hstate(kobj, nidp);
3556 }
3557
3558 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3559                                         struct kobj_attribute *attr, char *buf)
3560 {
3561         struct hstate *h;
3562         unsigned long nr_huge_pages;
3563         int nid;
3564
3565         h = kobj_to_hstate(kobj, &nid);
3566         if (nid == NUMA_NO_NODE)
3567                 nr_huge_pages = h->nr_huge_pages;
3568         else
3569                 nr_huge_pages = h->nr_huge_pages_node[nid];
3570
3571         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3572 }
3573
3574 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3575                                            struct hstate *h, int nid,
3576                                            unsigned long count, size_t len)
3577 {
3578         int err;
3579         nodemask_t nodes_allowed, *n_mask;
3580
3581         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3582                 return -EINVAL;
3583
3584         if (nid == NUMA_NO_NODE) {
3585                 /*
3586                  * global hstate attribute
3587                  */
3588                 if (!(obey_mempolicy &&
3589                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3590                         n_mask = &node_states[N_MEMORY];
3591                 else
3592                         n_mask = &nodes_allowed;
3593         } else {
3594                 /*
3595                  * Node specific request.  count adjustment happens in
3596                  * set_max_huge_pages() after acquiring hugetlb_lock.
3597                  */
3598                 init_nodemask_of_node(&nodes_allowed, nid);
3599                 n_mask = &nodes_allowed;
3600         }
3601
3602         err = set_max_huge_pages(h, count, nid, n_mask);
3603
3604         return err ? err : len;
3605 }
3606
3607 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3608                                          struct kobject *kobj, const char *buf,
3609                                          size_t len)
3610 {
3611         struct hstate *h;
3612         unsigned long count;
3613         int nid;
3614         int err;
3615
3616         err = kstrtoul(buf, 10, &count);
3617         if (err)
3618                 return err;
3619
3620         h = kobj_to_hstate(kobj, &nid);
3621         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3622 }
3623
3624 static ssize_t nr_hugepages_show(struct kobject *kobj,
3625                                        struct kobj_attribute *attr, char *buf)
3626 {
3627         return nr_hugepages_show_common(kobj, attr, buf);
3628 }
3629
3630 static ssize_t nr_hugepages_store(struct kobject *kobj,
3631                struct kobj_attribute *attr, const char *buf, size_t len)
3632 {
3633         return nr_hugepages_store_common(false, kobj, buf, len);
3634 }
3635 HSTATE_ATTR(nr_hugepages);
3636
3637 #ifdef CONFIG_NUMA
3638
3639 /*
3640  * hstate attribute for optionally mempolicy-based constraint on persistent
3641  * huge page alloc/free.
3642  */
3643 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3644                                            struct kobj_attribute *attr,
3645                                            char *buf)
3646 {
3647         return nr_hugepages_show_common(kobj, attr, buf);
3648 }
3649
3650 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3651                struct kobj_attribute *attr, const char *buf, size_t len)
3652 {
3653         return nr_hugepages_store_common(true, kobj, buf, len);
3654 }
3655 HSTATE_ATTR(nr_hugepages_mempolicy);
3656 #endif
3657
3658
3659 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3660                                         struct kobj_attribute *attr, char *buf)
3661 {
3662         struct hstate *h = kobj_to_hstate(kobj, NULL);
3663         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3664 }
3665
3666 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3667                 struct kobj_attribute *attr, const char *buf, size_t count)
3668 {
3669         int err;
3670         unsigned long input;
3671         struct hstate *h = kobj_to_hstate(kobj, NULL);
3672
3673         if (hstate_is_gigantic(h))
3674                 return -EINVAL;
3675
3676         err = kstrtoul(buf, 10, &input);
3677         if (err)
3678                 return err;
3679
3680         spin_lock_irq(&hugetlb_lock);
3681         h->nr_overcommit_huge_pages = input;
3682         spin_unlock_irq(&hugetlb_lock);
3683
3684         return count;
3685 }
3686 HSTATE_ATTR(nr_overcommit_hugepages);
3687
3688 static ssize_t free_hugepages_show(struct kobject *kobj,
3689                                         struct kobj_attribute *attr, char *buf)
3690 {
3691         struct hstate *h;
3692         unsigned long free_huge_pages;
3693         int nid;
3694
3695         h = kobj_to_hstate(kobj, &nid);
3696         if (nid == NUMA_NO_NODE)
3697                 free_huge_pages = h->free_huge_pages;
3698         else
3699                 free_huge_pages = h->free_huge_pages_node[nid];
3700
3701         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3702 }
3703 HSTATE_ATTR_RO(free_hugepages);
3704
3705 static ssize_t resv_hugepages_show(struct kobject *kobj,
3706                                         struct kobj_attribute *attr, char *buf)
3707 {
3708         struct hstate *h = kobj_to_hstate(kobj, NULL);
3709         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3710 }
3711 HSTATE_ATTR_RO(resv_hugepages);
3712
3713 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3714                                         struct kobj_attribute *attr, char *buf)
3715 {
3716         struct hstate *h;
3717         unsigned long surplus_huge_pages;
3718         int nid;
3719
3720         h = kobj_to_hstate(kobj, &nid);
3721         if (nid == NUMA_NO_NODE)
3722                 surplus_huge_pages = h->surplus_huge_pages;
3723         else
3724                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3725
3726         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3727 }
3728 HSTATE_ATTR_RO(surplus_hugepages);
3729
3730 static ssize_t demote_store(struct kobject *kobj,
3731                struct kobj_attribute *attr, const char *buf, size_t len)
3732 {
3733         unsigned long nr_demote;
3734         unsigned long nr_available;
3735         nodemask_t nodes_allowed, *n_mask;
3736         struct hstate *h;
3737         int err;
3738         int nid;
3739
3740         err = kstrtoul(buf, 10, &nr_demote);
3741         if (err)
3742                 return err;
3743         h = kobj_to_hstate(kobj, &nid);
3744
3745         if (nid != NUMA_NO_NODE) {
3746                 init_nodemask_of_node(&nodes_allowed, nid);
3747                 n_mask = &nodes_allowed;
3748         } else {
3749                 n_mask = &node_states[N_MEMORY];
3750         }
3751
3752         /* Synchronize with other sysfs operations modifying huge pages */
3753         mutex_lock(&h->resize_lock);
3754         spin_lock_irq(&hugetlb_lock);
3755
3756         while (nr_demote) {
3757                 /*
3758                  * Check for available pages to demote each time thorough the
3759                  * loop as demote_pool_huge_page will drop hugetlb_lock.
3760                  */
3761                 if (nid != NUMA_NO_NODE)
3762                         nr_available = h->free_huge_pages_node[nid];
3763                 else
3764                         nr_available = h->free_huge_pages;
3765                 nr_available -= h->resv_huge_pages;
3766                 if (!nr_available)
3767                         break;
3768
3769                 err = demote_pool_huge_page(h, n_mask);
3770                 if (err)
3771                         break;
3772
3773                 nr_demote--;
3774         }
3775
3776         spin_unlock_irq(&hugetlb_lock);
3777         mutex_unlock(&h->resize_lock);
3778
3779         if (err)
3780                 return err;
3781         return len;
3782 }
3783 HSTATE_ATTR_WO(demote);
3784
3785 static ssize_t demote_size_show(struct kobject *kobj,
3786                                         struct kobj_attribute *attr, char *buf)
3787 {
3788         struct hstate *h = kobj_to_hstate(kobj, NULL);
3789         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3790
3791         return sysfs_emit(buf, "%lukB\n", demote_size);
3792 }
3793
3794 static ssize_t demote_size_store(struct kobject *kobj,
3795                                         struct kobj_attribute *attr,
3796                                         const char *buf, size_t count)
3797 {
3798         struct hstate *h, *demote_hstate;
3799         unsigned long demote_size;
3800         unsigned int demote_order;
3801
3802         demote_size = (unsigned long)memparse(buf, NULL);
3803
3804         demote_hstate = size_to_hstate(demote_size);
3805         if (!demote_hstate)
3806                 return -EINVAL;
3807         demote_order = demote_hstate->order;
3808         if (demote_order < HUGETLB_PAGE_ORDER)
3809                 return -EINVAL;
3810
3811         /* demote order must be smaller than hstate order */
3812         h = kobj_to_hstate(kobj, NULL);
3813         if (demote_order >= h->order)
3814                 return -EINVAL;
3815
3816         /* resize_lock synchronizes access to demote size and writes */
3817         mutex_lock(&h->resize_lock);
3818         h->demote_order = demote_order;
3819         mutex_unlock(&h->resize_lock);
3820
3821         return count;
3822 }
3823 HSTATE_ATTR(demote_size);
3824
3825 static struct attribute *hstate_attrs[] = {
3826         &nr_hugepages_attr.attr,
3827         &nr_overcommit_hugepages_attr.attr,
3828         &free_hugepages_attr.attr,
3829         &resv_hugepages_attr.attr,
3830         &surplus_hugepages_attr.attr,
3831 #ifdef CONFIG_NUMA
3832         &nr_hugepages_mempolicy_attr.attr,
3833 #endif
3834         NULL,
3835 };
3836
3837 static const struct attribute_group hstate_attr_group = {
3838         .attrs = hstate_attrs,
3839 };
3840
3841 static struct attribute *hstate_demote_attrs[] = {
3842         &demote_size_attr.attr,
3843         &demote_attr.attr,
3844         NULL,
3845 };
3846
3847 static const struct attribute_group hstate_demote_attr_group = {
3848         .attrs = hstate_demote_attrs,
3849 };
3850
3851 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3852                                     struct kobject **hstate_kobjs,
3853                                     const struct attribute_group *hstate_attr_group)
3854 {
3855         int retval;
3856         int hi = hstate_index(h);
3857
3858         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3859         if (!hstate_kobjs[hi])
3860                 return -ENOMEM;
3861
3862         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3863         if (retval) {
3864                 kobject_put(hstate_kobjs[hi]);
3865                 hstate_kobjs[hi] = NULL;
3866                 return retval;
3867         }
3868
3869         if (h->demote_order) {
3870                 retval = sysfs_create_group(hstate_kobjs[hi],
3871                                             &hstate_demote_attr_group);
3872                 if (retval) {
3873                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3874                         sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
3875                         kobject_put(hstate_kobjs[hi]);
3876                         hstate_kobjs[hi] = NULL;
3877                         return retval;
3878                 }
3879         }
3880
3881         return 0;
3882 }
3883
3884 #ifdef CONFIG_NUMA
3885 static bool hugetlb_sysfs_initialized __ro_after_init;
3886
3887 /*
3888  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3889  * with node devices in node_devices[] using a parallel array.  The array
3890  * index of a node device or _hstate == node id.
3891  * This is here to avoid any static dependency of the node device driver, in
3892  * the base kernel, on the hugetlb module.
3893  */
3894 struct node_hstate {
3895         struct kobject          *hugepages_kobj;
3896         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3897 };
3898 static struct node_hstate node_hstates[MAX_NUMNODES];
3899
3900 /*
3901  * A subset of global hstate attributes for node devices
3902  */
3903 static struct attribute *per_node_hstate_attrs[] = {
3904         &nr_hugepages_attr.attr,
3905         &free_hugepages_attr.attr,
3906         &surplus_hugepages_attr.attr,
3907         NULL,
3908 };
3909
3910 static const struct attribute_group per_node_hstate_attr_group = {
3911         .attrs = per_node_hstate_attrs,
3912 };
3913
3914 /*
3915  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3916  * Returns node id via non-NULL nidp.
3917  */
3918 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3919 {
3920         int nid;
3921
3922         for (nid = 0; nid < nr_node_ids; nid++) {
3923                 struct node_hstate *nhs = &node_hstates[nid];
3924                 int i;
3925                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3926                         if (nhs->hstate_kobjs[i] == kobj) {
3927                                 if (nidp)
3928                                         *nidp = nid;
3929                                 return &hstates[i];
3930                         }
3931         }
3932
3933         BUG();
3934         return NULL;
3935 }
3936
3937 /*
3938  * Unregister hstate attributes from a single node device.
3939  * No-op if no hstate attributes attached.
3940  */
3941 void hugetlb_unregister_node(struct node *node)
3942 {
3943         struct hstate *h;
3944         struct node_hstate *nhs = &node_hstates[node->dev.id];
3945
3946         if (!nhs->hugepages_kobj)
3947                 return;         /* no hstate attributes */
3948
3949         for_each_hstate(h) {
3950                 int idx = hstate_index(h);
3951                 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
3952
3953                 if (!hstate_kobj)
3954                         continue;
3955                 if (h->demote_order)
3956                         sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
3957                 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
3958                 kobject_put(hstate_kobj);
3959                 nhs->hstate_kobjs[idx] = NULL;
3960         }
3961
3962         kobject_put(nhs->hugepages_kobj);
3963         nhs->hugepages_kobj = NULL;
3964 }
3965
3966
3967 /*
3968  * Register hstate attributes for a single node device.
3969  * No-op if attributes already registered.
3970  */
3971 void hugetlb_register_node(struct node *node)
3972 {
3973         struct hstate *h;
3974         struct node_hstate *nhs = &node_hstates[node->dev.id];
3975         int err;
3976
3977         if (!hugetlb_sysfs_initialized)
3978                 return;
3979
3980         if (nhs->hugepages_kobj)
3981                 return;         /* already allocated */
3982
3983         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3984                                                         &node->dev.kobj);
3985         if (!nhs->hugepages_kobj)
3986                 return;
3987
3988         for_each_hstate(h) {
3989                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3990                                                 nhs->hstate_kobjs,
3991                                                 &per_node_hstate_attr_group);
3992                 if (err) {
3993                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3994                                 h->name, node->dev.id);
3995                         hugetlb_unregister_node(node);
3996                         break;
3997                 }
3998         }
3999 }
4000
4001 /*
4002  * hugetlb init time:  register hstate attributes for all registered node
4003  * devices of nodes that have memory.  All on-line nodes should have
4004  * registered their associated device by this time.
4005  */
4006 static void __init hugetlb_register_all_nodes(void)
4007 {
4008         int nid;
4009
4010         for_each_online_node(nid)
4011                 hugetlb_register_node(node_devices[nid]);
4012 }
4013 #else   /* !CONFIG_NUMA */
4014
4015 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4016 {
4017         BUG();
4018         if (nidp)
4019                 *nidp = -1;
4020         return NULL;
4021 }
4022
4023 static void hugetlb_register_all_nodes(void) { }
4024
4025 #endif
4026
4027 #ifdef CONFIG_CMA
4028 static void __init hugetlb_cma_check(void);
4029 #else
4030 static inline __init void hugetlb_cma_check(void)
4031 {
4032 }
4033 #endif
4034
4035 static void __init hugetlb_sysfs_init(void)
4036 {
4037         struct hstate *h;
4038         int err;
4039
4040         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4041         if (!hugepages_kobj)
4042                 return;
4043
4044         for_each_hstate(h) {
4045                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4046                                          hstate_kobjs, &hstate_attr_group);
4047                 if (err)
4048                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
4049         }
4050
4051 #ifdef CONFIG_NUMA
4052         hugetlb_sysfs_initialized = true;
4053 #endif
4054         hugetlb_register_all_nodes();
4055 }
4056
4057 static int __init hugetlb_init(void)
4058 {
4059         int i;
4060
4061         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4062                         __NR_HPAGEFLAGS);
4063
4064         if (!hugepages_supported()) {
4065                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4066                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4067                 return 0;
4068         }
4069
4070         /*
4071          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4072          * architectures depend on setup being done here.
4073          */
4074         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4075         if (!parsed_default_hugepagesz) {
4076                 /*
4077                  * If we did not parse a default huge page size, set
4078                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4079                  * number of huge pages for this default size was implicitly
4080                  * specified, set that here as well.
4081                  * Note that the implicit setting will overwrite an explicit
4082                  * setting.  A warning will be printed in this case.
4083                  */
4084                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4085                 if (default_hstate_max_huge_pages) {
4086                         if (default_hstate.max_huge_pages) {
4087                                 char buf[32];
4088
4089                                 string_get_size(huge_page_size(&default_hstate),
4090                                         1, STRING_UNITS_2, buf, 32);
4091                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4092                                         default_hstate.max_huge_pages, buf);
4093                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4094                                         default_hstate_max_huge_pages);
4095                         }
4096                         default_hstate.max_huge_pages =
4097                                 default_hstate_max_huge_pages;
4098
4099                         for_each_online_node(i)
4100                                 default_hstate.max_huge_pages_node[i] =
4101                                         default_hugepages_in_node[i];
4102                 }
4103         }
4104
4105         hugetlb_cma_check();
4106         hugetlb_init_hstates();
4107         gather_bootmem_prealloc();
4108         report_hugepages();
4109
4110         hugetlb_sysfs_init();
4111         hugetlb_cgroup_file_init();
4112
4113 #ifdef CONFIG_SMP
4114         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4115 #else
4116         num_fault_mutexes = 1;
4117 #endif
4118         hugetlb_fault_mutex_table =
4119                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4120                               GFP_KERNEL);
4121         BUG_ON(!hugetlb_fault_mutex_table);
4122
4123         for (i = 0; i < num_fault_mutexes; i++)
4124                 mutex_init(&hugetlb_fault_mutex_table[i]);
4125         return 0;
4126 }
4127 subsys_initcall(hugetlb_init);
4128
4129 /* Overwritten by architectures with more huge page sizes */
4130 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4131 {
4132         return size == HPAGE_SIZE;
4133 }
4134
4135 void __init hugetlb_add_hstate(unsigned int order)
4136 {
4137         struct hstate *h;
4138         unsigned long i;
4139
4140         if (size_to_hstate(PAGE_SIZE << order)) {
4141                 return;
4142         }
4143         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4144         BUG_ON(order == 0);
4145         h = &hstates[hugetlb_max_hstate++];
4146         mutex_init(&h->resize_lock);
4147         h->order = order;
4148         h->mask = ~(huge_page_size(h) - 1);
4149         for (i = 0; i < MAX_NUMNODES; ++i)
4150                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4151         INIT_LIST_HEAD(&h->hugepage_activelist);
4152         h->next_nid_to_alloc = first_memory_node;
4153         h->next_nid_to_free = first_memory_node;
4154         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4155                                         huge_page_size(h)/SZ_1K);
4156
4157         parsed_hstate = h;
4158 }
4159
4160 bool __init __weak hugetlb_node_alloc_supported(void)
4161 {
4162         return true;
4163 }
4164
4165 static void __init hugepages_clear_pages_in_node(void)
4166 {
4167         if (!hugetlb_max_hstate) {
4168                 default_hstate_max_huge_pages = 0;
4169                 memset(default_hugepages_in_node, 0,
4170                         sizeof(default_hugepages_in_node));
4171         } else {
4172                 parsed_hstate->max_huge_pages = 0;
4173                 memset(parsed_hstate->max_huge_pages_node, 0,
4174                         sizeof(parsed_hstate->max_huge_pages_node));
4175         }
4176 }
4177
4178 /*
4179  * hugepages command line processing
4180  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4181  * specification.  If not, ignore the hugepages value.  hugepages can also
4182  * be the first huge page command line  option in which case it implicitly
4183  * specifies the number of huge pages for the default size.
4184  */
4185 static int __init hugepages_setup(char *s)
4186 {
4187         unsigned long *mhp;
4188         static unsigned long *last_mhp;
4189         int node = NUMA_NO_NODE;
4190         int count;
4191         unsigned long tmp;
4192         char *p = s;
4193
4194         if (!parsed_valid_hugepagesz) {
4195                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4196                 parsed_valid_hugepagesz = true;
4197                 return 1;
4198         }
4199
4200         /*
4201          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4202          * yet, so this hugepages= parameter goes to the "default hstate".
4203          * Otherwise, it goes with the previously parsed hugepagesz or
4204          * default_hugepagesz.
4205          */
4206         else if (!hugetlb_max_hstate)
4207                 mhp = &default_hstate_max_huge_pages;
4208         else
4209                 mhp = &parsed_hstate->max_huge_pages;
4210
4211         if (mhp == last_mhp) {
4212                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4213                 return 1;
4214         }
4215
4216         while (*p) {
4217                 count = 0;
4218                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4219                         goto invalid;
4220                 /* Parameter is node format */
4221                 if (p[count] == ':') {
4222                         if (!hugetlb_node_alloc_supported()) {
4223                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4224                                 return 1;
4225                         }
4226                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4227                                 goto invalid;
4228                         node = array_index_nospec(tmp, MAX_NUMNODES);
4229                         p += count + 1;
4230                         /* Parse hugepages */
4231                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4232                                 goto invalid;
4233                         if (!hugetlb_max_hstate)
4234                                 default_hugepages_in_node[node] = tmp;
4235                         else
4236                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4237                         *mhp += tmp;
4238                         /* Go to parse next node*/
4239                         if (p[count] == ',')
4240                                 p += count + 1;
4241                         else
4242                                 break;
4243                 } else {
4244                         if (p != s)
4245                                 goto invalid;
4246                         *mhp = tmp;
4247                         break;
4248                 }
4249         }
4250
4251         /*
4252          * Global state is always initialized later in hugetlb_init.
4253          * But we need to allocate gigantic hstates here early to still
4254          * use the bootmem allocator.
4255          */
4256         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4257                 hugetlb_hstate_alloc_pages(parsed_hstate);
4258
4259         last_mhp = mhp;
4260
4261         return 1;
4262
4263 invalid:
4264         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4265         hugepages_clear_pages_in_node();
4266         return 1;
4267 }
4268 __setup("hugepages=", hugepages_setup);
4269
4270 /*
4271  * hugepagesz command line processing
4272  * A specific huge page size can only be specified once with hugepagesz.
4273  * hugepagesz is followed by hugepages on the command line.  The global
4274  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4275  * hugepagesz argument was valid.
4276  */
4277 static int __init hugepagesz_setup(char *s)
4278 {
4279         unsigned long size;
4280         struct hstate *h;
4281
4282         parsed_valid_hugepagesz = false;
4283         size = (unsigned long)memparse(s, NULL);
4284
4285         if (!arch_hugetlb_valid_size(size)) {
4286                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4287                 return 1;
4288         }
4289
4290         h = size_to_hstate(size);
4291         if (h) {
4292                 /*
4293                  * hstate for this size already exists.  This is normally
4294                  * an error, but is allowed if the existing hstate is the
4295                  * default hstate.  More specifically, it is only allowed if
4296                  * the number of huge pages for the default hstate was not
4297                  * previously specified.
4298                  */
4299                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4300                     default_hstate.max_huge_pages) {
4301                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4302                         return 1;
4303                 }
4304
4305                 /*
4306                  * No need to call hugetlb_add_hstate() as hstate already
4307                  * exists.  But, do set parsed_hstate so that a following
4308                  * hugepages= parameter will be applied to this hstate.
4309                  */
4310                 parsed_hstate = h;
4311                 parsed_valid_hugepagesz = true;
4312                 return 1;
4313         }
4314
4315         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4316         parsed_valid_hugepagesz = true;
4317         return 1;
4318 }
4319 __setup("hugepagesz=", hugepagesz_setup);
4320
4321 /*
4322  * default_hugepagesz command line input
4323  * Only one instance of default_hugepagesz allowed on command line.
4324  */
4325 static int __init default_hugepagesz_setup(char *s)
4326 {
4327         unsigned long size;
4328         int i;
4329
4330         parsed_valid_hugepagesz = false;
4331         if (parsed_default_hugepagesz) {
4332                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4333                 return 1;
4334         }
4335
4336         size = (unsigned long)memparse(s, NULL);
4337
4338         if (!arch_hugetlb_valid_size(size)) {
4339                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4340                 return 1;
4341         }
4342
4343         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4344         parsed_valid_hugepagesz = true;
4345         parsed_default_hugepagesz = true;
4346         default_hstate_idx = hstate_index(size_to_hstate(size));
4347
4348         /*
4349          * The number of default huge pages (for this size) could have been
4350          * specified as the first hugetlb parameter: hugepages=X.  If so,
4351          * then default_hstate_max_huge_pages is set.  If the default huge
4352          * page size is gigantic (>= MAX_ORDER), then the pages must be
4353          * allocated here from bootmem allocator.
4354          */
4355         if (default_hstate_max_huge_pages) {
4356                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4357                 for_each_online_node(i)
4358                         default_hstate.max_huge_pages_node[i] =
4359                                 default_hugepages_in_node[i];
4360                 if (hstate_is_gigantic(&default_hstate))
4361                         hugetlb_hstate_alloc_pages(&default_hstate);
4362                 default_hstate_max_huge_pages = 0;
4363         }
4364
4365         return 1;
4366 }
4367 __setup("default_hugepagesz=", default_hugepagesz_setup);
4368
4369 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4370 {
4371 #ifdef CONFIG_NUMA
4372         struct mempolicy *mpol = get_task_policy(current);
4373
4374         /*
4375          * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4376          * (from policy_nodemask) specifically for hugetlb case
4377          */
4378         if (mpol->mode == MPOL_BIND &&
4379                 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4380                  cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4381                 return &mpol->nodes;
4382 #endif
4383         return NULL;
4384 }
4385
4386 static unsigned int allowed_mems_nr(struct hstate *h)
4387 {
4388         int node;
4389         unsigned int nr = 0;
4390         nodemask_t *mbind_nodemask;
4391         unsigned int *array = h->free_huge_pages_node;
4392         gfp_t gfp_mask = htlb_alloc_mask(h);
4393
4394         mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4395         for_each_node_mask(node, cpuset_current_mems_allowed) {
4396                 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4397                         nr += array[node];
4398         }
4399
4400         return nr;
4401 }
4402
4403 #ifdef CONFIG_SYSCTL
4404 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4405                                           void *buffer, size_t *length,
4406                                           loff_t *ppos, unsigned long *out)
4407 {
4408         struct ctl_table dup_table;
4409
4410         /*
4411          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4412          * can duplicate the @table and alter the duplicate of it.
4413          */
4414         dup_table = *table;
4415         dup_table.data = out;
4416
4417         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4418 }
4419
4420 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4421                          struct ctl_table *table, int write,
4422                          void *buffer, size_t *length, loff_t *ppos)
4423 {
4424         struct hstate *h = &default_hstate;
4425         unsigned long tmp = h->max_huge_pages;
4426         int ret;
4427
4428         if (!hugepages_supported())
4429                 return -EOPNOTSUPP;
4430
4431         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4432                                              &tmp);
4433         if (ret)
4434                 goto out;
4435
4436         if (write)
4437                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4438                                                   NUMA_NO_NODE, tmp, *length);
4439 out:
4440         return ret;
4441 }
4442
4443 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4444                           void *buffer, size_t *length, loff_t *ppos)
4445 {
4446
4447         return hugetlb_sysctl_handler_common(false, table, write,
4448                                                         buffer, length, ppos);
4449 }
4450
4451 #ifdef CONFIG_NUMA
4452 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4453                           void *buffer, size_t *length, loff_t *ppos)
4454 {
4455         return hugetlb_sysctl_handler_common(true, table, write,
4456                                                         buffer, length, ppos);
4457 }
4458 #endif /* CONFIG_NUMA */
4459
4460 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4461                 void *buffer, size_t *length, loff_t *ppos)
4462 {
4463         struct hstate *h = &default_hstate;
4464         unsigned long tmp;
4465         int ret;
4466
4467         if (!hugepages_supported())
4468                 return -EOPNOTSUPP;
4469
4470         tmp = h->nr_overcommit_huge_pages;
4471
4472         if (write && hstate_is_gigantic(h))
4473                 return -EINVAL;
4474
4475         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4476                                              &tmp);
4477         if (ret)
4478                 goto out;
4479
4480         if (write) {
4481                 spin_lock_irq(&hugetlb_lock);
4482                 h->nr_overcommit_huge_pages = tmp;
4483                 spin_unlock_irq(&hugetlb_lock);
4484         }
4485 out:
4486         return ret;
4487 }
4488
4489 #endif /* CONFIG_SYSCTL */
4490
4491 void hugetlb_report_meminfo(struct seq_file *m)
4492 {
4493         struct hstate *h;
4494         unsigned long total = 0;
4495
4496         if (!hugepages_supported())
4497                 return;
4498
4499         for_each_hstate(h) {
4500                 unsigned long count = h->nr_huge_pages;
4501
4502                 total += huge_page_size(h) * count;
4503
4504                 if (h == &default_hstate)
4505                         seq_printf(m,
4506                                    "HugePages_Total:   %5lu\n"
4507                                    "HugePages_Free:    %5lu\n"
4508                                    "HugePages_Rsvd:    %5lu\n"
4509                                    "HugePages_Surp:    %5lu\n"
4510                                    "Hugepagesize:   %8lu kB\n",
4511                                    count,
4512                                    h->free_huge_pages,
4513                                    h->resv_huge_pages,
4514                                    h->surplus_huge_pages,
4515                                    huge_page_size(h) / SZ_1K);
4516         }
4517
4518         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4519 }
4520
4521 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4522 {
4523         struct hstate *h = &default_hstate;
4524
4525         if (!hugepages_supported())
4526                 return 0;
4527
4528         return sysfs_emit_at(buf, len,
4529                              "Node %d HugePages_Total: %5u\n"
4530                              "Node %d HugePages_Free:  %5u\n"
4531                              "Node %d HugePages_Surp:  %5u\n",
4532                              nid, h->nr_huge_pages_node[nid],
4533                              nid, h->free_huge_pages_node[nid],
4534                              nid, h->surplus_huge_pages_node[nid]);
4535 }
4536
4537 void hugetlb_show_meminfo_node(int nid)
4538 {
4539         struct hstate *h;
4540
4541         if (!hugepages_supported())
4542                 return;
4543
4544         for_each_hstate(h)
4545                 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4546                         nid,
4547                         h->nr_huge_pages_node[nid],
4548                         h->free_huge_pages_node[nid],
4549                         h->surplus_huge_pages_node[nid],
4550                         huge_page_size(h) / SZ_1K);
4551 }
4552
4553 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4554 {
4555         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4556                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4557 }
4558
4559 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4560 unsigned long hugetlb_total_pages(void)
4561 {
4562         struct hstate *h;
4563         unsigned long nr_total_pages = 0;
4564
4565         for_each_hstate(h)
4566                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4567         return nr_total_pages;
4568 }
4569
4570 static int hugetlb_acct_memory(struct hstate *h, long delta)
4571 {
4572         int ret = -ENOMEM;
4573
4574         if (!delta)
4575                 return 0;
4576
4577         spin_lock_irq(&hugetlb_lock);
4578         /*
4579          * When cpuset is configured, it breaks the strict hugetlb page
4580          * reservation as the accounting is done on a global variable. Such
4581          * reservation is completely rubbish in the presence of cpuset because
4582          * the reservation is not checked against page availability for the
4583          * current cpuset. Application can still potentially OOM'ed by kernel
4584          * with lack of free htlb page in cpuset that the task is in.
4585          * Attempt to enforce strict accounting with cpuset is almost
4586          * impossible (or too ugly) because cpuset is too fluid that
4587          * task or memory node can be dynamically moved between cpusets.
4588          *
4589          * The change of semantics for shared hugetlb mapping with cpuset is
4590          * undesirable. However, in order to preserve some of the semantics,
4591          * we fall back to check against current free page availability as
4592          * a best attempt and hopefully to minimize the impact of changing
4593          * semantics that cpuset has.
4594          *
4595          * Apart from cpuset, we also have memory policy mechanism that
4596          * also determines from which node the kernel will allocate memory
4597          * in a NUMA system. So similar to cpuset, we also should consider
4598          * the memory policy of the current task. Similar to the description
4599          * above.
4600          */
4601         if (delta > 0) {
4602                 if (gather_surplus_pages(h, delta) < 0)
4603                         goto out;
4604
4605                 if (delta > allowed_mems_nr(h)) {
4606                         return_unused_surplus_pages(h, delta);
4607                         goto out;
4608                 }
4609         }
4610
4611         ret = 0;
4612         if (delta < 0)
4613                 return_unused_surplus_pages(h, (unsigned long) -delta);
4614
4615 out:
4616         spin_unlock_irq(&hugetlb_lock);
4617         return ret;
4618 }
4619
4620 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4621 {
4622         struct resv_map *resv = vma_resv_map(vma);
4623
4624         /*
4625          * HPAGE_RESV_OWNER indicates a private mapping.
4626          * This new VMA should share its siblings reservation map if present.
4627          * The VMA will only ever have a valid reservation map pointer where
4628          * it is being copied for another still existing VMA.  As that VMA
4629          * has a reference to the reservation map it cannot disappear until
4630          * after this open call completes.  It is therefore safe to take a
4631          * new reference here without additional locking.
4632          */
4633         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4634                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4635                 kref_get(&resv->refs);
4636         }
4637
4638         /*
4639          * vma_lock structure for sharable mappings is vma specific.
4640          * Clear old pointer (if copied via vm_area_dup) and allocate
4641          * new structure.  Before clearing, make sure vma_lock is not
4642          * for this vma.
4643          */
4644         if (vma->vm_flags & VM_MAYSHARE) {
4645                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4646
4647                 if (vma_lock) {
4648                         if (vma_lock->vma != vma) {
4649                                 vma->vm_private_data = NULL;
4650                                 hugetlb_vma_lock_alloc(vma);
4651                         } else
4652                                 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4653                 } else
4654                         hugetlb_vma_lock_alloc(vma);
4655         }
4656 }
4657
4658 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4659 {
4660         struct hstate *h = hstate_vma(vma);
4661         struct resv_map *resv;
4662         struct hugepage_subpool *spool = subpool_vma(vma);
4663         unsigned long reserve, start, end;
4664         long gbl_reserve;
4665
4666         hugetlb_vma_lock_free(vma);
4667
4668         resv = vma_resv_map(vma);
4669         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4670                 return;
4671
4672         start = vma_hugecache_offset(h, vma, vma->vm_start);
4673         end = vma_hugecache_offset(h, vma, vma->vm_end);
4674
4675         reserve = (end - start) - region_count(resv, start, end);
4676         hugetlb_cgroup_uncharge_counter(resv, start, end);
4677         if (reserve) {
4678                 /*
4679                  * Decrement reserve counts.  The global reserve count may be
4680                  * adjusted if the subpool has a minimum size.
4681                  */
4682                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4683                 hugetlb_acct_memory(h, -gbl_reserve);
4684         }
4685
4686         kref_put(&resv->refs, resv_map_release);
4687 }
4688
4689 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4690 {
4691         if (addr & ~(huge_page_mask(hstate_vma(vma))))
4692                 return -EINVAL;
4693         return 0;
4694 }
4695
4696 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4697 {
4698         return huge_page_size(hstate_vma(vma));
4699 }
4700
4701 /*
4702  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4703  * handle_mm_fault() to try to instantiate regular-sized pages in the
4704  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4705  * this far.
4706  */
4707 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4708 {
4709         BUG();
4710         return 0;
4711 }
4712
4713 /*
4714  * When a new function is introduced to vm_operations_struct and added
4715  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4716  * This is because under System V memory model, mappings created via
4717  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4718  * their original vm_ops are overwritten with shm_vm_ops.
4719  */
4720 const struct vm_operations_struct hugetlb_vm_ops = {
4721         .fault = hugetlb_vm_op_fault,
4722         .open = hugetlb_vm_op_open,
4723         .close = hugetlb_vm_op_close,
4724         .may_split = hugetlb_vm_op_split,
4725         .pagesize = hugetlb_vm_op_pagesize,
4726 };
4727
4728 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4729                                 int writable)
4730 {
4731         pte_t entry;
4732         unsigned int shift = huge_page_shift(hstate_vma(vma));
4733
4734         if (writable) {
4735                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4736                                          vma->vm_page_prot)));
4737         } else {
4738                 entry = huge_pte_wrprotect(mk_huge_pte(page,
4739                                            vma->vm_page_prot));
4740         }
4741         entry = pte_mkyoung(entry);
4742         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4743
4744         return entry;
4745 }
4746
4747 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4748                                    unsigned long address, pte_t *ptep)
4749 {
4750         pte_t entry;
4751
4752         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4753         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4754                 update_mmu_cache(vma, address, ptep);
4755 }
4756
4757 bool is_hugetlb_entry_migration(pte_t pte)
4758 {
4759         swp_entry_t swp;
4760
4761         if (huge_pte_none(pte) || pte_present(pte))
4762                 return false;
4763         swp = pte_to_swp_entry(pte);
4764         if (is_migration_entry(swp))
4765                 return true;
4766         else
4767                 return false;
4768 }
4769
4770 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4771 {
4772         swp_entry_t swp;
4773
4774         if (huge_pte_none(pte) || pte_present(pte))
4775                 return false;
4776         swp = pte_to_swp_entry(pte);
4777         if (is_hwpoison_entry(swp))
4778                 return true;
4779         else
4780                 return false;
4781 }
4782
4783 static void
4784 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4785                      struct page *new_page)
4786 {
4787         __SetPageUptodate(new_page);
4788         hugepage_add_new_anon_rmap(new_page, vma, addr);
4789         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4790         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4791         SetHPageMigratable(new_page);
4792 }
4793
4794 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4795                             struct vm_area_struct *dst_vma,
4796                             struct vm_area_struct *src_vma)
4797 {
4798         pte_t *src_pte, *dst_pte, entry;
4799         struct page *ptepage;
4800         unsigned long addr;
4801         bool cow = is_cow_mapping(src_vma->vm_flags);
4802         struct hstate *h = hstate_vma(src_vma);
4803         unsigned long sz = huge_page_size(h);
4804         unsigned long npages = pages_per_huge_page(h);
4805         struct mmu_notifier_range range;
4806         unsigned long last_addr_mask;
4807         int ret = 0;
4808
4809         if (cow) {
4810                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4811                                         src_vma->vm_start,
4812                                         src_vma->vm_end);
4813                 mmu_notifier_invalidate_range_start(&range);
4814                 mmap_assert_write_locked(src);
4815                 raw_write_seqcount_begin(&src->write_protect_seq);
4816         } else {
4817                 /*
4818                  * For shared mappings the vma lock must be held before
4819                  * calling huge_pte_offset in the src vma. Otherwise, the
4820                  * returned ptep could go away if part of a shared pmd and
4821                  * another thread calls huge_pmd_unshare.
4822                  */
4823                 hugetlb_vma_lock_read(src_vma);
4824         }
4825
4826         last_addr_mask = hugetlb_mask_last_page(h);
4827         for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4828                 spinlock_t *src_ptl, *dst_ptl;
4829                 src_pte = huge_pte_offset(src, addr, sz);
4830                 if (!src_pte) {
4831                         addr |= last_addr_mask;
4832                         continue;
4833                 }
4834                 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4835                 if (!dst_pte) {
4836                         ret = -ENOMEM;
4837                         break;
4838                 }
4839
4840                 /*
4841                  * If the pagetables are shared don't copy or take references.
4842                  *
4843                  * dst_pte == src_pte is the common case of src/dest sharing.
4844                  * However, src could have 'unshared' and dst shares with
4845                  * another vma. So page_count of ptep page is checked instead
4846                  * to reliably determine whether pte is shared.
4847                  */
4848                 if (page_count(virt_to_page(dst_pte)) > 1) {
4849                         addr |= last_addr_mask;
4850                         continue;
4851                 }
4852
4853                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4854                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4855                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4856                 entry = huge_ptep_get(src_pte);
4857 again:
4858                 if (huge_pte_none(entry)) {
4859                         /*
4860                          * Skip if src entry none.
4861                          */
4862                         ;
4863                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
4864                         bool uffd_wp = huge_pte_uffd_wp(entry);
4865
4866                         if (!userfaultfd_wp(dst_vma) && uffd_wp)
4867                                 entry = huge_pte_clear_uffd_wp(entry);
4868                         set_huge_pte_at(dst, addr, dst_pte, entry);
4869                 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
4870                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
4871                         bool uffd_wp = huge_pte_uffd_wp(entry);
4872
4873                         if (!is_readable_migration_entry(swp_entry) && cow) {
4874                                 /*
4875                                  * COW mappings require pages in both
4876                                  * parent and child to be set to read.
4877                                  */
4878                                 swp_entry = make_readable_migration_entry(
4879                                                         swp_offset(swp_entry));
4880                                 entry = swp_entry_to_pte(swp_entry);
4881                                 if (userfaultfd_wp(src_vma) && uffd_wp)
4882                                         entry = huge_pte_mkuffd_wp(entry);
4883                                 set_huge_pte_at(src, addr, src_pte, entry);
4884                         }
4885                         if (!userfaultfd_wp(dst_vma) && uffd_wp)
4886                                 entry = huge_pte_clear_uffd_wp(entry);
4887                         set_huge_pte_at(dst, addr, dst_pte, entry);
4888                 } else if (unlikely(is_pte_marker(entry))) {
4889                         /*
4890                          * We copy the pte marker only if the dst vma has
4891                          * uffd-wp enabled.
4892                          */
4893                         if (userfaultfd_wp(dst_vma))
4894                                 set_huge_pte_at(dst, addr, dst_pte, entry);
4895                 } else {
4896                         entry = huge_ptep_get(src_pte);
4897                         ptepage = pte_page(entry);
4898                         get_page(ptepage);
4899
4900                         /*
4901                          * Failing to duplicate the anon rmap is a rare case
4902                          * where we see pinned hugetlb pages while they're
4903                          * prone to COW. We need to do the COW earlier during
4904                          * fork.
4905                          *
4906                          * When pre-allocating the page or copying data, we
4907                          * need to be without the pgtable locks since we could
4908                          * sleep during the process.
4909                          */
4910                         if (!PageAnon(ptepage)) {
4911                                 page_dup_file_rmap(ptepage, true);
4912                         } else if (page_try_dup_anon_rmap(ptepage, true,
4913                                                           src_vma)) {
4914                                 pte_t src_pte_old = entry;
4915                                 struct page *new;
4916
4917                                 spin_unlock(src_ptl);
4918                                 spin_unlock(dst_ptl);
4919                                 /* Do not use reserve as it's private owned */
4920                                 new = alloc_huge_page(dst_vma, addr, 1);
4921                                 if (IS_ERR(new)) {
4922                                         put_page(ptepage);
4923                                         ret = PTR_ERR(new);
4924                                         break;
4925                                 }
4926                                 copy_user_huge_page(new, ptepage, addr, dst_vma,
4927                                                     npages);
4928                                 put_page(ptepage);
4929
4930                                 /* Install the new huge page if src pte stable */
4931                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4932                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4933                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4934                                 entry = huge_ptep_get(src_pte);
4935                                 if (!pte_same(src_pte_old, entry)) {
4936                                         restore_reserve_on_error(h, dst_vma, addr,
4937                                                                 new);
4938                                         put_page(new);
4939                                         /* huge_ptep of dst_pte won't change as in child */
4940                                         goto again;
4941                                 }
4942                                 hugetlb_install_page(dst_vma, dst_pte, addr, new);
4943                                 spin_unlock(src_ptl);
4944                                 spin_unlock(dst_ptl);
4945                                 continue;
4946                         }
4947
4948                         if (cow) {
4949                                 /*
4950                                  * No need to notify as we are downgrading page
4951                                  * table protection not changing it to point
4952                                  * to a new page.
4953                                  *
4954                                  * See Documentation/mm/mmu_notifier.rst
4955                                  */
4956                                 huge_ptep_set_wrprotect(src, addr, src_pte);
4957                                 entry = huge_pte_wrprotect(entry);
4958                         }
4959
4960                         set_huge_pte_at(dst, addr, dst_pte, entry);
4961                         hugetlb_count_add(npages, dst);
4962                 }
4963                 spin_unlock(src_ptl);
4964                 spin_unlock(dst_ptl);
4965         }
4966
4967         if (cow) {
4968                 raw_write_seqcount_end(&src->write_protect_seq);
4969                 mmu_notifier_invalidate_range_end(&range);
4970         } else {
4971                 hugetlb_vma_unlock_read(src_vma);
4972         }
4973
4974         return ret;
4975 }
4976
4977 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4978                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4979 {
4980         struct hstate *h = hstate_vma(vma);
4981         struct mm_struct *mm = vma->vm_mm;
4982         spinlock_t *src_ptl, *dst_ptl;
4983         pte_t pte;
4984
4985         dst_ptl = huge_pte_lock(h, mm, dst_pte);
4986         src_ptl = huge_pte_lockptr(h, mm, src_pte);
4987
4988         /*
4989          * We don't have to worry about the ordering of src and dst ptlocks
4990          * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4991          */
4992         if (src_ptl != dst_ptl)
4993                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4994
4995         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4996         set_huge_pte_at(mm, new_addr, dst_pte, pte);
4997
4998         if (src_ptl != dst_ptl)
4999                 spin_unlock(src_ptl);
5000         spin_unlock(dst_ptl);
5001 }
5002
5003 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5004                              struct vm_area_struct *new_vma,
5005                              unsigned long old_addr, unsigned long new_addr,
5006                              unsigned long len)
5007 {
5008         struct hstate *h = hstate_vma(vma);
5009         struct address_space *mapping = vma->vm_file->f_mapping;
5010         unsigned long sz = huge_page_size(h);
5011         struct mm_struct *mm = vma->vm_mm;
5012         unsigned long old_end = old_addr + len;
5013         unsigned long last_addr_mask;
5014         pte_t *src_pte, *dst_pte;
5015         struct mmu_notifier_range range;
5016         bool shared_pmd = false;
5017
5018         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
5019                                 old_end);
5020         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5021         /*
5022          * In case of shared PMDs, we should cover the maximum possible
5023          * range.
5024          */
5025         flush_cache_range(vma, range.start, range.end);
5026
5027         mmu_notifier_invalidate_range_start(&range);
5028         last_addr_mask = hugetlb_mask_last_page(h);
5029         /* Prevent race with file truncation */
5030         hugetlb_vma_lock_write(vma);
5031         i_mmap_lock_write(mapping);
5032         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5033                 src_pte = huge_pte_offset(mm, old_addr, sz);
5034                 if (!src_pte) {
5035                         old_addr |= last_addr_mask;
5036                         new_addr |= last_addr_mask;
5037                         continue;
5038                 }
5039                 if (huge_pte_none(huge_ptep_get(src_pte)))
5040                         continue;
5041
5042                 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5043                         shared_pmd = true;
5044                         old_addr |= last_addr_mask;
5045                         new_addr |= last_addr_mask;
5046                         continue;
5047                 }
5048
5049                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5050                 if (!dst_pte)
5051                         break;
5052
5053                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5054         }
5055
5056         if (shared_pmd)
5057                 flush_tlb_range(vma, range.start, range.end);
5058         else
5059                 flush_tlb_range(vma, old_end - len, old_end);
5060         mmu_notifier_invalidate_range_end(&range);
5061         i_mmap_unlock_write(mapping);
5062         hugetlb_vma_unlock_write(vma);
5063
5064         return len + old_addr - old_end;
5065 }
5066
5067 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5068                                    unsigned long start, unsigned long end,
5069                                    struct page *ref_page, zap_flags_t zap_flags)
5070 {
5071         struct mm_struct *mm = vma->vm_mm;
5072         unsigned long address;
5073         pte_t *ptep;
5074         pte_t pte;
5075         spinlock_t *ptl;
5076         struct page *page;
5077         struct hstate *h = hstate_vma(vma);
5078         unsigned long sz = huge_page_size(h);
5079         unsigned long last_addr_mask;
5080         bool force_flush = false;
5081
5082         WARN_ON(!is_vm_hugetlb_page(vma));
5083         BUG_ON(start & ~huge_page_mask(h));
5084         BUG_ON(end & ~huge_page_mask(h));
5085
5086         /*
5087          * This is a hugetlb vma, all the pte entries should point
5088          * to huge page.
5089          */
5090         tlb_change_page_size(tlb, sz);
5091         tlb_start_vma(tlb, vma);
5092
5093         last_addr_mask = hugetlb_mask_last_page(h);
5094         address = start;
5095         for (; address < end; address += sz) {
5096                 ptep = huge_pte_offset(mm, address, sz);
5097                 if (!ptep) {
5098                         address |= last_addr_mask;
5099                         continue;
5100                 }
5101
5102                 ptl = huge_pte_lock(h, mm, ptep);
5103                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5104                         spin_unlock(ptl);
5105                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5106                         force_flush = true;
5107                         address |= last_addr_mask;
5108                         continue;
5109                 }
5110
5111                 pte = huge_ptep_get(ptep);
5112                 if (huge_pte_none(pte)) {
5113                         spin_unlock(ptl);
5114                         continue;
5115                 }
5116
5117                 /*
5118                  * Migrating hugepage or HWPoisoned hugepage is already
5119                  * unmapped and its refcount is dropped, so just clear pte here.
5120                  */
5121                 if (unlikely(!pte_present(pte))) {
5122                         /*
5123                          * If the pte was wr-protected by uffd-wp in any of the
5124                          * swap forms, meanwhile the caller does not want to
5125                          * drop the uffd-wp bit in this zap, then replace the
5126                          * pte with a marker.
5127                          */
5128                         if (pte_swp_uffd_wp_any(pte) &&
5129                             !(zap_flags & ZAP_FLAG_DROP_MARKER))
5130                                 set_huge_pte_at(mm, address, ptep,
5131                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
5132                         else
5133                                 huge_pte_clear(mm, address, ptep, sz);
5134                         spin_unlock(ptl);
5135                         continue;
5136                 }
5137
5138                 page = pte_page(pte);
5139                 /*
5140                  * If a reference page is supplied, it is because a specific
5141                  * page is being unmapped, not a range. Ensure the page we
5142                  * are about to unmap is the actual page of interest.
5143                  */
5144                 if (ref_page) {
5145                         if (page != ref_page) {
5146                                 spin_unlock(ptl);
5147                                 continue;
5148                         }
5149                         /*
5150                          * Mark the VMA as having unmapped its page so that
5151                          * future faults in this VMA will fail rather than
5152                          * looking like data was lost
5153                          */
5154                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5155                 }
5156
5157                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5158                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5159                 if (huge_pte_dirty(pte))
5160                         set_page_dirty(page);
5161                 /* Leave a uffd-wp pte marker if needed */
5162                 if (huge_pte_uffd_wp(pte) &&
5163                     !(zap_flags & ZAP_FLAG_DROP_MARKER))
5164                         set_huge_pte_at(mm, address, ptep,
5165                                         make_pte_marker(PTE_MARKER_UFFD_WP));
5166                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5167                 page_remove_rmap(page, vma, true);
5168
5169                 spin_unlock(ptl);
5170                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5171                 /*
5172                  * Bail out after unmapping reference page if supplied
5173                  */
5174                 if (ref_page)
5175                         break;
5176         }
5177         tlb_end_vma(tlb, vma);
5178
5179         /*
5180          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5181          * could defer the flush until now, since by holding i_mmap_rwsem we
5182          * guaranteed that the last refernece would not be dropped. But we must
5183          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5184          * dropped and the last reference to the shared PMDs page might be
5185          * dropped as well.
5186          *
5187          * In theory we could defer the freeing of the PMD pages as well, but
5188          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5189          * detect sharing, so we cannot defer the release of the page either.
5190          * Instead, do flush now.
5191          */
5192         if (force_flush)
5193                 tlb_flush_mmu_tlbonly(tlb);
5194 }
5195
5196 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5197                           struct vm_area_struct *vma, unsigned long start,
5198                           unsigned long end, struct page *ref_page,
5199                           zap_flags_t zap_flags)
5200 {
5201         hugetlb_vma_lock_write(vma);
5202         i_mmap_lock_write(vma->vm_file->f_mapping);
5203
5204         /* mmu notification performed in caller */
5205         __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5206
5207         if (zap_flags & ZAP_FLAG_UNMAP) {       /* final unmap */
5208                 /*
5209                  * Unlock and free the vma lock before releasing i_mmap_rwsem.
5210                  * When the vma_lock is freed, this makes the vma ineligible
5211                  * for pmd sharing.  And, i_mmap_rwsem is required to set up
5212                  * pmd sharing.  This is important as page tables for this
5213                  * unmapped range will be asynchrously deleted.  If the page
5214                  * tables are shared, there will be issues when accessed by
5215                  * someone else.
5216                  */
5217                 __hugetlb_vma_unlock_write_free(vma);
5218                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5219         } else {
5220                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5221                 hugetlb_vma_unlock_write(vma);
5222         }
5223 }
5224
5225 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5226                           unsigned long end, struct page *ref_page,
5227                           zap_flags_t zap_flags)
5228 {
5229         struct mmu_notifier_range range;
5230         struct mmu_gather tlb;
5231
5232         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
5233                                 start, end);
5234         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5235         mmu_notifier_invalidate_range_start(&range);
5236         tlb_gather_mmu(&tlb, vma->vm_mm);
5237
5238         __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5239
5240         mmu_notifier_invalidate_range_end(&range);
5241         tlb_finish_mmu(&tlb);
5242 }
5243
5244 /*
5245  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5246  * mapping it owns the reserve page for. The intention is to unmap the page
5247  * from other VMAs and let the children be SIGKILLed if they are faulting the
5248  * same region.
5249  */
5250 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5251                               struct page *page, unsigned long address)
5252 {
5253         struct hstate *h = hstate_vma(vma);
5254         struct vm_area_struct *iter_vma;
5255         struct address_space *mapping;
5256         pgoff_t pgoff;
5257
5258         /*
5259          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5260          * from page cache lookup which is in HPAGE_SIZE units.
5261          */
5262         address = address & huge_page_mask(h);
5263         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5264                         vma->vm_pgoff;
5265         mapping = vma->vm_file->f_mapping;
5266
5267         /*
5268          * Take the mapping lock for the duration of the table walk. As
5269          * this mapping should be shared between all the VMAs,
5270          * __unmap_hugepage_range() is called as the lock is already held
5271          */
5272         i_mmap_lock_write(mapping);
5273         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5274                 /* Do not unmap the current VMA */
5275                 if (iter_vma == vma)
5276                         continue;
5277
5278                 /*
5279                  * Shared VMAs have their own reserves and do not affect
5280                  * MAP_PRIVATE accounting but it is possible that a shared
5281                  * VMA is using the same page so check and skip such VMAs.
5282                  */
5283                 if (iter_vma->vm_flags & VM_MAYSHARE)
5284                         continue;
5285
5286                 /*
5287                  * Unmap the page from other VMAs without their own reserves.
5288                  * They get marked to be SIGKILLed if they fault in these
5289                  * areas. This is because a future no-page fault on this VMA
5290                  * could insert a zeroed page instead of the data existing
5291                  * from the time of fork. This would look like data corruption
5292                  */
5293                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5294                         unmap_hugepage_range(iter_vma, address,
5295                                              address + huge_page_size(h), page, 0);
5296         }
5297         i_mmap_unlock_write(mapping);
5298 }
5299
5300 /*
5301  * hugetlb_wp() should be called with page lock of the original hugepage held.
5302  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5303  * cannot race with other handlers or page migration.
5304  * Keep the pte_same checks anyway to make transition from the mutex easier.
5305  */
5306 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5307                        unsigned long address, pte_t *ptep, unsigned int flags,
5308                        struct page *pagecache_page, spinlock_t *ptl)
5309 {
5310         const bool unshare = flags & FAULT_FLAG_UNSHARE;
5311         pte_t pte;
5312         struct hstate *h = hstate_vma(vma);
5313         struct page *old_page, *new_page;
5314         int outside_reserve = 0;
5315         vm_fault_t ret = 0;
5316         unsigned long haddr = address & huge_page_mask(h);
5317         struct mmu_notifier_range range;
5318
5319         /*
5320          * hugetlb does not support FOLL_FORCE-style write faults that keep the
5321          * PTE mapped R/O such as maybe_mkwrite() would do.
5322          */
5323         if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5324                 return VM_FAULT_SIGSEGV;
5325
5326         /* Let's take out MAP_SHARED mappings first. */
5327         if (vma->vm_flags & VM_MAYSHARE) {
5328                 set_huge_ptep_writable(vma, haddr, ptep);
5329                 return 0;
5330         }
5331
5332         pte = huge_ptep_get(ptep);
5333         old_page = pte_page(pte);
5334
5335         delayacct_wpcopy_start();
5336
5337 retry_avoidcopy:
5338         /*
5339          * If no-one else is actually using this page, we're the exclusive
5340          * owner and can reuse this page.
5341          */
5342         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5343                 if (!PageAnonExclusive(old_page))
5344                         page_move_anon_rmap(old_page, vma);
5345                 if (likely(!unshare))
5346                         set_huge_ptep_writable(vma, haddr, ptep);
5347
5348                 delayacct_wpcopy_end();
5349                 return 0;
5350         }
5351         VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5352                        old_page);
5353
5354         /*
5355          * If the process that created a MAP_PRIVATE mapping is about to
5356          * perform a COW due to a shared page count, attempt to satisfy
5357          * the allocation without using the existing reserves. The pagecache
5358          * page is used to determine if the reserve at this address was
5359          * consumed or not. If reserves were used, a partial faulted mapping
5360          * at the time of fork() could consume its reserves on COW instead
5361          * of the full address range.
5362          */
5363         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5364                         old_page != pagecache_page)
5365                 outside_reserve = 1;
5366
5367         get_page(old_page);
5368
5369         /*
5370          * Drop page table lock as buddy allocator may be called. It will
5371          * be acquired again before returning to the caller, as expected.
5372          */
5373         spin_unlock(ptl);
5374         new_page = alloc_huge_page(vma, haddr, outside_reserve);
5375
5376         if (IS_ERR(new_page)) {
5377                 /*
5378                  * If a process owning a MAP_PRIVATE mapping fails to COW,
5379                  * it is due to references held by a child and an insufficient
5380                  * huge page pool. To guarantee the original mappers
5381                  * reliability, unmap the page from child processes. The child
5382                  * may get SIGKILLed if it later faults.
5383                  */
5384                 if (outside_reserve) {
5385                         struct address_space *mapping = vma->vm_file->f_mapping;
5386                         pgoff_t idx;
5387                         u32 hash;
5388
5389                         put_page(old_page);
5390                         /*
5391                          * Drop hugetlb_fault_mutex and vma_lock before
5392                          * unmapping.  unmapping needs to hold vma_lock
5393                          * in write mode.  Dropping vma_lock in read mode
5394                          * here is OK as COW mappings do not interact with
5395                          * PMD sharing.
5396                          *
5397                          * Reacquire both after unmap operation.
5398                          */
5399                         idx = vma_hugecache_offset(h, vma, haddr);
5400                         hash = hugetlb_fault_mutex_hash(mapping, idx);
5401                         hugetlb_vma_unlock_read(vma);
5402                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5403
5404                         unmap_ref_private(mm, vma, old_page, haddr);
5405
5406                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5407                         hugetlb_vma_lock_read(vma);
5408                         spin_lock(ptl);
5409                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5410                         if (likely(ptep &&
5411                                    pte_same(huge_ptep_get(ptep), pte)))
5412                                 goto retry_avoidcopy;
5413                         /*
5414                          * race occurs while re-acquiring page table
5415                          * lock, and our job is done.
5416                          */
5417                         delayacct_wpcopy_end();
5418                         return 0;
5419                 }
5420
5421                 ret = vmf_error(PTR_ERR(new_page));
5422                 goto out_release_old;
5423         }
5424
5425         /*
5426          * When the original hugepage is shared one, it does not have
5427          * anon_vma prepared.
5428          */
5429         if (unlikely(anon_vma_prepare(vma))) {
5430                 ret = VM_FAULT_OOM;
5431                 goto out_release_all;
5432         }
5433
5434         copy_user_huge_page(new_page, old_page, address, vma,
5435                             pages_per_huge_page(h));
5436         __SetPageUptodate(new_page);
5437
5438         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5439                                 haddr + huge_page_size(h));
5440         mmu_notifier_invalidate_range_start(&range);
5441
5442         /*
5443          * Retake the page table lock to check for racing updates
5444          * before the page tables are altered
5445          */
5446         spin_lock(ptl);
5447         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5448         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5449                 /* Break COW or unshare */
5450                 huge_ptep_clear_flush(vma, haddr, ptep);
5451                 mmu_notifier_invalidate_range(mm, range.start, range.end);
5452                 page_remove_rmap(old_page, vma, true);
5453                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
5454                 set_huge_pte_at(mm, haddr, ptep,
5455                                 make_huge_pte(vma, new_page, !unshare));
5456                 SetHPageMigratable(new_page);
5457                 /* Make the old page be freed below */
5458                 new_page = old_page;
5459         }
5460         spin_unlock(ptl);
5461         mmu_notifier_invalidate_range_end(&range);
5462 out_release_all:
5463         /*
5464          * No restore in case of successful pagetable update (Break COW or
5465          * unshare)
5466          */
5467         if (new_page != old_page)
5468                 restore_reserve_on_error(h, vma, haddr, new_page);
5469         put_page(new_page);
5470 out_release_old:
5471         put_page(old_page);
5472
5473         spin_lock(ptl); /* Caller expects lock to be held */
5474
5475         delayacct_wpcopy_end();
5476         return ret;
5477 }
5478
5479 /*
5480  * Return whether there is a pagecache page to back given address within VMA.
5481  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5482  */
5483 static bool hugetlbfs_pagecache_present(struct hstate *h,
5484                         struct vm_area_struct *vma, unsigned long address)
5485 {
5486         struct address_space *mapping;
5487         pgoff_t idx;
5488         struct page *page;
5489
5490         mapping = vma->vm_file->f_mapping;
5491         idx = vma_hugecache_offset(h, vma, address);
5492
5493         page = find_get_page(mapping, idx);
5494         if (page)
5495                 put_page(page);
5496         return page != NULL;
5497 }
5498
5499 int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
5500                            pgoff_t idx)
5501 {
5502         struct folio *folio = page_folio(page);
5503         struct inode *inode = mapping->host;
5504         struct hstate *h = hstate_inode(inode);
5505         int err;
5506
5507         __folio_set_locked(folio);
5508         err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5509
5510         if (unlikely(err)) {
5511                 __folio_clear_locked(folio);
5512                 return err;
5513         }
5514         ClearHPageRestoreReserve(page);
5515
5516         /*
5517          * mark folio dirty so that it will not be removed from cache/file
5518          * by non-hugetlbfs specific code paths.
5519          */
5520         folio_mark_dirty(folio);
5521
5522         spin_lock(&inode->i_lock);
5523         inode->i_blocks += blocks_per_huge_page(h);
5524         spin_unlock(&inode->i_lock);
5525         return 0;
5526 }
5527
5528 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5529                                                   struct address_space *mapping,
5530                                                   pgoff_t idx,
5531                                                   unsigned int flags,
5532                                                   unsigned long haddr,
5533                                                   unsigned long addr,
5534                                                   unsigned long reason)
5535 {
5536         u32 hash;
5537         struct vm_fault vmf = {
5538                 .vma = vma,
5539                 .address = haddr,
5540                 .real_address = addr,
5541                 .flags = flags,
5542
5543                 /*
5544                  * Hard to debug if it ends up being
5545                  * used by a callee that assumes
5546                  * something about the other
5547                  * uninitialized fields... same as in
5548                  * memory.c
5549                  */
5550         };
5551
5552         /*
5553          * vma_lock and hugetlb_fault_mutex must be dropped before handling
5554          * userfault. Also mmap_lock could be dropped due to handling
5555          * userfault, any vma operation should be careful from here.
5556          */
5557         hugetlb_vma_unlock_read(vma);
5558         hash = hugetlb_fault_mutex_hash(mapping, idx);
5559         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5560         return handle_userfault(&vmf, reason);
5561 }
5562
5563 /*
5564  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5565  * false if pte changed or is changing.
5566  */
5567 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5568                                pte_t *ptep, pte_t old_pte)
5569 {
5570         spinlock_t *ptl;
5571         bool same;
5572
5573         ptl = huge_pte_lock(h, mm, ptep);
5574         same = pte_same(huge_ptep_get(ptep), old_pte);
5575         spin_unlock(ptl);
5576
5577         return same;
5578 }
5579
5580 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5581                         struct vm_area_struct *vma,
5582                         struct address_space *mapping, pgoff_t idx,
5583                         unsigned long address, pte_t *ptep,
5584                         pte_t old_pte, unsigned int flags)
5585 {
5586         struct hstate *h = hstate_vma(vma);
5587         vm_fault_t ret = VM_FAULT_SIGBUS;
5588         int anon_rmap = 0;
5589         unsigned long size;
5590         struct page *page;
5591         pte_t new_pte;
5592         spinlock_t *ptl;
5593         unsigned long haddr = address & huge_page_mask(h);
5594         bool new_page, new_pagecache_page = false;
5595         u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5596
5597         /*
5598          * Currently, we are forced to kill the process in the event the
5599          * original mapper has unmapped pages from the child due to a failed
5600          * COW/unsharing. Warn that such a situation has occurred as it may not
5601          * be obvious.
5602          */
5603         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5604                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5605                            current->pid);
5606                 goto out;
5607         }
5608
5609         /*
5610          * Use page lock to guard against racing truncation
5611          * before we get page_table_lock.
5612          */
5613         new_page = false;
5614         page = find_lock_page(mapping, idx);
5615         if (!page) {
5616                 size = i_size_read(mapping->host) >> huge_page_shift(h);
5617                 if (idx >= size)
5618                         goto out;
5619                 /* Check for page in userfault range */
5620                 if (userfaultfd_missing(vma)) {
5621                         /*
5622                          * Since hugetlb_no_page() was examining pte
5623                          * without pgtable lock, we need to re-test under
5624                          * lock because the pte may not be stable and could
5625                          * have changed from under us.  Try to detect
5626                          * either changed or during-changing ptes and retry
5627                          * properly when needed.
5628                          *
5629                          * Note that userfaultfd is actually fine with
5630                          * false positives (e.g. caused by pte changed),
5631                          * but not wrong logical events (e.g. caused by
5632                          * reading a pte during changing).  The latter can
5633                          * confuse the userspace, so the strictness is very
5634                          * much preferred.  E.g., MISSING event should
5635                          * never happen on the page after UFFDIO_COPY has
5636                          * correctly installed the page and returned.
5637                          */
5638                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5639                                 ret = 0;
5640                                 goto out;
5641                         }
5642
5643                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5644                                                         haddr, address,
5645                                                         VM_UFFD_MISSING);
5646                 }
5647
5648                 page = alloc_huge_page(vma, haddr, 0);
5649                 if (IS_ERR(page)) {
5650                         /*
5651                          * Returning error will result in faulting task being
5652                          * sent SIGBUS.  The hugetlb fault mutex prevents two
5653                          * tasks from racing to fault in the same page which
5654                          * could result in false unable to allocate errors.
5655                          * Page migration does not take the fault mutex, but
5656                          * does a clear then write of pte's under page table
5657                          * lock.  Page fault code could race with migration,
5658                          * notice the clear pte and try to allocate a page
5659                          * here.  Before returning error, get ptl and make
5660                          * sure there really is no pte entry.
5661                          */
5662                         if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5663                                 ret = vmf_error(PTR_ERR(page));
5664                         else
5665                                 ret = 0;
5666                         goto out;
5667                 }
5668                 clear_huge_page(page, address, pages_per_huge_page(h));
5669                 __SetPageUptodate(page);
5670                 new_page = true;
5671
5672                 if (vma->vm_flags & VM_MAYSHARE) {
5673                         int err = hugetlb_add_to_page_cache(page, mapping, idx);
5674                         if (err) {
5675                                 /*
5676                                  * err can't be -EEXIST which implies someone
5677                                  * else consumed the reservation since hugetlb
5678                                  * fault mutex is held when add a hugetlb page
5679                                  * to the page cache. So it's safe to call
5680                                  * restore_reserve_on_error() here.
5681                                  */
5682                                 restore_reserve_on_error(h, vma, haddr, page);
5683                                 put_page(page);
5684                                 goto out;
5685                         }
5686                         new_pagecache_page = true;
5687                 } else {
5688                         lock_page(page);
5689                         if (unlikely(anon_vma_prepare(vma))) {
5690                                 ret = VM_FAULT_OOM;
5691                                 goto backout_unlocked;
5692                         }
5693                         anon_rmap = 1;
5694                 }
5695         } else {
5696                 /*
5697                  * If memory error occurs between mmap() and fault, some process
5698                  * don't have hwpoisoned swap entry for errored virtual address.
5699                  * So we need to block hugepage fault by PG_hwpoison bit check.
5700                  */
5701                 if (unlikely(PageHWPoison(page))) {
5702                         ret = VM_FAULT_HWPOISON_LARGE |
5703                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5704                         goto backout_unlocked;
5705                 }
5706
5707                 /* Check for page in userfault range. */
5708                 if (userfaultfd_minor(vma)) {
5709                         unlock_page(page);
5710                         put_page(page);
5711                         /* See comment in userfaultfd_missing() block above */
5712                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5713                                 ret = 0;
5714                                 goto out;
5715                         }
5716                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5717                                                         haddr, address,
5718                                                         VM_UFFD_MINOR);
5719                 }
5720         }
5721
5722         /*
5723          * If we are going to COW a private mapping later, we examine the
5724          * pending reservations for this page now. This will ensure that
5725          * any allocations necessary to record that reservation occur outside
5726          * the spinlock.
5727          */
5728         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5729                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5730                         ret = VM_FAULT_OOM;
5731                         goto backout_unlocked;
5732                 }
5733                 /* Just decrements count, does not deallocate */
5734                 vma_end_reservation(h, vma, haddr);
5735         }
5736
5737         ptl = huge_pte_lock(h, mm, ptep);
5738         ret = 0;
5739         /* If pte changed from under us, retry */
5740         if (!pte_same(huge_ptep_get(ptep), old_pte))
5741                 goto backout;
5742
5743         if (anon_rmap)
5744                 hugepage_add_new_anon_rmap(page, vma, haddr);
5745         else
5746                 page_dup_file_rmap(page, true);
5747         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5748                                 && (vma->vm_flags & VM_SHARED)));
5749         /*
5750          * If this pte was previously wr-protected, keep it wr-protected even
5751          * if populated.
5752          */
5753         if (unlikely(pte_marker_uffd_wp(old_pte)))
5754                 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5755         set_huge_pte_at(mm, haddr, ptep, new_pte);
5756
5757         hugetlb_count_add(pages_per_huge_page(h), mm);
5758         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5759                 /* Optimization, do the COW without a second fault */
5760                 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5761         }
5762
5763         spin_unlock(ptl);
5764
5765         /*
5766          * Only set HPageMigratable in newly allocated pages.  Existing pages
5767          * found in the pagecache may not have HPageMigratableset if they have
5768          * been isolated for migration.
5769          */
5770         if (new_page)
5771                 SetHPageMigratable(page);
5772
5773         unlock_page(page);
5774 out:
5775         hugetlb_vma_unlock_read(vma);
5776         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5777         return ret;
5778
5779 backout:
5780         spin_unlock(ptl);
5781 backout_unlocked:
5782         if (new_page && !new_pagecache_page)
5783                 restore_reserve_on_error(h, vma, haddr, page);
5784
5785         unlock_page(page);
5786         put_page(page);
5787         goto out;
5788 }
5789
5790 #ifdef CONFIG_SMP
5791 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5792 {
5793         unsigned long key[2];
5794         u32 hash;
5795
5796         key[0] = (unsigned long) mapping;
5797         key[1] = idx;
5798
5799         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5800
5801         return hash & (num_fault_mutexes - 1);
5802 }
5803 #else
5804 /*
5805  * For uniprocessor systems we always use a single mutex, so just
5806  * return 0 and avoid the hashing overhead.
5807  */
5808 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5809 {
5810         return 0;
5811 }
5812 #endif
5813
5814 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5815                         unsigned long address, unsigned int flags)
5816 {
5817         pte_t *ptep, entry;
5818         spinlock_t *ptl;
5819         vm_fault_t ret;
5820         u32 hash;
5821         pgoff_t idx;
5822         struct page *page = NULL;
5823         struct page *pagecache_page = NULL;
5824         struct hstate *h = hstate_vma(vma);
5825         struct address_space *mapping;
5826         int need_wait_lock = 0;
5827         unsigned long haddr = address & huge_page_mask(h);
5828
5829         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5830         if (ptep) {
5831                 /*
5832                  * Since we hold no locks, ptep could be stale.  That is
5833                  * OK as we are only making decisions based on content and
5834                  * not actually modifying content here.
5835                  */
5836                 entry = huge_ptep_get(ptep);
5837                 if (unlikely(is_hugetlb_entry_migration(entry))) {
5838                         migration_entry_wait_huge(vma, ptep);
5839                         return 0;
5840                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5841                         return VM_FAULT_HWPOISON_LARGE |
5842                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5843         }
5844
5845         /*
5846          * Serialize hugepage allocation and instantiation, so that we don't
5847          * get spurious allocation failures if two CPUs race to instantiate
5848          * the same page in the page cache.
5849          */
5850         mapping = vma->vm_file->f_mapping;
5851         idx = vma_hugecache_offset(h, vma, haddr);
5852         hash = hugetlb_fault_mutex_hash(mapping, idx);
5853         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5854
5855         /*
5856          * Acquire vma lock before calling huge_pte_alloc and hold
5857          * until finished with ptep.  This prevents huge_pmd_unshare from
5858          * being called elsewhere and making the ptep no longer valid.
5859          *
5860          * ptep could have already be assigned via huge_pte_offset.  That
5861          * is OK, as huge_pte_alloc will return the same value unless
5862          * something has changed.
5863          */
5864         hugetlb_vma_lock_read(vma);
5865         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5866         if (!ptep) {
5867                 hugetlb_vma_unlock_read(vma);
5868                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5869                 return VM_FAULT_OOM;
5870         }
5871
5872         entry = huge_ptep_get(ptep);
5873         /* PTE markers should be handled the same way as none pte */
5874         if (huge_pte_none_mostly(entry))
5875                 /*
5876                  * hugetlb_no_page will drop vma lock and hugetlb fault
5877                  * mutex internally, which make us return immediately.
5878                  */
5879                 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
5880                                       entry, flags);
5881
5882         ret = 0;
5883
5884         /*
5885          * entry could be a migration/hwpoison entry at this point, so this
5886          * check prevents the kernel from going below assuming that we have
5887          * an active hugepage in pagecache. This goto expects the 2nd page
5888          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5889          * properly handle it.
5890          */
5891         if (!pte_present(entry))
5892                 goto out_mutex;
5893
5894         /*
5895          * If we are going to COW/unshare the mapping later, we examine the
5896          * pending reservations for this page now. This will ensure that any
5897          * allocations necessary to record that reservation occur outside the
5898          * spinlock. Also lookup the pagecache page now as it is used to
5899          * determine if a reservation has been consumed.
5900          */
5901         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5902             !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
5903                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5904                         ret = VM_FAULT_OOM;
5905                         goto out_mutex;
5906                 }
5907                 /* Just decrements count, does not deallocate */
5908                 vma_end_reservation(h, vma, haddr);
5909
5910                 pagecache_page = find_lock_page(mapping, idx);
5911         }
5912
5913         ptl = huge_pte_lock(h, mm, ptep);
5914
5915         /* Check for a racing update before calling hugetlb_wp() */
5916         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5917                 goto out_ptl;
5918
5919         /* Handle userfault-wp first, before trying to lock more pages */
5920         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
5921             (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5922                 struct vm_fault vmf = {
5923                         .vma = vma,
5924                         .address = haddr,
5925                         .real_address = address,
5926                         .flags = flags,
5927                 };
5928
5929                 spin_unlock(ptl);
5930                 if (pagecache_page) {
5931                         unlock_page(pagecache_page);
5932                         put_page(pagecache_page);
5933                 }
5934                 hugetlb_vma_unlock_read(vma);
5935                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5936                 return handle_userfault(&vmf, VM_UFFD_WP);
5937         }
5938
5939         /*
5940          * hugetlb_wp() requires page locks of pte_page(entry) and
5941          * pagecache_page, so here we need take the former one
5942          * when page != pagecache_page or !pagecache_page.
5943          */
5944         page = pte_page(entry);
5945         if (page != pagecache_page)
5946                 if (!trylock_page(page)) {
5947                         need_wait_lock = 1;
5948                         goto out_ptl;
5949                 }
5950
5951         get_page(page);
5952
5953         if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5954                 if (!huge_pte_write(entry)) {
5955                         ret = hugetlb_wp(mm, vma, address, ptep, flags,
5956                                          pagecache_page, ptl);
5957                         goto out_put_page;
5958                 } else if (likely(flags & FAULT_FLAG_WRITE)) {
5959                         entry = huge_pte_mkdirty(entry);
5960                 }
5961         }
5962         entry = pte_mkyoung(entry);
5963         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5964                                                 flags & FAULT_FLAG_WRITE))
5965                 update_mmu_cache(vma, haddr, ptep);
5966 out_put_page:
5967         if (page != pagecache_page)
5968                 unlock_page(page);
5969         put_page(page);
5970 out_ptl:
5971         spin_unlock(ptl);
5972
5973         if (pagecache_page) {
5974                 unlock_page(pagecache_page);
5975                 put_page(pagecache_page);
5976         }
5977 out_mutex:
5978         hugetlb_vma_unlock_read(vma);
5979         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5980         /*
5981          * Generally it's safe to hold refcount during waiting page lock. But
5982          * here we just wait to defer the next page fault to avoid busy loop and
5983          * the page is not used after unlocked before returning from the current
5984          * page fault. So we are safe from accessing freed page, even if we wait
5985          * here without taking refcount.
5986          */
5987         if (need_wait_lock)
5988                 wait_on_page_locked(page);
5989         return ret;
5990 }
5991
5992 #ifdef CONFIG_USERFAULTFD
5993 /*
5994  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5995  * modifications for huge pages.
5996  */
5997 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5998                             pte_t *dst_pte,
5999                             struct vm_area_struct *dst_vma,
6000                             unsigned long dst_addr,
6001                             unsigned long src_addr,
6002                             enum mcopy_atomic_mode mode,
6003                             struct page **pagep,
6004                             bool wp_copy)
6005 {
6006         bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
6007         struct hstate *h = hstate_vma(dst_vma);
6008         struct address_space *mapping = dst_vma->vm_file->f_mapping;
6009         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6010         unsigned long size;
6011         int vm_shared = dst_vma->vm_flags & VM_SHARED;
6012         pte_t _dst_pte;
6013         spinlock_t *ptl;
6014         int ret = -ENOMEM;
6015         struct page *page;
6016         int writable;
6017         bool page_in_pagecache = false;
6018
6019         if (is_continue) {
6020                 ret = -EFAULT;
6021                 page = find_lock_page(mapping, idx);
6022                 if (!page)
6023                         goto out;
6024                 page_in_pagecache = true;
6025         } else if (!*pagep) {
6026                 /* If a page already exists, then it's UFFDIO_COPY for
6027                  * a non-missing case. Return -EEXIST.
6028                  */
6029                 if (vm_shared &&
6030                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6031                         ret = -EEXIST;
6032                         goto out;
6033                 }
6034
6035                 page = alloc_huge_page(dst_vma, dst_addr, 0);
6036                 if (IS_ERR(page)) {
6037                         ret = -ENOMEM;
6038                         goto out;
6039                 }
6040
6041                 ret = copy_huge_page_from_user(page,
6042                                                 (const void __user *) src_addr,
6043                                                 pages_per_huge_page(h), false);
6044
6045                 /* fallback to copy_from_user outside mmap_lock */
6046                 if (unlikely(ret)) {
6047                         ret = -ENOENT;
6048                         /* Free the allocated page which may have
6049                          * consumed a reservation.
6050                          */
6051                         restore_reserve_on_error(h, dst_vma, dst_addr, page);
6052                         put_page(page);
6053
6054                         /* Allocate a temporary page to hold the copied
6055                          * contents.
6056                          */
6057                         page = alloc_huge_page_vma(h, dst_vma, dst_addr);
6058                         if (!page) {
6059                                 ret = -ENOMEM;
6060                                 goto out;
6061                         }
6062                         *pagep = page;
6063                         /* Set the outparam pagep and return to the caller to
6064                          * copy the contents outside the lock. Don't free the
6065                          * page.
6066                          */
6067                         goto out;
6068                 }
6069         } else {
6070                 if (vm_shared &&
6071                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6072                         put_page(*pagep);
6073                         ret = -EEXIST;
6074                         *pagep = NULL;
6075                         goto out;
6076                 }
6077
6078                 page = alloc_huge_page(dst_vma, dst_addr, 0);
6079                 if (IS_ERR(page)) {
6080                         put_page(*pagep);
6081                         ret = -ENOMEM;
6082                         *pagep = NULL;
6083                         goto out;
6084                 }
6085                 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6086                                     pages_per_huge_page(h));
6087                 put_page(*pagep);
6088                 *pagep = NULL;
6089         }
6090
6091         /*
6092          * The memory barrier inside __SetPageUptodate makes sure that
6093          * preceding stores to the page contents become visible before
6094          * the set_pte_at() write.
6095          */
6096         __SetPageUptodate(page);
6097
6098         /* Add shared, newly allocated pages to the page cache. */
6099         if (vm_shared && !is_continue) {
6100                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6101                 ret = -EFAULT;
6102                 if (idx >= size)
6103                         goto out_release_nounlock;
6104
6105                 /*
6106                  * Serialization between remove_inode_hugepages() and
6107                  * hugetlb_add_to_page_cache() below happens through the
6108                  * hugetlb_fault_mutex_table that here must be hold by
6109                  * the caller.
6110                  */
6111                 ret = hugetlb_add_to_page_cache(page, mapping, idx);
6112                 if (ret)
6113                         goto out_release_nounlock;
6114                 page_in_pagecache = true;
6115         }
6116
6117         ptl = huge_pte_lock(h, dst_mm, dst_pte);
6118
6119         ret = -EIO;
6120         if (PageHWPoison(page))
6121                 goto out_release_unlock;
6122
6123         /*
6124          * We allow to overwrite a pte marker: consider when both MISSING|WP
6125          * registered, we firstly wr-protect a none pte which has no page cache
6126          * page backing it, then access the page.
6127          */
6128         ret = -EEXIST;
6129         if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6130                 goto out_release_unlock;
6131
6132         if (page_in_pagecache)
6133                 page_dup_file_rmap(page, true);
6134         else
6135                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6136
6137         /*
6138          * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6139          * with wp flag set, don't set pte write bit.
6140          */
6141         if (wp_copy || (is_continue && !vm_shared))
6142                 writable = 0;
6143         else
6144                 writable = dst_vma->vm_flags & VM_WRITE;
6145
6146         _dst_pte = make_huge_pte(dst_vma, page, writable);
6147         /*
6148          * Always mark UFFDIO_COPY page dirty; note that this may not be
6149          * extremely important for hugetlbfs for now since swapping is not
6150          * supported, but we should still be clear in that this page cannot be
6151          * thrown away at will, even if write bit not set.
6152          */
6153         _dst_pte = huge_pte_mkdirty(_dst_pte);
6154         _dst_pte = pte_mkyoung(_dst_pte);
6155
6156         if (wp_copy)
6157                 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6158
6159         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6160
6161         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6162
6163         /* No need to invalidate - it was non-present before */
6164         update_mmu_cache(dst_vma, dst_addr, dst_pte);
6165
6166         spin_unlock(ptl);
6167         if (!is_continue)
6168                 SetHPageMigratable(page);
6169         if (vm_shared || is_continue)
6170                 unlock_page(page);
6171         ret = 0;
6172 out:
6173         return ret;
6174 out_release_unlock:
6175         spin_unlock(ptl);
6176         if (vm_shared || is_continue)
6177                 unlock_page(page);
6178 out_release_nounlock:
6179         if (!page_in_pagecache)
6180                 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6181         put_page(page);
6182         goto out;
6183 }
6184 #endif /* CONFIG_USERFAULTFD */
6185
6186 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6187                                  int refs, struct page **pages,
6188                                  struct vm_area_struct **vmas)
6189 {
6190         int nr;
6191
6192         for (nr = 0; nr < refs; nr++) {
6193                 if (likely(pages))
6194                         pages[nr] = nth_page(page, nr);
6195                 if (vmas)
6196                         vmas[nr] = vma;
6197         }
6198 }
6199
6200 static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
6201                                                unsigned int flags, pte_t *pte,
6202                                                bool *unshare)
6203 {
6204         pte_t pteval = huge_ptep_get(pte);
6205
6206         *unshare = false;
6207         if (is_swap_pte(pteval))
6208                 return true;
6209         if (huge_pte_write(pteval))
6210                 return false;
6211         if (flags & FOLL_WRITE)
6212                 return true;
6213         if (gup_must_unshare(vma, flags, pte_page(pteval))) {
6214                 *unshare = true;
6215                 return true;
6216         }
6217         return false;
6218 }
6219
6220 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6221                                 unsigned long address, unsigned int flags)
6222 {
6223         struct hstate *h = hstate_vma(vma);
6224         struct mm_struct *mm = vma->vm_mm;
6225         unsigned long haddr = address & huge_page_mask(h);
6226         struct page *page = NULL;
6227         spinlock_t *ptl;
6228         pte_t *pte, entry;
6229
6230         /*
6231          * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6232          * follow_hugetlb_page().
6233          */
6234         if (WARN_ON_ONCE(flags & FOLL_PIN))
6235                 return NULL;
6236
6237 retry:
6238         pte = huge_pte_offset(mm, haddr, huge_page_size(h));
6239         if (!pte)
6240                 return NULL;
6241
6242         ptl = huge_pte_lock(h, mm, pte);
6243         entry = huge_ptep_get(pte);
6244         if (pte_present(entry)) {
6245                 page = pte_page(entry) +
6246                                 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6247                 /*
6248                  * Note that page may be a sub-page, and with vmemmap
6249                  * optimizations the page struct may be read only.
6250                  * try_grab_page() will increase the ref count on the
6251                  * head page, so this will be OK.
6252                  *
6253                  * try_grab_page() should always succeed here, because we hold
6254                  * the ptl lock and have verified pte_present().
6255                  */
6256                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6257                         page = NULL;
6258                         goto out;
6259                 }
6260         } else {
6261                 if (is_hugetlb_entry_migration(entry)) {
6262                         spin_unlock(ptl);
6263                         __migration_entry_wait_huge(pte, ptl);
6264                         goto retry;
6265                 }
6266                 /*
6267                  * hwpoisoned entry is treated as no_page_table in
6268                  * follow_page_mask().
6269                  */
6270         }
6271 out:
6272         spin_unlock(ptl);
6273         return page;
6274 }
6275
6276 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6277                          struct page **pages, struct vm_area_struct **vmas,
6278                          unsigned long *position, unsigned long *nr_pages,
6279                          long i, unsigned int flags, int *locked)
6280 {
6281         unsigned long pfn_offset;
6282         unsigned long vaddr = *position;
6283         unsigned long remainder = *nr_pages;
6284         struct hstate *h = hstate_vma(vma);
6285         int err = -EFAULT, refs;
6286
6287         while (vaddr < vma->vm_end && remainder) {
6288                 pte_t *pte;
6289                 spinlock_t *ptl = NULL;
6290                 bool unshare = false;
6291                 int absent;
6292                 struct page *page;
6293
6294                 /*
6295                  * If we have a pending SIGKILL, don't keep faulting pages and
6296                  * potentially allocating memory.
6297                  */
6298                 if (fatal_signal_pending(current)) {
6299                         remainder = 0;
6300                         break;
6301                 }
6302
6303                 /*
6304                  * Some archs (sparc64, sh*) have multiple pte_ts to
6305                  * each hugepage.  We have to make sure we get the
6306                  * first, for the page indexing below to work.
6307                  *
6308                  * Note that page table lock is not held when pte is null.
6309                  */
6310                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6311                                       huge_page_size(h));
6312                 if (pte)
6313                         ptl = huge_pte_lock(h, mm, pte);
6314                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6315
6316                 /*
6317                  * When coredumping, it suits get_dump_page if we just return
6318                  * an error where there's an empty slot with no huge pagecache
6319                  * to back it.  This way, we avoid allocating a hugepage, and
6320                  * the sparse dumpfile avoids allocating disk blocks, but its
6321                  * huge holes still show up with zeroes where they need to be.
6322                  */
6323                 if (absent && (flags & FOLL_DUMP) &&
6324                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6325                         if (pte)
6326                                 spin_unlock(ptl);
6327                         remainder = 0;
6328                         break;
6329                 }
6330
6331                 /*
6332                  * We need call hugetlb_fault for both hugepages under migration
6333                  * (in which case hugetlb_fault waits for the migration,) and
6334                  * hwpoisoned hugepages (in which case we need to prevent the
6335                  * caller from accessing to them.) In order to do this, we use
6336                  * here is_swap_pte instead of is_hugetlb_entry_migration and
6337                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6338                  * both cases, and because we can't follow correct pages
6339                  * directly from any kind of swap entries.
6340                  */
6341                 if (absent ||
6342                     __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
6343                         vm_fault_t ret;
6344                         unsigned int fault_flags = 0;
6345
6346                         if (pte)
6347                                 spin_unlock(ptl);
6348                         if (flags & FOLL_WRITE)
6349                                 fault_flags |= FAULT_FLAG_WRITE;
6350                         else if (unshare)
6351                                 fault_flags |= FAULT_FLAG_UNSHARE;
6352                         if (locked)
6353                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6354                                         FAULT_FLAG_KILLABLE;
6355                         if (flags & FOLL_NOWAIT)
6356                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6357                                         FAULT_FLAG_RETRY_NOWAIT;
6358                         if (flags & FOLL_TRIED) {
6359                                 /*
6360                                  * Note: FAULT_FLAG_ALLOW_RETRY and
6361                                  * FAULT_FLAG_TRIED can co-exist
6362                                  */
6363                                 fault_flags |= FAULT_FLAG_TRIED;
6364                         }
6365                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6366                         if (ret & VM_FAULT_ERROR) {
6367                                 err = vm_fault_to_errno(ret, flags);
6368                                 remainder = 0;
6369                                 break;
6370                         }
6371                         if (ret & VM_FAULT_RETRY) {
6372                                 if (locked &&
6373                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6374                                         *locked = 0;
6375                                 *nr_pages = 0;
6376                                 /*
6377                                  * VM_FAULT_RETRY must not return an
6378                                  * error, it will return zero
6379                                  * instead.
6380                                  *
6381                                  * No need to update "position" as the
6382                                  * caller will not check it after
6383                                  * *nr_pages is set to 0.
6384                                  */
6385                                 return i;
6386                         }
6387                         continue;
6388                 }
6389
6390                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6391                 page = pte_page(huge_ptep_get(pte));
6392
6393                 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6394                                !PageAnonExclusive(page), page);
6395
6396                 /*
6397                  * If subpage information not requested, update counters
6398                  * and skip the same_page loop below.
6399                  */
6400                 if (!pages && !vmas && !pfn_offset &&
6401                     (vaddr + huge_page_size(h) < vma->vm_end) &&
6402                     (remainder >= pages_per_huge_page(h))) {
6403                         vaddr += huge_page_size(h);
6404                         remainder -= pages_per_huge_page(h);
6405                         i += pages_per_huge_page(h);
6406                         spin_unlock(ptl);
6407                         continue;
6408                 }
6409
6410                 /* vaddr may not be aligned to PAGE_SIZE */
6411                 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6412                     (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6413
6414                 if (pages || vmas)
6415                         record_subpages_vmas(nth_page(page, pfn_offset),
6416                                              vma, refs,
6417                                              likely(pages) ? pages + i : NULL,
6418                                              vmas ? vmas + i : NULL);
6419
6420                 if (pages) {
6421                         /*
6422                          * try_grab_folio() should always succeed here,
6423                          * because: a) we hold the ptl lock, and b) we've just
6424                          * checked that the huge page is present in the page
6425                          * tables. If the huge page is present, then the tail
6426                          * pages must also be present. The ptl prevents the
6427                          * head page and tail pages from being rearranged in
6428                          * any way. So this page must be available at this
6429                          * point, unless the page refcount overflowed:
6430                          */
6431                         if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6432                                                          flags))) {
6433                                 spin_unlock(ptl);
6434                                 remainder = 0;
6435                                 err = -ENOMEM;
6436                                 break;
6437                         }
6438                 }
6439
6440                 vaddr += (refs << PAGE_SHIFT);
6441                 remainder -= refs;
6442                 i += refs;
6443
6444                 spin_unlock(ptl);
6445         }
6446         *nr_pages = remainder;
6447         /*
6448          * setting position is actually required only if remainder is
6449          * not zero but it's faster not to add a "if (remainder)"
6450          * branch.
6451          */
6452         *position = vaddr;
6453
6454         return i ? i : err;
6455 }
6456
6457 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6458                 unsigned long address, unsigned long end,
6459                 pgprot_t newprot, unsigned long cp_flags)
6460 {
6461         struct mm_struct *mm = vma->vm_mm;
6462         unsigned long start = address;
6463         pte_t *ptep;
6464         pte_t pte;
6465         struct hstate *h = hstate_vma(vma);
6466         unsigned long pages = 0, psize = huge_page_size(h);
6467         bool shared_pmd = false;
6468         struct mmu_notifier_range range;
6469         unsigned long last_addr_mask;
6470         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6471         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6472
6473         /*
6474          * In the case of shared PMDs, the area to flush could be beyond
6475          * start/end.  Set range.start/range.end to cover the maximum possible
6476          * range if PMD sharing is possible.
6477          */
6478         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6479                                 0, vma, mm, start, end);
6480         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6481
6482         BUG_ON(address >= end);
6483         flush_cache_range(vma, range.start, range.end);
6484
6485         mmu_notifier_invalidate_range_start(&range);
6486         hugetlb_vma_lock_write(vma);
6487         i_mmap_lock_write(vma->vm_file->f_mapping);
6488         last_addr_mask = hugetlb_mask_last_page(h);
6489         for (; address < end; address += psize) {
6490                 spinlock_t *ptl;
6491                 ptep = huge_pte_offset(mm, address, psize);
6492                 if (!ptep) {
6493                         address |= last_addr_mask;
6494                         continue;
6495                 }
6496                 ptl = huge_pte_lock(h, mm, ptep);
6497                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6498                         /*
6499                          * When uffd-wp is enabled on the vma, unshare
6500                          * shouldn't happen at all.  Warn about it if it
6501                          * happened due to some reason.
6502                          */
6503                         WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6504                         pages++;
6505                         spin_unlock(ptl);
6506                         shared_pmd = true;
6507                         address |= last_addr_mask;
6508                         continue;
6509                 }
6510                 pte = huge_ptep_get(ptep);
6511                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6512                         spin_unlock(ptl);
6513                         continue;
6514                 }
6515                 if (unlikely(is_hugetlb_entry_migration(pte))) {
6516                         swp_entry_t entry = pte_to_swp_entry(pte);
6517                         struct page *page = pfn_swap_entry_to_page(entry);
6518
6519                         if (!is_readable_migration_entry(entry)) {
6520                                 pte_t newpte;
6521
6522                                 if (PageAnon(page))
6523                                         entry = make_readable_exclusive_migration_entry(
6524                                                                 swp_offset(entry));
6525                                 else
6526                                         entry = make_readable_migration_entry(
6527                                                                 swp_offset(entry));
6528                                 newpte = swp_entry_to_pte(entry);
6529                                 if (uffd_wp)
6530                                         newpte = pte_swp_mkuffd_wp(newpte);
6531                                 else if (uffd_wp_resolve)
6532                                         newpte = pte_swp_clear_uffd_wp(newpte);
6533                                 set_huge_pte_at(mm, address, ptep, newpte);
6534                                 pages++;
6535                         }
6536                         spin_unlock(ptl);
6537                         continue;
6538                 }
6539                 if (unlikely(pte_marker_uffd_wp(pte))) {
6540                         /*
6541                          * This is changing a non-present pte into a none pte,
6542                          * no need for huge_ptep_modify_prot_start/commit().
6543                          */
6544                         if (uffd_wp_resolve)
6545                                 huge_pte_clear(mm, address, ptep, psize);
6546                 }
6547                 if (!huge_pte_none(pte)) {
6548                         pte_t old_pte;
6549                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6550
6551                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6552                         pte = huge_pte_modify(old_pte, newprot);
6553                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6554                         if (uffd_wp)
6555                                 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6556                         else if (uffd_wp_resolve)
6557                                 pte = huge_pte_clear_uffd_wp(pte);
6558                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6559                         pages++;
6560                 } else {
6561                         /* None pte */
6562                         if (unlikely(uffd_wp))
6563                                 /* Safe to modify directly (none->non-present). */
6564                                 set_huge_pte_at(mm, address, ptep,
6565                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
6566                 }
6567                 spin_unlock(ptl);
6568         }
6569         /*
6570          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6571          * may have cleared our pud entry and done put_page on the page table:
6572          * once we release i_mmap_rwsem, another task can do the final put_page
6573          * and that page table be reused and filled with junk.  If we actually
6574          * did unshare a page of pmds, flush the range corresponding to the pud.
6575          */
6576         if (shared_pmd)
6577                 flush_hugetlb_tlb_range(vma, range.start, range.end);
6578         else
6579                 flush_hugetlb_tlb_range(vma, start, end);
6580         /*
6581          * No need to call mmu_notifier_invalidate_range() we are downgrading
6582          * page table protection not changing it to point to a new page.
6583          *
6584          * See Documentation/mm/mmu_notifier.rst
6585          */
6586         i_mmap_unlock_write(vma->vm_file->f_mapping);
6587         hugetlb_vma_unlock_write(vma);
6588         mmu_notifier_invalidate_range_end(&range);
6589
6590         return pages << h->order;
6591 }
6592
6593 /* Return true if reservation was successful, false otherwise.  */
6594 bool hugetlb_reserve_pages(struct inode *inode,
6595                                         long from, long to,
6596                                         struct vm_area_struct *vma,
6597                                         vm_flags_t vm_flags)
6598 {
6599         long chg, add = -1;
6600         struct hstate *h = hstate_inode(inode);
6601         struct hugepage_subpool *spool = subpool_inode(inode);
6602         struct resv_map *resv_map;
6603         struct hugetlb_cgroup *h_cg = NULL;
6604         long gbl_reserve, regions_needed = 0;
6605
6606         /* This should never happen */
6607         if (from > to) {
6608                 VM_WARN(1, "%s called with a negative range\n", __func__);
6609                 return false;
6610         }
6611
6612         /*
6613          * vma specific semaphore used for pmd sharing synchronization
6614          */
6615         hugetlb_vma_lock_alloc(vma);
6616
6617         /*
6618          * Only apply hugepage reservation if asked. At fault time, an
6619          * attempt will be made for VM_NORESERVE to allocate a page
6620          * without using reserves
6621          */
6622         if (vm_flags & VM_NORESERVE)
6623                 return true;
6624
6625         /*
6626          * Shared mappings base their reservation on the number of pages that
6627          * are already allocated on behalf of the file. Private mappings need
6628          * to reserve the full area even if read-only as mprotect() may be
6629          * called to make the mapping read-write. Assume !vma is a shm mapping
6630          */
6631         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6632                 /*
6633                  * resv_map can not be NULL as hugetlb_reserve_pages is only
6634                  * called for inodes for which resv_maps were created (see
6635                  * hugetlbfs_get_inode).
6636                  */
6637                 resv_map = inode_resv_map(inode);
6638
6639                 chg = region_chg(resv_map, from, to, &regions_needed);
6640         } else {
6641                 /* Private mapping. */
6642                 resv_map = resv_map_alloc();
6643                 if (!resv_map)
6644                         goto out_err;
6645
6646                 chg = to - from;
6647
6648                 set_vma_resv_map(vma, resv_map);
6649                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6650         }
6651
6652         if (chg < 0)
6653                 goto out_err;
6654
6655         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6656                                 chg * pages_per_huge_page(h), &h_cg) < 0)
6657                 goto out_err;
6658
6659         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6660                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6661                  * of the resv_map.
6662                  */
6663                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6664         }
6665
6666         /*
6667          * There must be enough pages in the subpool for the mapping. If
6668          * the subpool has a minimum size, there may be some global
6669          * reservations already in place (gbl_reserve).
6670          */
6671         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6672         if (gbl_reserve < 0)
6673                 goto out_uncharge_cgroup;
6674
6675         /*
6676          * Check enough hugepages are available for the reservation.
6677          * Hand the pages back to the subpool if there are not
6678          */
6679         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6680                 goto out_put_pages;
6681
6682         /*
6683          * Account for the reservations made. Shared mappings record regions
6684          * that have reservations as they are shared by multiple VMAs.
6685          * When the last VMA disappears, the region map says how much
6686          * the reservation was and the page cache tells how much of
6687          * the reservation was consumed. Private mappings are per-VMA and
6688          * only the consumed reservations are tracked. When the VMA
6689          * disappears, the original reservation is the VMA size and the
6690          * consumed reservations are stored in the map. Hence, nothing
6691          * else has to be done for private mappings here
6692          */
6693         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6694                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6695
6696                 if (unlikely(add < 0)) {
6697                         hugetlb_acct_memory(h, -gbl_reserve);
6698                         goto out_put_pages;
6699                 } else if (unlikely(chg > add)) {
6700                         /*
6701                          * pages in this range were added to the reserve
6702                          * map between region_chg and region_add.  This
6703                          * indicates a race with alloc_huge_page.  Adjust
6704                          * the subpool and reserve counts modified above
6705                          * based on the difference.
6706                          */
6707                         long rsv_adjust;
6708
6709                         /*
6710                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6711                          * reference to h_cg->css. See comment below for detail.
6712                          */
6713                         hugetlb_cgroup_uncharge_cgroup_rsvd(
6714                                 hstate_index(h),
6715                                 (chg - add) * pages_per_huge_page(h), h_cg);
6716
6717                         rsv_adjust = hugepage_subpool_put_pages(spool,
6718                                                                 chg - add);
6719                         hugetlb_acct_memory(h, -rsv_adjust);
6720                 } else if (h_cg) {
6721                         /*
6722                          * The file_regions will hold their own reference to
6723                          * h_cg->css. So we should release the reference held
6724                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6725                          * done.
6726                          */
6727                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6728                 }
6729         }
6730         return true;
6731
6732 out_put_pages:
6733         /* put back original number of pages, chg */
6734         (void)hugepage_subpool_put_pages(spool, chg);
6735 out_uncharge_cgroup:
6736         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6737                                             chg * pages_per_huge_page(h), h_cg);
6738 out_err:
6739         hugetlb_vma_lock_free(vma);
6740         if (!vma || vma->vm_flags & VM_MAYSHARE)
6741                 /* Only call region_abort if the region_chg succeeded but the
6742                  * region_add failed or didn't run.
6743                  */
6744                 if (chg >= 0 && add < 0)
6745                         region_abort(resv_map, from, to, regions_needed);
6746         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6747                 kref_put(&resv_map->refs, resv_map_release);
6748         return false;
6749 }
6750
6751 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6752                                                                 long freed)
6753 {
6754         struct hstate *h = hstate_inode(inode);
6755         struct resv_map *resv_map = inode_resv_map(inode);
6756         long chg = 0;
6757         struct hugepage_subpool *spool = subpool_inode(inode);
6758         long gbl_reserve;
6759
6760         /*
6761          * Since this routine can be called in the evict inode path for all
6762          * hugetlbfs inodes, resv_map could be NULL.
6763          */
6764         if (resv_map) {
6765                 chg = region_del(resv_map, start, end);
6766                 /*
6767                  * region_del() can fail in the rare case where a region
6768                  * must be split and another region descriptor can not be
6769                  * allocated.  If end == LONG_MAX, it will not fail.
6770                  */
6771                 if (chg < 0)
6772                         return chg;
6773         }
6774
6775         spin_lock(&inode->i_lock);
6776         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6777         spin_unlock(&inode->i_lock);
6778
6779         /*
6780          * If the subpool has a minimum size, the number of global
6781          * reservations to be released may be adjusted.
6782          *
6783          * Note that !resv_map implies freed == 0. So (chg - freed)
6784          * won't go negative.
6785          */
6786         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6787         hugetlb_acct_memory(h, -gbl_reserve);
6788
6789         return 0;
6790 }
6791
6792 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6793 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6794                                 struct vm_area_struct *vma,
6795                                 unsigned long addr, pgoff_t idx)
6796 {
6797         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6798                                 svma->vm_start;
6799         unsigned long sbase = saddr & PUD_MASK;
6800         unsigned long s_end = sbase + PUD_SIZE;
6801
6802         /* Allow segments to share if only one is marked locked */
6803         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6804         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6805
6806         /*
6807          * match the virtual addresses, permission and the alignment of the
6808          * page table page.
6809          *
6810          * Also, vma_lock (vm_private_data) is required for sharing.
6811          */
6812         if (pmd_index(addr) != pmd_index(saddr) ||
6813             vm_flags != svm_flags ||
6814             !range_in_vma(svma, sbase, s_end) ||
6815             !svma->vm_private_data)
6816                 return 0;
6817
6818         return saddr;
6819 }
6820
6821 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6822 {
6823         unsigned long start = addr & PUD_MASK;
6824         unsigned long end = start + PUD_SIZE;
6825
6826 #ifdef CONFIG_USERFAULTFD
6827         if (uffd_disable_huge_pmd_share(vma))
6828                 return false;
6829 #endif
6830         /*
6831          * check on proper vm_flags and page table alignment
6832          */
6833         if (!(vma->vm_flags & VM_MAYSHARE))
6834                 return false;
6835         if (!vma->vm_private_data)      /* vma lock required for sharing */
6836                 return false;
6837         if (!range_in_vma(vma, start, end))
6838                 return false;
6839         return true;
6840 }
6841
6842 /*
6843  * Determine if start,end range within vma could be mapped by shared pmd.
6844  * If yes, adjust start and end to cover range associated with possible
6845  * shared pmd mappings.
6846  */
6847 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6848                                 unsigned long *start, unsigned long *end)
6849 {
6850         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6851                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6852
6853         /*
6854          * vma needs to span at least one aligned PUD size, and the range
6855          * must be at least partially within in.
6856          */
6857         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6858                 (*end <= v_start) || (*start >= v_end))
6859                 return;
6860
6861         /* Extend the range to be PUD aligned for a worst case scenario */
6862         if (*start > v_start)
6863                 *start = ALIGN_DOWN(*start, PUD_SIZE);
6864
6865         if (*end < v_end)
6866                 *end = ALIGN(*end, PUD_SIZE);
6867 }
6868
6869 static bool __vma_shareable_flags_pmd(struct vm_area_struct *vma)
6870 {
6871         return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) &&
6872                 vma->vm_private_data;
6873 }
6874
6875 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
6876 {
6877         if (__vma_shareable_flags_pmd(vma)) {
6878                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6879
6880                 down_read(&vma_lock->rw_sema);
6881         }
6882 }
6883
6884 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
6885 {
6886         if (__vma_shareable_flags_pmd(vma)) {
6887                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6888
6889                 up_read(&vma_lock->rw_sema);
6890         }
6891 }
6892
6893 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
6894 {
6895         if (__vma_shareable_flags_pmd(vma)) {
6896                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6897
6898                 down_write(&vma_lock->rw_sema);
6899         }
6900 }
6901
6902 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
6903 {
6904         if (__vma_shareable_flags_pmd(vma)) {
6905                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6906
6907                 up_write(&vma_lock->rw_sema);
6908         }
6909 }
6910
6911 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
6912 {
6913         struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6914
6915         if (!__vma_shareable_flags_pmd(vma))
6916                 return 1;
6917
6918         return down_write_trylock(&vma_lock->rw_sema);
6919 }
6920
6921 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
6922 {
6923         if (__vma_shareable_flags_pmd(vma)) {
6924                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6925
6926                 lockdep_assert_held(&vma_lock->rw_sema);
6927         }
6928 }
6929
6930 void hugetlb_vma_lock_release(struct kref *kref)
6931 {
6932         struct hugetlb_vma_lock *vma_lock = container_of(kref,
6933                         struct hugetlb_vma_lock, refs);
6934
6935         kfree(vma_lock);
6936 }
6937
6938 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
6939 {
6940         struct vm_area_struct *vma = vma_lock->vma;
6941
6942         /*
6943          * vma_lock structure may or not be released as a result of put,
6944          * it certainly will no longer be attached to vma so clear pointer.
6945          * Semaphore synchronizes access to vma_lock->vma field.
6946          */
6947         vma_lock->vma = NULL;
6948         vma->vm_private_data = NULL;
6949         up_write(&vma_lock->rw_sema);
6950         kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
6951 }
6952
6953 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
6954 {
6955         if (__vma_shareable_flags_pmd(vma)) {
6956                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6957
6958                 __hugetlb_vma_unlock_write_put(vma_lock);
6959         }
6960 }
6961
6962 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
6963 {
6964         /*
6965          * Only present in sharable vmas.
6966          */
6967         if (!vma || !__vma_shareable_flags_pmd(vma))
6968                 return;
6969
6970         if (vma->vm_private_data) {
6971                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6972
6973                 down_write(&vma_lock->rw_sema);
6974                 __hugetlb_vma_unlock_write_put(vma_lock);
6975         }
6976 }
6977
6978 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
6979 {
6980         struct hugetlb_vma_lock *vma_lock;
6981
6982         /* Only establish in (flags) sharable vmas */
6983         if (!vma || !(vma->vm_flags & VM_MAYSHARE))
6984                 return;
6985
6986         /* Should never get here with non-NULL vm_private_data */
6987         if (vma->vm_private_data)
6988                 return;
6989
6990         vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
6991         if (!vma_lock) {
6992                 /*
6993                  * If we can not allocate structure, then vma can not
6994                  * participate in pmd sharing.  This is only a possible
6995                  * performance enhancement and memory saving issue.
6996                  * However, the lock is also used to synchronize page
6997                  * faults with truncation.  If the lock is not present,
6998                  * unlikely races could leave pages in a file past i_size
6999                  * until the file is removed.  Warn in the unlikely case of
7000                  * allocation failure.
7001                  */
7002                 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
7003                 return;
7004         }
7005
7006         kref_init(&vma_lock->refs);
7007         init_rwsem(&vma_lock->rw_sema);
7008         vma_lock->vma = vma;
7009         vma->vm_private_data = vma_lock;
7010 }
7011
7012 /*
7013  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7014  * and returns the corresponding pte. While this is not necessary for the
7015  * !shared pmd case because we can allocate the pmd later as well, it makes the
7016  * code much cleaner. pmd allocation is essential for the shared case because
7017  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7018  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7019  * bad pmd for sharing.
7020  */
7021 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7022                       unsigned long addr, pud_t *pud)
7023 {
7024         struct address_space *mapping = vma->vm_file->f_mapping;
7025         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7026                         vma->vm_pgoff;
7027         struct vm_area_struct *svma;
7028         unsigned long saddr;
7029         pte_t *spte = NULL;
7030         pte_t *pte;
7031         spinlock_t *ptl;
7032
7033         i_mmap_lock_read(mapping);
7034         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7035                 if (svma == vma)
7036                         continue;
7037
7038                 saddr = page_table_shareable(svma, vma, addr, idx);
7039                 if (saddr) {
7040                         spte = huge_pte_offset(svma->vm_mm, saddr,
7041                                                vma_mmu_pagesize(svma));
7042                         if (spte) {
7043                                 get_page(virt_to_page(spte));
7044                                 break;
7045                         }
7046                 }
7047         }
7048
7049         if (!spte)
7050                 goto out;
7051
7052         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
7053         if (pud_none(*pud)) {
7054                 pud_populate(mm, pud,
7055                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7056                 mm_inc_nr_pmds(mm);
7057         } else {
7058                 put_page(virt_to_page(spte));
7059         }
7060         spin_unlock(ptl);
7061 out:
7062         pte = (pte_t *)pmd_alloc(mm, pud, addr);
7063         i_mmap_unlock_read(mapping);
7064         return pte;
7065 }
7066
7067 /*
7068  * unmap huge page backed by shared pte.
7069  *
7070  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7071  * indicated by page_count > 1, unmap is achieved by clearing pud and
7072  * decrementing the ref count. If count == 1, the pte page is not shared.
7073  *
7074  * Called with page table lock held.
7075  *
7076  * returns: 1 successfully unmapped a shared pte page
7077  *          0 the underlying pte page is not shared, or it is the last user
7078  */
7079 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7080                                         unsigned long addr, pte_t *ptep)
7081 {
7082         pgd_t *pgd = pgd_offset(mm, addr);
7083         p4d_t *p4d = p4d_offset(pgd, addr);
7084         pud_t *pud = pud_offset(p4d, addr);
7085
7086         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7087         hugetlb_vma_assert_locked(vma);
7088         BUG_ON(page_count(virt_to_page(ptep)) == 0);
7089         if (page_count(virt_to_page(ptep)) == 1)
7090                 return 0;
7091
7092         pud_clear(pud);
7093         put_page(virt_to_page(ptep));
7094         mm_dec_nr_pmds(mm);
7095         return 1;
7096 }
7097
7098 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7099
7100 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
7101 {
7102 }
7103
7104 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
7105 {
7106 }
7107
7108 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
7109 {
7110 }
7111
7112 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
7113 {
7114 }
7115
7116 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
7117 {
7118         return 1;
7119 }
7120
7121 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
7122 {
7123 }
7124
7125 void hugetlb_vma_lock_release(struct kref *kref)
7126 {
7127 }
7128
7129 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
7130 {
7131 }
7132
7133 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
7134 {
7135 }
7136
7137 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
7138 {
7139 }
7140
7141 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7142                       unsigned long addr, pud_t *pud)
7143 {
7144         return NULL;
7145 }
7146
7147 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7148                                 unsigned long addr, pte_t *ptep)
7149 {
7150         return 0;
7151 }
7152
7153 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7154                                 unsigned long *start, unsigned long *end)
7155 {
7156 }
7157
7158 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7159 {
7160         return false;
7161 }
7162 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7163
7164 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7165 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7166                         unsigned long addr, unsigned long sz)
7167 {
7168         pgd_t *pgd;
7169         p4d_t *p4d;
7170         pud_t *pud;
7171         pte_t *pte = NULL;
7172
7173         pgd = pgd_offset(mm, addr);
7174         p4d = p4d_alloc(mm, pgd, addr);
7175         if (!p4d)
7176                 return NULL;
7177         pud = pud_alloc(mm, p4d, addr);
7178         if (pud) {
7179                 if (sz == PUD_SIZE) {
7180                         pte = (pte_t *)pud;
7181                 } else {
7182                         BUG_ON(sz != PMD_SIZE);
7183                         if (want_pmd_share(vma, addr) && pud_none(*pud))
7184                                 pte = huge_pmd_share(mm, vma, addr, pud);
7185                         else
7186                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7187                 }
7188         }
7189         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7190
7191         return pte;
7192 }
7193
7194 /*
7195  * huge_pte_offset() - Walk the page table to resolve the hugepage
7196  * entry at address @addr
7197  *
7198  * Return: Pointer to page table entry (PUD or PMD) for
7199  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7200  * size @sz doesn't match the hugepage size at this level of the page
7201  * table.
7202  */
7203 pte_t *huge_pte_offset(struct mm_struct *mm,
7204                        unsigned long addr, unsigned long sz)
7205 {
7206         pgd_t *pgd;
7207         p4d_t *p4d;
7208         pud_t *pud;
7209         pmd_t *pmd;
7210
7211         pgd = pgd_offset(mm, addr);
7212         if (!pgd_present(*pgd))
7213                 return NULL;
7214         p4d = p4d_offset(pgd, addr);
7215         if (!p4d_present(*p4d))
7216                 return NULL;
7217
7218         pud = pud_offset(p4d, addr);
7219         if (sz == PUD_SIZE)
7220                 /* must be pud huge, non-present or none */
7221                 return (pte_t *)pud;
7222         if (!pud_present(*pud))
7223                 return NULL;
7224         /* must have a valid entry and size to go further */
7225
7226         pmd = pmd_offset(pud, addr);
7227         /* must be pmd huge, non-present or none */
7228         return (pte_t *)pmd;
7229 }
7230
7231 /*
7232  * Return a mask that can be used to update an address to the last huge
7233  * page in a page table page mapping size.  Used to skip non-present
7234  * page table entries when linearly scanning address ranges.  Architectures
7235  * with unique huge page to page table relationships can define their own
7236  * version of this routine.
7237  */
7238 unsigned long hugetlb_mask_last_page(struct hstate *h)
7239 {
7240         unsigned long hp_size = huge_page_size(h);
7241
7242         if (hp_size == PUD_SIZE)
7243                 return P4D_SIZE - PUD_SIZE;
7244         else if (hp_size == PMD_SIZE)
7245                 return PUD_SIZE - PMD_SIZE;
7246         else
7247                 return 0UL;
7248 }
7249
7250 #else
7251
7252 /* See description above.  Architectures can provide their own version. */
7253 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7254 {
7255 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7256         if (huge_page_size(h) == PMD_SIZE)
7257                 return PUD_SIZE - PMD_SIZE;
7258 #endif
7259         return 0UL;
7260 }
7261
7262 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7263
7264 /*
7265  * These functions are overwritable if your architecture needs its own
7266  * behavior.
7267  */
7268 int isolate_hugetlb(struct page *page, struct list_head *list)
7269 {
7270         int ret = 0;
7271
7272         spin_lock_irq(&hugetlb_lock);
7273         if (!PageHeadHuge(page) ||
7274             !HPageMigratable(page) ||
7275             !get_page_unless_zero(page)) {
7276                 ret = -EBUSY;
7277                 goto unlock;
7278         }
7279         ClearHPageMigratable(page);
7280         list_move_tail(&page->lru, list);
7281 unlock:
7282         spin_unlock_irq(&hugetlb_lock);
7283         return ret;
7284 }
7285
7286 int get_hwpoison_huge_page(struct page *page, bool *hugetlb, bool unpoison)
7287 {
7288         int ret = 0;
7289
7290         *hugetlb = false;
7291         spin_lock_irq(&hugetlb_lock);
7292         if (PageHeadHuge(page)) {
7293                 *hugetlb = true;
7294                 if (HPageFreed(page))
7295                         ret = 0;
7296                 else if (HPageMigratable(page) || unpoison)
7297                         ret = get_page_unless_zero(page);
7298                 else
7299                         ret = -EBUSY;
7300         }
7301         spin_unlock_irq(&hugetlb_lock);
7302         return ret;
7303 }
7304
7305 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7306                                 bool *migratable_cleared)
7307 {
7308         int ret;
7309
7310         spin_lock_irq(&hugetlb_lock);
7311         ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7312         spin_unlock_irq(&hugetlb_lock);
7313         return ret;
7314 }
7315
7316 void putback_active_hugepage(struct page *page)
7317 {
7318         spin_lock_irq(&hugetlb_lock);
7319         SetHPageMigratable(page);
7320         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7321         spin_unlock_irq(&hugetlb_lock);
7322         put_page(page);
7323 }
7324
7325 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7326 {
7327         struct hstate *h = folio_hstate(old_folio);
7328
7329         hugetlb_cgroup_migrate(old_folio, new_folio);
7330         set_page_owner_migrate_reason(&new_folio->page, reason);
7331
7332         /*
7333          * transfer temporary state of the new hugetlb folio. This is
7334          * reverse to other transitions because the newpage is going to
7335          * be final while the old one will be freed so it takes over
7336          * the temporary status.
7337          *
7338          * Also note that we have to transfer the per-node surplus state
7339          * here as well otherwise the global surplus count will not match
7340          * the per-node's.
7341          */
7342         if (folio_test_hugetlb_temporary(new_folio)) {
7343                 int old_nid = folio_nid(old_folio);
7344                 int new_nid = folio_nid(new_folio);
7345
7346
7347                 folio_set_hugetlb_temporary(old_folio);
7348                 folio_clear_hugetlb_temporary(new_folio);
7349
7350
7351                 /*
7352                  * There is no need to transfer the per-node surplus state
7353                  * when we do not cross the node.
7354                  */
7355                 if (new_nid == old_nid)
7356                         return;
7357                 spin_lock_irq(&hugetlb_lock);
7358                 if (h->surplus_huge_pages_node[old_nid]) {
7359                         h->surplus_huge_pages_node[old_nid]--;
7360                         h->surplus_huge_pages_node[new_nid]++;
7361                 }
7362                 spin_unlock_irq(&hugetlb_lock);
7363         }
7364 }
7365
7366 /*
7367  * This function will unconditionally remove all the shared pmd pgtable entries
7368  * within the specific vma for a hugetlbfs memory range.
7369  */
7370 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7371 {
7372         struct hstate *h = hstate_vma(vma);
7373         unsigned long sz = huge_page_size(h);
7374         struct mm_struct *mm = vma->vm_mm;
7375         struct mmu_notifier_range range;
7376         unsigned long address, start, end;
7377         spinlock_t *ptl;
7378         pte_t *ptep;
7379
7380         if (!(vma->vm_flags & VM_MAYSHARE))
7381                 return;
7382
7383         start = ALIGN(vma->vm_start, PUD_SIZE);
7384         end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7385
7386         if (start >= end)
7387                 return;
7388
7389         flush_cache_range(vma, start, end);
7390         /*
7391          * No need to call adjust_range_if_pmd_sharing_possible(), because
7392          * we have already done the PUD_SIZE alignment.
7393          */
7394         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7395                                 start, end);
7396         mmu_notifier_invalidate_range_start(&range);
7397         hugetlb_vma_lock_write(vma);
7398         i_mmap_lock_write(vma->vm_file->f_mapping);
7399         for (address = start; address < end; address += PUD_SIZE) {
7400                 ptep = huge_pte_offset(mm, address, sz);
7401                 if (!ptep)
7402                         continue;
7403                 ptl = huge_pte_lock(h, mm, ptep);
7404                 huge_pmd_unshare(mm, vma, address, ptep);
7405                 spin_unlock(ptl);
7406         }
7407         flush_hugetlb_tlb_range(vma, start, end);
7408         i_mmap_unlock_write(vma->vm_file->f_mapping);
7409         hugetlb_vma_unlock_write(vma);
7410         /*
7411          * No need to call mmu_notifier_invalidate_range(), see
7412          * Documentation/mm/mmu_notifier.rst.
7413          */
7414         mmu_notifier_invalidate_range_end(&range);
7415 }
7416
7417 #ifdef CONFIG_CMA
7418 static bool cma_reserve_called __initdata;
7419
7420 static int __init cmdline_parse_hugetlb_cma(char *p)
7421 {
7422         int nid, count = 0;
7423         unsigned long tmp;
7424         char *s = p;
7425
7426         while (*s) {
7427                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7428                         break;
7429
7430                 if (s[count] == ':') {
7431                         if (tmp >= MAX_NUMNODES)
7432                                 break;
7433                         nid = array_index_nospec(tmp, MAX_NUMNODES);
7434
7435                         s += count + 1;
7436                         tmp = memparse(s, &s);
7437                         hugetlb_cma_size_in_node[nid] = tmp;
7438                         hugetlb_cma_size += tmp;
7439
7440                         /*
7441                          * Skip the separator if have one, otherwise
7442                          * break the parsing.
7443                          */
7444                         if (*s == ',')
7445                                 s++;
7446                         else
7447                                 break;
7448                 } else {
7449                         hugetlb_cma_size = memparse(p, &p);
7450                         break;
7451                 }
7452         }
7453
7454         return 0;
7455 }
7456
7457 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7458
7459 void __init hugetlb_cma_reserve(int order)
7460 {
7461         unsigned long size, reserved, per_node;
7462         bool node_specific_cma_alloc = false;
7463         int nid;
7464
7465         cma_reserve_called = true;
7466
7467         if (!hugetlb_cma_size)
7468                 return;
7469
7470         for (nid = 0; nid < MAX_NUMNODES; nid++) {
7471                 if (hugetlb_cma_size_in_node[nid] == 0)
7472                         continue;
7473
7474                 if (!node_online(nid)) {
7475                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7476                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7477                         hugetlb_cma_size_in_node[nid] = 0;
7478                         continue;
7479                 }
7480
7481                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7482                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7483                                 nid, (PAGE_SIZE << order) / SZ_1M);
7484                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7485                         hugetlb_cma_size_in_node[nid] = 0;
7486                 } else {
7487                         node_specific_cma_alloc = true;
7488                 }
7489         }
7490
7491         /* Validate the CMA size again in case some invalid nodes specified. */
7492         if (!hugetlb_cma_size)
7493                 return;
7494
7495         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7496                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7497                         (PAGE_SIZE << order) / SZ_1M);
7498                 hugetlb_cma_size = 0;
7499                 return;
7500         }
7501
7502         if (!node_specific_cma_alloc) {
7503                 /*
7504                  * If 3 GB area is requested on a machine with 4 numa nodes,
7505                  * let's allocate 1 GB on first three nodes and ignore the last one.
7506                  */
7507                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7508                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7509                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7510         }
7511
7512         reserved = 0;
7513         for_each_online_node(nid) {
7514                 int res;
7515                 char name[CMA_MAX_NAME];
7516
7517                 if (node_specific_cma_alloc) {
7518                         if (hugetlb_cma_size_in_node[nid] == 0)
7519                                 continue;
7520
7521                         size = hugetlb_cma_size_in_node[nid];
7522                 } else {
7523                         size = min(per_node, hugetlb_cma_size - reserved);
7524                 }
7525
7526                 size = round_up(size, PAGE_SIZE << order);
7527
7528                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7529                 /*
7530                  * Note that 'order per bit' is based on smallest size that
7531                  * may be returned to CMA allocator in the case of
7532                  * huge page demotion.
7533                  */
7534                 res = cma_declare_contiguous_nid(0, size, 0,
7535                                                 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7536                                                  0, false, name,
7537                                                  &hugetlb_cma[nid], nid);
7538                 if (res) {
7539                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7540                                 res, nid);
7541                         continue;
7542                 }
7543
7544                 reserved += size;
7545                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7546                         size / SZ_1M, nid);
7547
7548                 if (reserved >= hugetlb_cma_size)
7549                         break;
7550         }
7551
7552         if (!reserved)
7553                 /*
7554                  * hugetlb_cma_size is used to determine if allocations from
7555                  * cma are possible.  Set to zero if no cma regions are set up.
7556                  */
7557                 hugetlb_cma_size = 0;
7558 }
7559
7560 static void __init hugetlb_cma_check(void)
7561 {
7562         if (!hugetlb_cma_size || cma_reserve_called)
7563                 return;
7564
7565         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7566 }
7567
7568 #endif /* CONFIG_CMA */