From 1deb15c88ab3f1b0788b9e41b08217036eca3c91 Mon Sep 17 00:00:00 2001 From: Peter Maydell Date: Fri, 21 Feb 2025 19:09:53 +0000 Subject: [PATCH] target/arm: Move TCG-only VFP code into tcg/ subdir Most of the target/arm/vfp_helper.c file is purely TCG helper code, guarded by #ifdef CONFIG_TCG. Move this into a new file in target/arm/tcg/. This leaves only the code relating to getting and setting the FPCR/FPSR/FPSCR in the original file. (Some of this also is TCG-only, but that needs more careful disentangling.) Having two vfp_helper.c files might seem a bit confusing, but once we've finished moving all the helper code out of the old file we are going to rename it to vfp_fpscr.c. Signed-off-by: Peter Maydell Reviewed-by: Richard Henderson Message-id: 20250221190957.811948-2-peter.maydell@linaro.org --- target/arm/tcg/meson.build | 1 + target/arm/tcg/vfp_helper.c | 1130 +++++++++++++++++++++++++++++++++++ target/arm/vfp_helper.c | 1109 ---------------------------------- 3 files changed, 1131 insertions(+), 1109 deletions(-) create mode 100644 target/arm/tcg/vfp_helper.c diff --git a/target/arm/tcg/meson.build b/target/arm/tcg/meson.build index 1f9077c372..dd12ccedb1 100644 --- a/target/arm/tcg/meson.build +++ b/target/arm/tcg/meson.build @@ -41,6 +41,7 @@ arm_ss.add(files( 'vec_helper.c', 'tlb-insns.c', 'arith_helper.c', + 'vfp_helper.c', )) arm_ss.add(when: 'TARGET_AARCH64', if_true: files( diff --git a/target/arm/tcg/vfp_helper.c b/target/arm/tcg/vfp_helper.c new file mode 100644 index 0000000000..aa580ff64c --- /dev/null +++ b/target/arm/tcg/vfp_helper.c @@ -0,0 +1,1130 @@ +/* + * ARM VFP floating-point operations + * + * Copyright (c) 2003 Fabrice Bellard + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see . + */ + +#include "qemu/osdep.h" +#include "cpu.h" +#include "exec/helper-proto.h" +#include "internals.h" +#include "cpu-features.h" +#include "fpu/softfloat.h" +#include "qemu/log.h" + +/* + * VFP support. We follow the convention used for VFP instructions: + * Single precision routines have a "s" suffix, double precision a + * "d" suffix. + */ + +#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) + +#define VFP_BINOP(name) \ +dh_ctype_f16 VFP_HELPER(name, h)(dh_ctype_f16 a, dh_ctype_f16 b, float_status *fpst) \ +{ \ + return float16_ ## name(a, b, fpst); \ +} \ +float32 VFP_HELPER(name, s)(float32 a, float32 b, float_status *fpst) \ +{ \ + return float32_ ## name(a, b, fpst); \ +} \ +float64 VFP_HELPER(name, d)(float64 a, float64 b, float_status *fpst) \ +{ \ + return float64_ ## name(a, b, fpst); \ +} +VFP_BINOP(add) +VFP_BINOP(sub) +VFP_BINOP(mul) +VFP_BINOP(div) +VFP_BINOP(min) +VFP_BINOP(max) +VFP_BINOP(minnum) +VFP_BINOP(maxnum) +#undef VFP_BINOP + +dh_ctype_f16 VFP_HELPER(sqrt, h)(dh_ctype_f16 a, float_status *fpst) +{ + return float16_sqrt(a, fpst); +} + +float32 VFP_HELPER(sqrt, s)(float32 a, float_status *fpst) +{ + return float32_sqrt(a, fpst); +} + +float64 VFP_HELPER(sqrt, d)(float64 a, float_status *fpst) +{ + return float64_sqrt(a, fpst); +} + +static void softfloat_to_vfp_compare(CPUARMState *env, FloatRelation cmp) +{ + uint32_t flags; + switch (cmp) { + case float_relation_equal: + flags = 0x6; + break; + case float_relation_less: + flags = 0x8; + break; + case float_relation_greater: + flags = 0x2; + break; + case float_relation_unordered: + flags = 0x3; + break; + default: + g_assert_not_reached(); + } + env->vfp.fpsr = deposit64(env->vfp.fpsr, 28, 4, flags); /* NZCV */ +} + +/* XXX: check quiet/signaling case */ +#define DO_VFP_cmp(P, FLOATTYPE, ARGTYPE, FPST) \ +void VFP_HELPER(cmp, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env) \ +{ \ + softfloat_to_vfp_compare(env, \ + FLOATTYPE ## _compare_quiet(a, b, &env->vfp.fp_status[FPST])); \ +} \ +void VFP_HELPER(cmpe, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env) \ +{ \ + softfloat_to_vfp_compare(env, \ + FLOATTYPE ## _compare(a, b, &env->vfp.fp_status[FPST])); \ +} +DO_VFP_cmp(h, float16, dh_ctype_f16, FPST_A32_F16) +DO_VFP_cmp(s, float32, float32, FPST_A32) +DO_VFP_cmp(d, float64, float64, FPST_A32) +#undef DO_VFP_cmp + +/* Integer to float and float to integer conversions */ + +#define CONV_ITOF(name, ftype, fsz, sign) \ +ftype HELPER(name)(uint32_t x, float_status *fpst) \ +{ \ + return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ +} + +#define CONV_FTOI(name, ftype, fsz, sign, round) \ +sign##int32_t HELPER(name)(ftype x, float_status *fpst) \ +{ \ + if (float##fsz##_is_any_nan(x)) { \ + float_raise(float_flag_invalid, fpst); \ + return 0; \ + } \ + return float##fsz##_to_##sign##int32##round(x, fpst); \ +} + +#define FLOAT_CONVS(name, p, ftype, fsz, sign) \ + CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \ + CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \ + CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero) + +FLOAT_CONVS(si, h, uint32_t, 16, ) +FLOAT_CONVS(si, s, float32, 32, ) +FLOAT_CONVS(si, d, float64, 64, ) +FLOAT_CONVS(ui, h, uint32_t, 16, u) +FLOAT_CONVS(ui, s, float32, 32, u) +FLOAT_CONVS(ui, d, float64, 64, u) + +#undef CONV_ITOF +#undef CONV_FTOI +#undef FLOAT_CONVS + +/* floating point conversion */ +float64 VFP_HELPER(fcvtd, s)(float32 x, float_status *status) +{ + return float32_to_float64(x, status); +} + +float32 VFP_HELPER(fcvts, d)(float64 x, float_status *status) +{ + return float64_to_float32(x, status); +} + +uint32_t HELPER(bfcvt)(float32 x, float_status *status) +{ + return float32_to_bfloat16(x, status); +} + +uint32_t HELPER(bfcvt_pair)(uint64_t pair, float_status *status) +{ + bfloat16 lo = float32_to_bfloat16(extract64(pair, 0, 32), status); + bfloat16 hi = float32_to_bfloat16(extract64(pair, 32, 32), status); + return deposit32(lo, 16, 16, hi); +} + +/* + * VFP3 fixed point conversion. The AArch32 versions of fix-to-float + * must always round-to-nearest; the AArch64 ones honour the FPSCR + * rounding mode. (For AArch32 Neon the standard-FPSCR is set to + * round-to-nearest so either helper will work.) AArch32 float-to-fix + * must round-to-zero. + */ +#define VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \ +ftype HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ + float_status *fpst) \ +{ return itype##_to_##float##fsz##_scalbn(x, -shift, fpst); } + +#define VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype) \ + ftype HELPER(vfp_##name##to##p##_round_to_nearest)(uint##isz##_t x, \ + uint32_t shift, \ + float_status *fpst) \ + { \ + ftype ret; \ + FloatRoundMode oldmode = fpst->float_rounding_mode; \ + fpst->float_rounding_mode = float_round_nearest_even; \ + ret = itype##_to_##float##fsz##_scalbn(x, -shift, fpst); \ + fpst->float_rounding_mode = oldmode; \ + return ret; \ + } + +#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, ROUND, suff) \ +uint##isz##_t HELPER(vfp_to##name##p##suff)(ftype x, uint32_t shift, \ + float_status *fpst) \ +{ \ + if (unlikely(float##fsz##_is_any_nan(x))) { \ + float_raise(float_flag_invalid, fpst); \ + return 0; \ + } \ + return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst); \ +} + +#define VFP_CONV_FIX(name, p, fsz, ftype, isz, itype) \ +VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \ +VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype) \ +VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \ + float_round_to_zero, _round_to_zero) \ +VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \ + get_float_rounding_mode(fpst), ) + +#define VFP_CONV_FIX_A64(name, p, fsz, ftype, isz, itype) \ +VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \ +VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \ + get_float_rounding_mode(fpst), ) + +VFP_CONV_FIX(sh, d, 64, float64, 64, int16) +VFP_CONV_FIX(sl, d, 64, float64, 64, int32) +VFP_CONV_FIX_A64(sq, d, 64, float64, 64, int64) +VFP_CONV_FIX(uh, d, 64, float64, 64, uint16) +VFP_CONV_FIX(ul, d, 64, float64, 64, uint32) +VFP_CONV_FIX_A64(uq, d, 64, float64, 64, uint64) +VFP_CONV_FIX(sh, s, 32, float32, 32, int16) +VFP_CONV_FIX(sl, s, 32, float32, 32, int32) +VFP_CONV_FIX_A64(sq, s, 32, float32, 64, int64) +VFP_CONV_FIX(uh, s, 32, float32, 32, uint16) +VFP_CONV_FIX(ul, s, 32, float32, 32, uint32) +VFP_CONV_FIX_A64(uq, s, 32, float32, 64, uint64) +VFP_CONV_FIX(sh, h, 16, dh_ctype_f16, 32, int16) +VFP_CONV_FIX(sl, h, 16, dh_ctype_f16, 32, int32) +VFP_CONV_FIX_A64(sq, h, 16, dh_ctype_f16, 64, int64) +VFP_CONV_FIX(uh, h, 16, dh_ctype_f16, 32, uint16) +VFP_CONV_FIX(ul, h, 16, dh_ctype_f16, 32, uint32) +VFP_CONV_FIX_A64(uq, h, 16, dh_ctype_f16, 64, uint64) +VFP_CONV_FLOAT_FIX_ROUND(sq, d, 64, float64, 64, int64, + float_round_to_zero, _round_to_zero) +VFP_CONV_FLOAT_FIX_ROUND(uq, d, 64, float64, 64, uint64, + float_round_to_zero, _round_to_zero) + +#undef VFP_CONV_FIX +#undef VFP_CONV_FIX_FLOAT +#undef VFP_CONV_FLOAT_FIX_ROUND +#undef VFP_CONV_FIX_A64 + +/* Set the current fp rounding mode and return the old one. + * The argument is a softfloat float_round_ value. + */ +uint32_t HELPER(set_rmode)(uint32_t rmode, float_status *fp_status) +{ + uint32_t prev_rmode = get_float_rounding_mode(fp_status); + set_float_rounding_mode(rmode, fp_status); + + return prev_rmode; +} + +/* Half precision conversions. */ +float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, float_status *fpst, + uint32_t ahp_mode) +{ + /* Squash FZ16 to 0 for the duration of conversion. In this case, + * it would affect flushing input denormals. + */ + bool save = get_flush_inputs_to_zero(fpst); + set_flush_inputs_to_zero(false, fpst); + float32 r = float16_to_float32(a, !ahp_mode, fpst); + set_flush_inputs_to_zero(save, fpst); + return r; +} + +uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, float_status *fpst, + uint32_t ahp_mode) +{ + /* Squash FZ16 to 0 for the duration of conversion. In this case, + * it would affect flushing output denormals. + */ + bool save = get_flush_to_zero(fpst); + set_flush_to_zero(false, fpst); + float16 r = float32_to_float16(a, !ahp_mode, fpst); + set_flush_to_zero(save, fpst); + return r; +} + +float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, float_status *fpst, + uint32_t ahp_mode) +{ + /* Squash FZ16 to 0 for the duration of conversion. In this case, + * it would affect flushing input denormals. + */ + bool save = get_flush_inputs_to_zero(fpst); + set_flush_inputs_to_zero(false, fpst); + float64 r = float16_to_float64(a, !ahp_mode, fpst); + set_flush_inputs_to_zero(save, fpst); + return r; +} + +uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, float_status *fpst, + uint32_t ahp_mode) +{ + /* Squash FZ16 to 0 for the duration of conversion. In this case, + * it would affect flushing output denormals. + */ + bool save = get_flush_to_zero(fpst); + set_flush_to_zero(false, fpst); + float16 r = float64_to_float16(a, !ahp_mode, fpst); + set_flush_to_zero(save, fpst); + return r; +} + +/* NEON helpers. */ + +/* Constants 256 and 512 are used in some helpers; we avoid relying on + * int->float conversions at run-time. */ +#define float64_256 make_float64(0x4070000000000000LL) +#define float64_512 make_float64(0x4080000000000000LL) +#define float16_maxnorm make_float16(0x7bff) +#define float32_maxnorm make_float32(0x7f7fffff) +#define float64_maxnorm make_float64(0x7fefffffffffffffLL) + +/* Reciprocal functions + * + * The algorithm that must be used to calculate the estimate + * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate + */ + +/* See RecipEstimate() + * + * input is a 9 bit fixed point number + * input range 256 .. 511 for a number from 0.5 <= x < 1.0. + * result range 256 .. 511 for a number from 1.0 to 511/256. + */ + +static int recip_estimate(int input) +{ + int a, b, r; + assert(256 <= input && input < 512); + a = (input * 2) + 1; + b = (1 << 19) / a; + r = (b + 1) >> 1; + assert(256 <= r && r < 512); + return r; +} + +/* + * Increased precision version: + * input is a 13 bit fixed point number + * input range 2048 .. 4095 for a number from 0.5 <= x < 1.0. + * result range 4096 .. 8191 for a number from 1.0 to 2.0 + */ +static int recip_estimate_incprec(int input) +{ + int a, b, r; + assert(2048 <= input && input < 4096); + a = (input * 2) + 1; + /* + * The pseudocode expresses this as an operation on infinite + * precision reals where it calculates 2^25 / a and then looks + * at the error between that and the rounded-down-to-integer + * value to see if it should instead round up. We instead + * follow the same approach as the pseudocode for the 8-bit + * precision version, and calculate (2 * (2^25 / a)) as an + * integer so we can do the "add one and halve" to round it. + * So the 1 << 26 here is correct. + */ + b = (1 << 26) / a; + r = (b + 1) >> 1; + assert(4096 <= r && r < 8192); + return r; +} + +/* + * Common wrapper to call recip_estimate + * + * The parameters are exponent and 64 bit fraction (without implicit + * bit) where the binary point is nominally at bit 52. Returns a + * float64 which can then be rounded to the appropriate size by the + * callee. + */ + +static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac, + bool increasedprecision) +{ + uint32_t scaled, estimate; + uint64_t result_frac; + int result_exp; + + /* Handle sub-normals */ + if (*exp == 0) { + if (extract64(frac, 51, 1) == 0) { + *exp = -1; + frac <<= 2; + } else { + frac <<= 1; + } + } + + if (increasedprecision) { + /* scaled = UInt('1':fraction<51:41>) */ + scaled = deposit32(1 << 11, 0, 11, extract64(frac, 41, 11)); + estimate = recip_estimate_incprec(scaled); + } else { + /* scaled = UInt('1':fraction<51:44>) */ + scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8)); + estimate = recip_estimate(scaled); + } + + result_exp = exp_off - *exp; + if (increasedprecision) { + result_frac = deposit64(0, 40, 12, estimate); + } else { + result_frac = deposit64(0, 44, 8, estimate); + } + if (result_exp == 0) { + result_frac = deposit64(result_frac >> 1, 51, 1, 1); + } else if (result_exp == -1) { + result_frac = deposit64(result_frac >> 2, 50, 2, 1); + result_exp = 0; + } + + *exp = result_exp; + + return result_frac; +} + +static bool round_to_inf(float_status *fpst, bool sign_bit) +{ + switch (fpst->float_rounding_mode) { + case float_round_nearest_even: /* Round to Nearest */ + return true; + case float_round_up: /* Round to +Inf */ + return !sign_bit; + case float_round_down: /* Round to -Inf */ + return sign_bit; + case float_round_to_zero: /* Round to Zero */ + return false; + default: + g_assert_not_reached(); + } +} + +uint32_t HELPER(recpe_f16)(uint32_t input, float_status *fpst) +{ + float16 f16 = float16_squash_input_denormal(input, fpst); + uint32_t f16_val = float16_val(f16); + uint32_t f16_sign = float16_is_neg(f16); + int f16_exp = extract32(f16_val, 10, 5); + uint32_t f16_frac = extract32(f16_val, 0, 10); + uint64_t f64_frac; + + if (float16_is_any_nan(f16)) { + float16 nan = f16; + if (float16_is_signaling_nan(f16, fpst)) { + float_raise(float_flag_invalid, fpst); + if (!fpst->default_nan_mode) { + nan = float16_silence_nan(f16, fpst); + } + } + if (fpst->default_nan_mode) { + nan = float16_default_nan(fpst); + } + return nan; + } else if (float16_is_infinity(f16)) { + return float16_set_sign(float16_zero, float16_is_neg(f16)); + } else if (float16_is_zero(f16)) { + float_raise(float_flag_divbyzero, fpst); + return float16_set_sign(float16_infinity, float16_is_neg(f16)); + } else if (float16_abs(f16) < (1 << 8)) { + /* Abs(value) < 2.0^-16 */ + float_raise(float_flag_overflow | float_flag_inexact, fpst); + if (round_to_inf(fpst, f16_sign)) { + return float16_set_sign(float16_infinity, f16_sign); + } else { + return float16_set_sign(float16_maxnorm, f16_sign); + } + } else if (f16_exp >= 29 && fpst->flush_to_zero) { + float_raise(float_flag_underflow, fpst); + return float16_set_sign(float16_zero, float16_is_neg(f16)); + } + + f64_frac = call_recip_estimate(&f16_exp, 29, + ((uint64_t) f16_frac) << (52 - 10), false); + + /* result = sign : result_exp<4:0> : fraction<51:42> */ + f16_val = deposit32(0, 15, 1, f16_sign); + f16_val = deposit32(f16_val, 10, 5, f16_exp); + f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10)); + return make_float16(f16_val); +} + +/* + * FEAT_RPRES means the f32 FRECPE has an "increased precision" variant + * which is used when FPCR.AH == 1. + */ +static float32 do_recpe_f32(float32 input, float_status *fpst, bool rpres) +{ + float32 f32 = float32_squash_input_denormal(input, fpst); + uint32_t f32_val = float32_val(f32); + bool f32_sign = float32_is_neg(f32); + int f32_exp = extract32(f32_val, 23, 8); + uint32_t f32_frac = extract32(f32_val, 0, 23); + uint64_t f64_frac; + + if (float32_is_any_nan(f32)) { + float32 nan = f32; + if (float32_is_signaling_nan(f32, fpst)) { + float_raise(float_flag_invalid, fpst); + if (!fpst->default_nan_mode) { + nan = float32_silence_nan(f32, fpst); + } + } + if (fpst->default_nan_mode) { + nan = float32_default_nan(fpst); + } + return nan; + } else if (float32_is_infinity(f32)) { + return float32_set_sign(float32_zero, float32_is_neg(f32)); + } else if (float32_is_zero(f32)) { + float_raise(float_flag_divbyzero, fpst); + return float32_set_sign(float32_infinity, float32_is_neg(f32)); + } else if (float32_abs(f32) < (1ULL << 21)) { + /* Abs(value) < 2.0^-128 */ + float_raise(float_flag_overflow | float_flag_inexact, fpst); + if (round_to_inf(fpst, f32_sign)) { + return float32_set_sign(float32_infinity, f32_sign); + } else { + return float32_set_sign(float32_maxnorm, f32_sign); + } + } else if (f32_exp >= 253 && fpst->flush_to_zero) { + float_raise(float_flag_underflow, fpst); + return float32_set_sign(float32_zero, float32_is_neg(f32)); + } + + f64_frac = call_recip_estimate(&f32_exp, 253, + ((uint64_t) f32_frac) << (52 - 23), rpres); + + /* result = sign : result_exp<7:0> : fraction<51:29> */ + f32_val = deposit32(0, 31, 1, f32_sign); + f32_val = deposit32(f32_val, 23, 8, f32_exp); + f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23)); + return make_float32(f32_val); +} + +float32 HELPER(recpe_f32)(float32 input, float_status *fpst) +{ + return do_recpe_f32(input, fpst, false); +} + +float32 HELPER(recpe_rpres_f32)(float32 input, float_status *fpst) +{ + return do_recpe_f32(input, fpst, true); +} + +float64 HELPER(recpe_f64)(float64 input, float_status *fpst) +{ + float64 f64 = float64_squash_input_denormal(input, fpst); + uint64_t f64_val = float64_val(f64); + bool f64_sign = float64_is_neg(f64); + int f64_exp = extract64(f64_val, 52, 11); + uint64_t f64_frac = extract64(f64_val, 0, 52); + + /* Deal with any special cases */ + if (float64_is_any_nan(f64)) { + float64 nan = f64; + if (float64_is_signaling_nan(f64, fpst)) { + float_raise(float_flag_invalid, fpst); + if (!fpst->default_nan_mode) { + nan = float64_silence_nan(f64, fpst); + } + } + if (fpst->default_nan_mode) { + nan = float64_default_nan(fpst); + } + return nan; + } else if (float64_is_infinity(f64)) { + return float64_set_sign(float64_zero, float64_is_neg(f64)); + } else if (float64_is_zero(f64)) { + float_raise(float_flag_divbyzero, fpst); + return float64_set_sign(float64_infinity, float64_is_neg(f64)); + } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { + /* Abs(value) < 2.0^-1024 */ + float_raise(float_flag_overflow | float_flag_inexact, fpst); + if (round_to_inf(fpst, f64_sign)) { + return float64_set_sign(float64_infinity, f64_sign); + } else { + return float64_set_sign(float64_maxnorm, f64_sign); + } + } else if (f64_exp >= 2045 && fpst->flush_to_zero) { + float_raise(float_flag_underflow, fpst); + return float64_set_sign(float64_zero, float64_is_neg(f64)); + } + + f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac, false); + + /* result = sign : result_exp<10:0> : fraction<51:0>; */ + f64_val = deposit64(0, 63, 1, f64_sign); + f64_val = deposit64(f64_val, 52, 11, f64_exp); + f64_val = deposit64(f64_val, 0, 52, f64_frac); + return make_float64(f64_val); +} + +/* The algorithm that must be used to calculate the estimate + * is specified by the ARM ARM. + */ + +static int do_recip_sqrt_estimate(int a) +{ + int b, estimate; + + assert(128 <= a && a < 512); + if (a < 256) { + a = a * 2 + 1; + } else { + a = (a >> 1) << 1; + a = (a + 1) * 2; + } + b = 512; + while (a * (b + 1) * (b + 1) < (1 << 28)) { + b += 1; + } + estimate = (b + 1) / 2; + assert(256 <= estimate && estimate < 512); + + return estimate; +} + +static int do_recip_sqrt_estimate_incprec(int a) +{ + /* + * The Arm ARM describes the 12-bit precision version of RecipSqrtEstimate + * in terms of an infinite-precision floating point calculation of a + * square root. We implement this using the same kind of pure integer + * algorithm as the 8-bit mantissa, to get the same bit-for-bit result. + */ + int64_t b, estimate; + + assert(1024 <= a && a < 4096); + if (a < 2048) { + a = a * 2 + 1; + } else { + a = (a >> 1) << 1; + a = (a + 1) * 2; + } + b = 8192; + while (a * (b + 1) * (b + 1) < (1ULL << 39)) { + b += 1; + } + estimate = (b + 1) / 2; + + assert(4096 <= estimate && estimate < 8192); + + return estimate; +} + +static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac, + bool increasedprecision) +{ + int estimate; + uint32_t scaled; + + if (*exp == 0) { + while (extract64(frac, 51, 1) == 0) { + frac = frac << 1; + *exp -= 1; + } + frac = extract64(frac, 0, 51) << 1; + } + + if (increasedprecision) { + if (*exp & 1) { + /* scaled = UInt('01':fraction<51:42>) */ + scaled = deposit32(1 << 10, 0, 10, extract64(frac, 42, 10)); + } else { + /* scaled = UInt('1':fraction<51:41>) */ + scaled = deposit32(1 << 11, 0, 11, extract64(frac, 41, 11)); + } + estimate = do_recip_sqrt_estimate_incprec(scaled); + } else { + if (*exp & 1) { + /* scaled = UInt('01':fraction<51:45>) */ + scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7)); + } else { + /* scaled = UInt('1':fraction<51:44>) */ + scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8)); + } + estimate = do_recip_sqrt_estimate(scaled); + } + + *exp = (exp_off - *exp) / 2; + if (increasedprecision) { + return extract64(estimate, 0, 12) << 40; + } else { + return extract64(estimate, 0, 8) << 44; + } +} + +uint32_t HELPER(rsqrte_f16)(uint32_t input, float_status *s) +{ + float16 f16 = float16_squash_input_denormal(input, s); + uint16_t val = float16_val(f16); + bool f16_sign = float16_is_neg(f16); + int f16_exp = extract32(val, 10, 5); + uint16_t f16_frac = extract32(val, 0, 10); + uint64_t f64_frac; + + if (float16_is_any_nan(f16)) { + float16 nan = f16; + if (float16_is_signaling_nan(f16, s)) { + float_raise(float_flag_invalid, s); + if (!s->default_nan_mode) { + nan = float16_silence_nan(f16, s); + } + } + if (s->default_nan_mode) { + nan = float16_default_nan(s); + } + return nan; + } else if (float16_is_zero(f16)) { + float_raise(float_flag_divbyzero, s); + return float16_set_sign(float16_infinity, f16_sign); + } else if (f16_sign) { + float_raise(float_flag_invalid, s); + return float16_default_nan(s); + } else if (float16_is_infinity(f16)) { + return float16_zero; + } + + /* Scale and normalize to a double-precision value between 0.25 and 1.0, + * preserving the parity of the exponent. */ + + f64_frac = ((uint64_t) f16_frac) << (52 - 10); + + f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac, false); + + /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */ + val = deposit32(0, 15, 1, f16_sign); + val = deposit32(val, 10, 5, f16_exp); + val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8)); + return make_float16(val); +} + +/* + * FEAT_RPRES means the f32 FRSQRTE has an "increased precision" variant + * which is used when FPCR.AH == 1. + */ +static float32 do_rsqrte_f32(float32 input, float_status *s, bool rpres) +{ + float32 f32 = float32_squash_input_denormal(input, s); + uint32_t val = float32_val(f32); + uint32_t f32_sign = float32_is_neg(f32); + int f32_exp = extract32(val, 23, 8); + uint32_t f32_frac = extract32(val, 0, 23); + uint64_t f64_frac; + + if (float32_is_any_nan(f32)) { + float32 nan = f32; + if (float32_is_signaling_nan(f32, s)) { + float_raise(float_flag_invalid, s); + if (!s->default_nan_mode) { + nan = float32_silence_nan(f32, s); + } + } + if (s->default_nan_mode) { + nan = float32_default_nan(s); + } + return nan; + } else if (float32_is_zero(f32)) { + float_raise(float_flag_divbyzero, s); + return float32_set_sign(float32_infinity, float32_is_neg(f32)); + } else if (float32_is_neg(f32)) { + float_raise(float_flag_invalid, s); + return float32_default_nan(s); + } else if (float32_is_infinity(f32)) { + return float32_zero; + } + + /* Scale and normalize to a double-precision value between 0.25 and 1.0, + * preserving the parity of the exponent. */ + + f64_frac = ((uint64_t) f32_frac) << 29; + + f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac, rpres); + + /* + * result = sign : result_exp<7:0> : estimate<7:0> : Zeros(15) + * or for increased precision + * result = sign : result_exp<7:0> : estimate<11:0> : Zeros(11) + */ + val = deposit32(0, 31, 1, f32_sign); + val = deposit32(val, 23, 8, f32_exp); + if (rpres) { + val = deposit32(val, 11, 12, extract64(f64_frac, 52 - 12, 12)); + } else { + val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8)); + } + return make_float32(val); +} + +float32 HELPER(rsqrte_f32)(float32 input, float_status *s) +{ + return do_rsqrte_f32(input, s, false); +} + +float32 HELPER(rsqrte_rpres_f32)(float32 input, float_status *s) +{ + return do_rsqrte_f32(input, s, true); +} + +float64 HELPER(rsqrte_f64)(float64 input, float_status *s) +{ + float64 f64 = float64_squash_input_denormal(input, s); + uint64_t val = float64_val(f64); + bool f64_sign = float64_is_neg(f64); + int f64_exp = extract64(val, 52, 11); + uint64_t f64_frac = extract64(val, 0, 52); + + if (float64_is_any_nan(f64)) { + float64 nan = f64; + if (float64_is_signaling_nan(f64, s)) { + float_raise(float_flag_invalid, s); + if (!s->default_nan_mode) { + nan = float64_silence_nan(f64, s); + } + } + if (s->default_nan_mode) { + nan = float64_default_nan(s); + } + return nan; + } else if (float64_is_zero(f64)) { + float_raise(float_flag_divbyzero, s); + return float64_set_sign(float64_infinity, float64_is_neg(f64)); + } else if (float64_is_neg(f64)) { + float_raise(float_flag_invalid, s); + return float64_default_nan(s); + } else if (float64_is_infinity(f64)) { + return float64_zero; + } + + f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac, false); + + /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */ + val = deposit64(0, 61, 1, f64_sign); + val = deposit64(val, 52, 11, f64_exp); + val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8)); + return make_float64(val); +} + +uint32_t HELPER(recpe_u32)(uint32_t a) +{ + int input, estimate; + + if ((a & 0x80000000) == 0) { + return 0xffffffff; + } + + input = extract32(a, 23, 9); + estimate = recip_estimate(input); + + return deposit32(0, (32 - 9), 9, estimate); +} + +uint32_t HELPER(rsqrte_u32)(uint32_t a) +{ + int estimate; + + if ((a & 0xc0000000) == 0) { + return 0xffffffff; + } + + estimate = do_recip_sqrt_estimate(extract32(a, 23, 9)); + + return deposit32(0, 23, 9, estimate); +} + +/* VFPv4 fused multiply-accumulate */ +dh_ctype_f16 VFP_HELPER(muladd, h)(dh_ctype_f16 a, dh_ctype_f16 b, + dh_ctype_f16 c, float_status *fpst) +{ + return float16_muladd(a, b, c, 0, fpst); +} + +float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, + float_status *fpst) +{ + return float32_muladd(a, b, c, 0, fpst); +} + +float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, + float_status *fpst) +{ + return float64_muladd(a, b, c, 0, fpst); +} + +/* ARMv8 round to integral */ +dh_ctype_f16 HELPER(rinth_exact)(dh_ctype_f16 x, float_status *fp_status) +{ + return float16_round_to_int(x, fp_status); +} + +float32 HELPER(rints_exact)(float32 x, float_status *fp_status) +{ + return float32_round_to_int(x, fp_status); +} + +float64 HELPER(rintd_exact)(float64 x, float_status *fp_status) +{ + return float64_round_to_int(x, fp_status); +} + +dh_ctype_f16 HELPER(rinth)(dh_ctype_f16 x, float_status *fp_status) +{ + int old_flags = get_float_exception_flags(fp_status), new_flags; + float16 ret; + + ret = float16_round_to_int(x, fp_status); + + /* Suppress any inexact exceptions the conversion produced */ + if (!(old_flags & float_flag_inexact)) { + new_flags = get_float_exception_flags(fp_status); + set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); + } + + return ret; +} + +float32 HELPER(rints)(float32 x, float_status *fp_status) +{ + int old_flags = get_float_exception_flags(fp_status), new_flags; + float32 ret; + + ret = float32_round_to_int(x, fp_status); + + /* Suppress any inexact exceptions the conversion produced */ + if (!(old_flags & float_flag_inexact)) { + new_flags = get_float_exception_flags(fp_status); + set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); + } + + return ret; +} + +float64 HELPER(rintd)(float64 x, float_status *fp_status) +{ + int old_flags = get_float_exception_flags(fp_status), new_flags; + float64 ret; + + ret = float64_round_to_int(x, fp_status); + + /* Suppress any inexact exceptions the conversion produced */ + if (!(old_flags & float_flag_inexact)) { + new_flags = get_float_exception_flags(fp_status); + set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); + } + + return ret; +} + +/* Convert ARM rounding mode to softfloat */ +const FloatRoundMode arm_rmode_to_sf_map[] = { + [FPROUNDING_TIEEVEN] = float_round_nearest_even, + [FPROUNDING_POSINF] = float_round_up, + [FPROUNDING_NEGINF] = float_round_down, + [FPROUNDING_ZERO] = float_round_to_zero, + [FPROUNDING_TIEAWAY] = float_round_ties_away, + [FPROUNDING_ODD] = float_round_to_odd, +}; + +/* + * Implement float64 to int32_t conversion without saturation; + * the result is supplied modulo 2^32. + */ +uint64_t HELPER(fjcvtzs)(float64 value, float_status *status) +{ + uint32_t frac, e_old, e_new; + bool inexact; + + e_old = get_float_exception_flags(status); + set_float_exception_flags(0, status); + frac = float64_to_int32_modulo(value, float_round_to_zero, status); + e_new = get_float_exception_flags(status); + set_float_exception_flags(e_old | e_new, status); + + /* Normal inexact, denormal with flush-to-zero, or overflow or NaN */ + inexact = e_new & (float_flag_inexact | + float_flag_input_denormal_flushed | + float_flag_invalid); + + /* While not inexact for IEEE FP, -0.0 is inexact for JavaScript. */ + inexact |= value == float64_chs(float64_zero); + + /* Pack the result and the env->ZF representation of Z together. */ + return deposit64(frac, 32, 32, inexact); +} + +uint32_t HELPER(vjcvt)(float64 value, CPUARMState *env) +{ + uint64_t pair = HELPER(fjcvtzs)(value, &env->vfp.fp_status[FPST_A32]); + uint32_t result = pair; + uint32_t z = (pair >> 32) == 0; + + /* Store Z, clear NCV, in FPSCR.NZCV. */ + env->vfp.fpsr = (env->vfp.fpsr & ~FPSR_NZCV_MASK) | (z * FPSR_Z); + + return result; +} + +/* Round a float32 to an integer that fits in int32_t or int64_t. */ +static float32 frint_s(float32 f, float_status *fpst, int intsize) +{ + int old_flags = get_float_exception_flags(fpst); + uint32_t exp = extract32(f, 23, 8); + + if (unlikely(exp == 0xff)) { + /* NaN or Inf. */ + goto overflow; + } + + /* Round and re-extract the exponent. */ + f = float32_round_to_int(f, fpst); + exp = extract32(f, 23, 8); + + /* Validate the range of the result. */ + if (exp < 126 + intsize) { + /* abs(F) <= INT{N}_MAX */ + return f; + } + if (exp == 126 + intsize) { + uint32_t sign = extract32(f, 31, 1); + uint32_t frac = extract32(f, 0, 23); + if (sign && frac == 0) { + /* F == INT{N}_MIN */ + return f; + } + } + + overflow: + /* + * Raise Invalid and return INT{N}_MIN as a float. Revert any + * inexact exception float32_round_to_int may have raised. + */ + set_float_exception_flags(old_flags | float_flag_invalid, fpst); + return (0x100u + 126u + intsize) << 23; +} + +float32 HELPER(frint32_s)(float32 f, float_status *fpst) +{ + return frint_s(f, fpst, 32); +} + +float32 HELPER(frint64_s)(float32 f, float_status *fpst) +{ + return frint_s(f, fpst, 64); +} + +/* Round a float64 to an integer that fits in int32_t or int64_t. */ +static float64 frint_d(float64 f, float_status *fpst, int intsize) +{ + int old_flags = get_float_exception_flags(fpst); + uint32_t exp = extract64(f, 52, 11); + + if (unlikely(exp == 0x7ff)) { + /* NaN or Inf. */ + goto overflow; + } + + /* Round and re-extract the exponent. */ + f = float64_round_to_int(f, fpst); + exp = extract64(f, 52, 11); + + /* Validate the range of the result. */ + if (exp < 1022 + intsize) { + /* abs(F) <= INT{N}_MAX */ + return f; + } + if (exp == 1022 + intsize) { + uint64_t sign = extract64(f, 63, 1); + uint64_t frac = extract64(f, 0, 52); + if (sign && frac == 0) { + /* F == INT{N}_MIN */ + return f; + } + } + + overflow: + /* + * Raise Invalid and return INT{N}_MIN as a float. Revert any + * inexact exception float64_round_to_int may have raised. + */ + set_float_exception_flags(old_flags | float_flag_invalid, fpst); + return (uint64_t)(0x800 + 1022 + intsize) << 52; +} + +float64 HELPER(frint32_d)(float64 f, float_status *fpst) +{ + return frint_d(f, fpst, 32); +} + +float64 HELPER(frint64_d)(float64 f, float_status *fpst) +{ + return frint_d(f, fpst, 64); +} + +void HELPER(check_hcr_el2_trap)(CPUARMState *env, uint32_t rt, uint32_t reg) +{ + uint32_t syndrome; + + switch (reg) { + case ARM_VFP_MVFR0: + case ARM_VFP_MVFR1: + case ARM_VFP_MVFR2: + if (!(arm_hcr_el2_eff(env) & HCR_TID3)) { + return; + } + break; + case ARM_VFP_FPSID: + if (!(arm_hcr_el2_eff(env) & HCR_TID0)) { + return; + } + break; + default: + g_assert_not_reached(); + } + + syndrome = ((EC_FPIDTRAP << ARM_EL_EC_SHIFT) + | ARM_EL_IL + | (1 << 24) | (0xe << 20) | (7 << 14) + | (reg << 10) | (rt << 5) | 1); + + raise_exception(env, EXCP_HYP_TRAP, syndrome, 2); +} diff --git a/target/arm/vfp_helper.c b/target/arm/vfp_helper.c index 5d424477a2..0e849d8d4d 100644 --- a/target/arm/vfp_helper.c +++ b/target/arm/vfp_helper.c @@ -23,13 +23,6 @@ #include "internals.h" #include "cpu-features.h" #include "fpu/softfloat.h" -#ifdef CONFIG_TCG -#include "qemu/log.h" -#endif - -/* VFP support. We follow the convention used for VFP instructions: - Single precision routines have a "s" suffix, double precision a - "d" suffix. */ /* * Set the float_status behaviour to match the Arm defaults: @@ -419,1105 +412,3 @@ void vfp_set_fpscr(CPUARMState *env, uint32_t val) { HELPER(vfp_set_fpscr)(env, val); } - -#ifdef CONFIG_TCG - -#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) - -#define VFP_BINOP(name) \ -dh_ctype_f16 VFP_HELPER(name, h)(dh_ctype_f16 a, dh_ctype_f16 b, float_status *fpst) \ -{ \ - return float16_ ## name(a, b, fpst); \ -} \ -float32 VFP_HELPER(name, s)(float32 a, float32 b, float_status *fpst) \ -{ \ - return float32_ ## name(a, b, fpst); \ -} \ -float64 VFP_HELPER(name, d)(float64 a, float64 b, float_status *fpst) \ -{ \ - return float64_ ## name(a, b, fpst); \ -} -VFP_BINOP(add) -VFP_BINOP(sub) -VFP_BINOP(mul) -VFP_BINOP(div) -VFP_BINOP(min) -VFP_BINOP(max) -VFP_BINOP(minnum) -VFP_BINOP(maxnum) -#undef VFP_BINOP - -dh_ctype_f16 VFP_HELPER(sqrt, h)(dh_ctype_f16 a, float_status *fpst) -{ - return float16_sqrt(a, fpst); -} - -float32 VFP_HELPER(sqrt, s)(float32 a, float_status *fpst) -{ - return float32_sqrt(a, fpst); -} - -float64 VFP_HELPER(sqrt, d)(float64 a, float_status *fpst) -{ - return float64_sqrt(a, fpst); -} - -static void softfloat_to_vfp_compare(CPUARMState *env, FloatRelation cmp) -{ - uint32_t flags; - switch (cmp) { - case float_relation_equal: - flags = 0x6; - break; - case float_relation_less: - flags = 0x8; - break; - case float_relation_greater: - flags = 0x2; - break; - case float_relation_unordered: - flags = 0x3; - break; - default: - g_assert_not_reached(); - } - env->vfp.fpsr = deposit64(env->vfp.fpsr, 28, 4, flags); /* NZCV */ -} - -/* XXX: check quiet/signaling case */ -#define DO_VFP_cmp(P, FLOATTYPE, ARGTYPE, FPST) \ -void VFP_HELPER(cmp, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env) \ -{ \ - softfloat_to_vfp_compare(env, \ - FLOATTYPE ## _compare_quiet(a, b, &env->vfp.fp_status[FPST])); \ -} \ -void VFP_HELPER(cmpe, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env) \ -{ \ - softfloat_to_vfp_compare(env, \ - FLOATTYPE ## _compare(a, b, &env->vfp.fp_status[FPST])); \ -} -DO_VFP_cmp(h, float16, dh_ctype_f16, FPST_A32_F16) -DO_VFP_cmp(s, float32, float32, FPST_A32) -DO_VFP_cmp(d, float64, float64, FPST_A32) -#undef DO_VFP_cmp - -/* Integer to float and float to integer conversions */ - -#define CONV_ITOF(name, ftype, fsz, sign) \ -ftype HELPER(name)(uint32_t x, float_status *fpst) \ -{ \ - return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ -} - -#define CONV_FTOI(name, ftype, fsz, sign, round) \ -sign##int32_t HELPER(name)(ftype x, float_status *fpst) \ -{ \ - if (float##fsz##_is_any_nan(x)) { \ - float_raise(float_flag_invalid, fpst); \ - return 0; \ - } \ - return float##fsz##_to_##sign##int32##round(x, fpst); \ -} - -#define FLOAT_CONVS(name, p, ftype, fsz, sign) \ - CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \ - CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \ - CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero) - -FLOAT_CONVS(si, h, uint32_t, 16, ) -FLOAT_CONVS(si, s, float32, 32, ) -FLOAT_CONVS(si, d, float64, 64, ) -FLOAT_CONVS(ui, h, uint32_t, 16, u) -FLOAT_CONVS(ui, s, float32, 32, u) -FLOAT_CONVS(ui, d, float64, 64, u) - -#undef CONV_ITOF -#undef CONV_FTOI -#undef FLOAT_CONVS - -/* floating point conversion */ -float64 VFP_HELPER(fcvtd, s)(float32 x, float_status *status) -{ - return float32_to_float64(x, status); -} - -float32 VFP_HELPER(fcvts, d)(float64 x, float_status *status) -{ - return float64_to_float32(x, status); -} - -uint32_t HELPER(bfcvt)(float32 x, float_status *status) -{ - return float32_to_bfloat16(x, status); -} - -uint32_t HELPER(bfcvt_pair)(uint64_t pair, float_status *status) -{ - bfloat16 lo = float32_to_bfloat16(extract64(pair, 0, 32), status); - bfloat16 hi = float32_to_bfloat16(extract64(pair, 32, 32), status); - return deposit32(lo, 16, 16, hi); -} - -/* - * VFP3 fixed point conversion. The AArch32 versions of fix-to-float - * must always round-to-nearest; the AArch64 ones honour the FPSCR - * rounding mode. (For AArch32 Neon the standard-FPSCR is set to - * round-to-nearest so either helper will work.) AArch32 float-to-fix - * must round-to-zero. - */ -#define VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \ -ftype HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ - float_status *fpst) \ -{ return itype##_to_##float##fsz##_scalbn(x, -shift, fpst); } - -#define VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype) \ - ftype HELPER(vfp_##name##to##p##_round_to_nearest)(uint##isz##_t x, \ - uint32_t shift, \ - float_status *fpst) \ - { \ - ftype ret; \ - FloatRoundMode oldmode = fpst->float_rounding_mode; \ - fpst->float_rounding_mode = float_round_nearest_even; \ - ret = itype##_to_##float##fsz##_scalbn(x, -shift, fpst); \ - fpst->float_rounding_mode = oldmode; \ - return ret; \ - } - -#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, ROUND, suff) \ -uint##isz##_t HELPER(vfp_to##name##p##suff)(ftype x, uint32_t shift, \ - float_status *fpst) \ -{ \ - if (unlikely(float##fsz##_is_any_nan(x))) { \ - float_raise(float_flag_invalid, fpst); \ - return 0; \ - } \ - return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst); \ -} - -#define VFP_CONV_FIX(name, p, fsz, ftype, isz, itype) \ -VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \ -VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype) \ -VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \ - float_round_to_zero, _round_to_zero) \ -VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \ - get_float_rounding_mode(fpst), ) - -#define VFP_CONV_FIX_A64(name, p, fsz, ftype, isz, itype) \ -VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \ -VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \ - get_float_rounding_mode(fpst), ) - -VFP_CONV_FIX(sh, d, 64, float64, 64, int16) -VFP_CONV_FIX(sl, d, 64, float64, 64, int32) -VFP_CONV_FIX_A64(sq, d, 64, float64, 64, int64) -VFP_CONV_FIX(uh, d, 64, float64, 64, uint16) -VFP_CONV_FIX(ul, d, 64, float64, 64, uint32) -VFP_CONV_FIX_A64(uq, d, 64, float64, 64, uint64) -VFP_CONV_FIX(sh, s, 32, float32, 32, int16) -VFP_CONV_FIX(sl, s, 32, float32, 32, int32) -VFP_CONV_FIX_A64(sq, s, 32, float32, 64, int64) -VFP_CONV_FIX(uh, s, 32, float32, 32, uint16) -VFP_CONV_FIX(ul, s, 32, float32, 32, uint32) -VFP_CONV_FIX_A64(uq, s, 32, float32, 64, uint64) -VFP_CONV_FIX(sh, h, 16, dh_ctype_f16, 32, int16) -VFP_CONV_FIX(sl, h, 16, dh_ctype_f16, 32, int32) -VFP_CONV_FIX_A64(sq, h, 16, dh_ctype_f16, 64, int64) -VFP_CONV_FIX(uh, h, 16, dh_ctype_f16, 32, uint16) -VFP_CONV_FIX(ul, h, 16, dh_ctype_f16, 32, uint32) -VFP_CONV_FIX_A64(uq, h, 16, dh_ctype_f16, 64, uint64) -VFP_CONV_FLOAT_FIX_ROUND(sq, d, 64, float64, 64, int64, - float_round_to_zero, _round_to_zero) -VFP_CONV_FLOAT_FIX_ROUND(uq, d, 64, float64, 64, uint64, - float_round_to_zero, _round_to_zero) - -#undef VFP_CONV_FIX -#undef VFP_CONV_FIX_FLOAT -#undef VFP_CONV_FLOAT_FIX_ROUND -#undef VFP_CONV_FIX_A64 - -/* Set the current fp rounding mode and return the old one. - * The argument is a softfloat float_round_ value. - */ -uint32_t HELPER(set_rmode)(uint32_t rmode, float_status *fp_status) -{ - uint32_t prev_rmode = get_float_rounding_mode(fp_status); - set_float_rounding_mode(rmode, fp_status); - - return prev_rmode; -} - -/* Half precision conversions. */ -float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, float_status *fpst, - uint32_t ahp_mode) -{ - /* Squash FZ16 to 0 for the duration of conversion. In this case, - * it would affect flushing input denormals. - */ - bool save = get_flush_inputs_to_zero(fpst); - set_flush_inputs_to_zero(false, fpst); - float32 r = float16_to_float32(a, !ahp_mode, fpst); - set_flush_inputs_to_zero(save, fpst); - return r; -} - -uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, float_status *fpst, - uint32_t ahp_mode) -{ - /* Squash FZ16 to 0 for the duration of conversion. In this case, - * it would affect flushing output denormals. - */ - bool save = get_flush_to_zero(fpst); - set_flush_to_zero(false, fpst); - float16 r = float32_to_float16(a, !ahp_mode, fpst); - set_flush_to_zero(save, fpst); - return r; -} - -float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, float_status *fpst, - uint32_t ahp_mode) -{ - /* Squash FZ16 to 0 for the duration of conversion. In this case, - * it would affect flushing input denormals. - */ - bool save = get_flush_inputs_to_zero(fpst); - set_flush_inputs_to_zero(false, fpst); - float64 r = float16_to_float64(a, !ahp_mode, fpst); - set_flush_inputs_to_zero(save, fpst); - return r; -} - -uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, float_status *fpst, - uint32_t ahp_mode) -{ - /* Squash FZ16 to 0 for the duration of conversion. In this case, - * it would affect flushing output denormals. - */ - bool save = get_flush_to_zero(fpst); - set_flush_to_zero(false, fpst); - float16 r = float64_to_float16(a, !ahp_mode, fpst); - set_flush_to_zero(save, fpst); - return r; -} - -/* NEON helpers. */ - -/* Constants 256 and 512 are used in some helpers; we avoid relying on - * int->float conversions at run-time. */ -#define float64_256 make_float64(0x4070000000000000LL) -#define float64_512 make_float64(0x4080000000000000LL) -#define float16_maxnorm make_float16(0x7bff) -#define float32_maxnorm make_float32(0x7f7fffff) -#define float64_maxnorm make_float64(0x7fefffffffffffffLL) - -/* Reciprocal functions - * - * The algorithm that must be used to calculate the estimate - * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate - */ - -/* See RecipEstimate() - * - * input is a 9 bit fixed point number - * input range 256 .. 511 for a number from 0.5 <= x < 1.0. - * result range 256 .. 511 for a number from 1.0 to 511/256. - */ - -static int recip_estimate(int input) -{ - int a, b, r; - assert(256 <= input && input < 512); - a = (input * 2) + 1; - b = (1 << 19) / a; - r = (b + 1) >> 1; - assert(256 <= r && r < 512); - return r; -} - -/* - * Increased precision version: - * input is a 13 bit fixed point number - * input range 2048 .. 4095 for a number from 0.5 <= x < 1.0. - * result range 4096 .. 8191 for a number from 1.0 to 2.0 - */ -static int recip_estimate_incprec(int input) -{ - int a, b, r; - assert(2048 <= input && input < 4096); - a = (input * 2) + 1; - /* - * The pseudocode expresses this as an operation on infinite - * precision reals where it calculates 2^25 / a and then looks - * at the error between that and the rounded-down-to-integer - * value to see if it should instead round up. We instead - * follow the same approach as the pseudocode for the 8-bit - * precision version, and calculate (2 * (2^25 / a)) as an - * integer so we can do the "add one and halve" to round it. - * So the 1 << 26 here is correct. - */ - b = (1 << 26) / a; - r = (b + 1) >> 1; - assert(4096 <= r && r < 8192); - return r; -} - -/* - * Common wrapper to call recip_estimate - * - * The parameters are exponent and 64 bit fraction (without implicit - * bit) where the binary point is nominally at bit 52. Returns a - * float64 which can then be rounded to the appropriate size by the - * callee. - */ - -static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac, - bool increasedprecision) -{ - uint32_t scaled, estimate; - uint64_t result_frac; - int result_exp; - - /* Handle sub-normals */ - if (*exp == 0) { - if (extract64(frac, 51, 1) == 0) { - *exp = -1; - frac <<= 2; - } else { - frac <<= 1; - } - } - - if (increasedprecision) { - /* scaled = UInt('1':fraction<51:41>) */ - scaled = deposit32(1 << 11, 0, 11, extract64(frac, 41, 11)); - estimate = recip_estimate_incprec(scaled); - } else { - /* scaled = UInt('1':fraction<51:44>) */ - scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8)); - estimate = recip_estimate(scaled); - } - - result_exp = exp_off - *exp; - if (increasedprecision) { - result_frac = deposit64(0, 40, 12, estimate); - } else { - result_frac = deposit64(0, 44, 8, estimate); - } - if (result_exp == 0) { - result_frac = deposit64(result_frac >> 1, 51, 1, 1); - } else if (result_exp == -1) { - result_frac = deposit64(result_frac >> 2, 50, 2, 1); - result_exp = 0; - } - - *exp = result_exp; - - return result_frac; -} - -static bool round_to_inf(float_status *fpst, bool sign_bit) -{ - switch (fpst->float_rounding_mode) { - case float_round_nearest_even: /* Round to Nearest */ - return true; - case float_round_up: /* Round to +Inf */ - return !sign_bit; - case float_round_down: /* Round to -Inf */ - return sign_bit; - case float_round_to_zero: /* Round to Zero */ - return false; - default: - g_assert_not_reached(); - } -} - -uint32_t HELPER(recpe_f16)(uint32_t input, float_status *fpst) -{ - float16 f16 = float16_squash_input_denormal(input, fpst); - uint32_t f16_val = float16_val(f16); - uint32_t f16_sign = float16_is_neg(f16); - int f16_exp = extract32(f16_val, 10, 5); - uint32_t f16_frac = extract32(f16_val, 0, 10); - uint64_t f64_frac; - - if (float16_is_any_nan(f16)) { - float16 nan = f16; - if (float16_is_signaling_nan(f16, fpst)) { - float_raise(float_flag_invalid, fpst); - if (!fpst->default_nan_mode) { - nan = float16_silence_nan(f16, fpst); - } - } - if (fpst->default_nan_mode) { - nan = float16_default_nan(fpst); - } - return nan; - } else if (float16_is_infinity(f16)) { - return float16_set_sign(float16_zero, float16_is_neg(f16)); - } else if (float16_is_zero(f16)) { - float_raise(float_flag_divbyzero, fpst); - return float16_set_sign(float16_infinity, float16_is_neg(f16)); - } else if (float16_abs(f16) < (1 << 8)) { - /* Abs(value) < 2.0^-16 */ - float_raise(float_flag_overflow | float_flag_inexact, fpst); - if (round_to_inf(fpst, f16_sign)) { - return float16_set_sign(float16_infinity, f16_sign); - } else { - return float16_set_sign(float16_maxnorm, f16_sign); - } - } else if (f16_exp >= 29 && fpst->flush_to_zero) { - float_raise(float_flag_underflow, fpst); - return float16_set_sign(float16_zero, float16_is_neg(f16)); - } - - f64_frac = call_recip_estimate(&f16_exp, 29, - ((uint64_t) f16_frac) << (52 - 10), false); - - /* result = sign : result_exp<4:0> : fraction<51:42> */ - f16_val = deposit32(0, 15, 1, f16_sign); - f16_val = deposit32(f16_val, 10, 5, f16_exp); - f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10)); - return make_float16(f16_val); -} - -/* - * FEAT_RPRES means the f32 FRECPE has an "increased precision" variant - * which is used when FPCR.AH == 1. - */ -static float32 do_recpe_f32(float32 input, float_status *fpst, bool rpres) -{ - float32 f32 = float32_squash_input_denormal(input, fpst); - uint32_t f32_val = float32_val(f32); - bool f32_sign = float32_is_neg(f32); - int f32_exp = extract32(f32_val, 23, 8); - uint32_t f32_frac = extract32(f32_val, 0, 23); - uint64_t f64_frac; - - if (float32_is_any_nan(f32)) { - float32 nan = f32; - if (float32_is_signaling_nan(f32, fpst)) { - float_raise(float_flag_invalid, fpst); - if (!fpst->default_nan_mode) { - nan = float32_silence_nan(f32, fpst); - } - } - if (fpst->default_nan_mode) { - nan = float32_default_nan(fpst); - } - return nan; - } else if (float32_is_infinity(f32)) { - return float32_set_sign(float32_zero, float32_is_neg(f32)); - } else if (float32_is_zero(f32)) { - float_raise(float_flag_divbyzero, fpst); - return float32_set_sign(float32_infinity, float32_is_neg(f32)); - } else if (float32_abs(f32) < (1ULL << 21)) { - /* Abs(value) < 2.0^-128 */ - float_raise(float_flag_overflow | float_flag_inexact, fpst); - if (round_to_inf(fpst, f32_sign)) { - return float32_set_sign(float32_infinity, f32_sign); - } else { - return float32_set_sign(float32_maxnorm, f32_sign); - } - } else if (f32_exp >= 253 && fpst->flush_to_zero) { - float_raise(float_flag_underflow, fpst); - return float32_set_sign(float32_zero, float32_is_neg(f32)); - } - - f64_frac = call_recip_estimate(&f32_exp, 253, - ((uint64_t) f32_frac) << (52 - 23), rpres); - - /* result = sign : result_exp<7:0> : fraction<51:29> */ - f32_val = deposit32(0, 31, 1, f32_sign); - f32_val = deposit32(f32_val, 23, 8, f32_exp); - f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23)); - return make_float32(f32_val); -} - -float32 HELPER(recpe_f32)(float32 input, float_status *fpst) -{ - return do_recpe_f32(input, fpst, false); -} - -float32 HELPER(recpe_rpres_f32)(float32 input, float_status *fpst) -{ - return do_recpe_f32(input, fpst, true); -} - -float64 HELPER(recpe_f64)(float64 input, float_status *fpst) -{ - float64 f64 = float64_squash_input_denormal(input, fpst); - uint64_t f64_val = float64_val(f64); - bool f64_sign = float64_is_neg(f64); - int f64_exp = extract64(f64_val, 52, 11); - uint64_t f64_frac = extract64(f64_val, 0, 52); - - /* Deal with any special cases */ - if (float64_is_any_nan(f64)) { - float64 nan = f64; - if (float64_is_signaling_nan(f64, fpst)) { - float_raise(float_flag_invalid, fpst); - if (!fpst->default_nan_mode) { - nan = float64_silence_nan(f64, fpst); - } - } - if (fpst->default_nan_mode) { - nan = float64_default_nan(fpst); - } - return nan; - } else if (float64_is_infinity(f64)) { - return float64_set_sign(float64_zero, float64_is_neg(f64)); - } else if (float64_is_zero(f64)) { - float_raise(float_flag_divbyzero, fpst); - return float64_set_sign(float64_infinity, float64_is_neg(f64)); - } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { - /* Abs(value) < 2.0^-1024 */ - float_raise(float_flag_overflow | float_flag_inexact, fpst); - if (round_to_inf(fpst, f64_sign)) { - return float64_set_sign(float64_infinity, f64_sign); - } else { - return float64_set_sign(float64_maxnorm, f64_sign); - } - } else if (f64_exp >= 2045 && fpst->flush_to_zero) { - float_raise(float_flag_underflow, fpst); - return float64_set_sign(float64_zero, float64_is_neg(f64)); - } - - f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac, false); - - /* result = sign : result_exp<10:0> : fraction<51:0>; */ - f64_val = deposit64(0, 63, 1, f64_sign); - f64_val = deposit64(f64_val, 52, 11, f64_exp); - f64_val = deposit64(f64_val, 0, 52, f64_frac); - return make_float64(f64_val); -} - -/* The algorithm that must be used to calculate the estimate - * is specified by the ARM ARM. - */ - -static int do_recip_sqrt_estimate(int a) -{ - int b, estimate; - - assert(128 <= a && a < 512); - if (a < 256) { - a = a * 2 + 1; - } else { - a = (a >> 1) << 1; - a = (a + 1) * 2; - } - b = 512; - while (a * (b + 1) * (b + 1) < (1 << 28)) { - b += 1; - } - estimate = (b + 1) / 2; - assert(256 <= estimate && estimate < 512); - - return estimate; -} - -static int do_recip_sqrt_estimate_incprec(int a) -{ - /* - * The Arm ARM describes the 12-bit precision version of RecipSqrtEstimate - * in terms of an infinite-precision floating point calculation of a - * square root. We implement this using the same kind of pure integer - * algorithm as the 8-bit mantissa, to get the same bit-for-bit result. - */ - int64_t b, estimate; - - assert(1024 <= a && a < 4096); - if (a < 2048) { - a = a * 2 + 1; - } else { - a = (a >> 1) << 1; - a = (a + 1) * 2; - } - b = 8192; - while (a * (b + 1) * (b + 1) < (1ULL << 39)) { - b += 1; - } - estimate = (b + 1) / 2; - - assert(4096 <= estimate && estimate < 8192); - - return estimate; -} - -static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac, - bool increasedprecision) -{ - int estimate; - uint32_t scaled; - - if (*exp == 0) { - while (extract64(frac, 51, 1) == 0) { - frac = frac << 1; - *exp -= 1; - } - frac = extract64(frac, 0, 51) << 1; - } - - if (increasedprecision) { - if (*exp & 1) { - /* scaled = UInt('01':fraction<51:42>) */ - scaled = deposit32(1 << 10, 0, 10, extract64(frac, 42, 10)); - } else { - /* scaled = UInt('1':fraction<51:41>) */ - scaled = deposit32(1 << 11, 0, 11, extract64(frac, 41, 11)); - } - estimate = do_recip_sqrt_estimate_incprec(scaled); - } else { - if (*exp & 1) { - /* scaled = UInt('01':fraction<51:45>) */ - scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7)); - } else { - /* scaled = UInt('1':fraction<51:44>) */ - scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8)); - } - estimate = do_recip_sqrt_estimate(scaled); - } - - *exp = (exp_off - *exp) / 2; - if (increasedprecision) { - return extract64(estimate, 0, 12) << 40; - } else { - return extract64(estimate, 0, 8) << 44; - } -} - -uint32_t HELPER(rsqrte_f16)(uint32_t input, float_status *s) -{ - float16 f16 = float16_squash_input_denormal(input, s); - uint16_t val = float16_val(f16); - bool f16_sign = float16_is_neg(f16); - int f16_exp = extract32(val, 10, 5); - uint16_t f16_frac = extract32(val, 0, 10); - uint64_t f64_frac; - - if (float16_is_any_nan(f16)) { - float16 nan = f16; - if (float16_is_signaling_nan(f16, s)) { - float_raise(float_flag_invalid, s); - if (!s->default_nan_mode) { - nan = float16_silence_nan(f16, s); - } - } - if (s->default_nan_mode) { - nan = float16_default_nan(s); - } - return nan; - } else if (float16_is_zero(f16)) { - float_raise(float_flag_divbyzero, s); - return float16_set_sign(float16_infinity, f16_sign); - } else if (f16_sign) { - float_raise(float_flag_invalid, s); - return float16_default_nan(s); - } else if (float16_is_infinity(f16)) { - return float16_zero; - } - - /* Scale and normalize to a double-precision value between 0.25 and 1.0, - * preserving the parity of the exponent. */ - - f64_frac = ((uint64_t) f16_frac) << (52 - 10); - - f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac, false); - - /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */ - val = deposit32(0, 15, 1, f16_sign); - val = deposit32(val, 10, 5, f16_exp); - val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8)); - return make_float16(val); -} - -/* - * FEAT_RPRES means the f32 FRSQRTE has an "increased precision" variant - * which is used when FPCR.AH == 1. - */ -static float32 do_rsqrte_f32(float32 input, float_status *s, bool rpres) -{ - float32 f32 = float32_squash_input_denormal(input, s); - uint32_t val = float32_val(f32); - uint32_t f32_sign = float32_is_neg(f32); - int f32_exp = extract32(val, 23, 8); - uint32_t f32_frac = extract32(val, 0, 23); - uint64_t f64_frac; - - if (float32_is_any_nan(f32)) { - float32 nan = f32; - if (float32_is_signaling_nan(f32, s)) { - float_raise(float_flag_invalid, s); - if (!s->default_nan_mode) { - nan = float32_silence_nan(f32, s); - } - } - if (s->default_nan_mode) { - nan = float32_default_nan(s); - } - return nan; - } else if (float32_is_zero(f32)) { - float_raise(float_flag_divbyzero, s); - return float32_set_sign(float32_infinity, float32_is_neg(f32)); - } else if (float32_is_neg(f32)) { - float_raise(float_flag_invalid, s); - return float32_default_nan(s); - } else if (float32_is_infinity(f32)) { - return float32_zero; - } - - /* Scale and normalize to a double-precision value between 0.25 and 1.0, - * preserving the parity of the exponent. */ - - f64_frac = ((uint64_t) f32_frac) << 29; - - f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac, rpres); - - /* - * result = sign : result_exp<7:0> : estimate<7:0> : Zeros(15) - * or for increased precision - * result = sign : result_exp<7:0> : estimate<11:0> : Zeros(11) - */ - val = deposit32(0, 31, 1, f32_sign); - val = deposit32(val, 23, 8, f32_exp); - if (rpres) { - val = deposit32(val, 11, 12, extract64(f64_frac, 52 - 12, 12)); - } else { - val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8)); - } - return make_float32(val); -} - -float32 HELPER(rsqrte_f32)(float32 input, float_status *s) -{ - return do_rsqrte_f32(input, s, false); -} - -float32 HELPER(rsqrte_rpres_f32)(float32 input, float_status *s) -{ - return do_rsqrte_f32(input, s, true); -} - -float64 HELPER(rsqrte_f64)(float64 input, float_status *s) -{ - float64 f64 = float64_squash_input_denormal(input, s); - uint64_t val = float64_val(f64); - bool f64_sign = float64_is_neg(f64); - int f64_exp = extract64(val, 52, 11); - uint64_t f64_frac = extract64(val, 0, 52); - - if (float64_is_any_nan(f64)) { - float64 nan = f64; - if (float64_is_signaling_nan(f64, s)) { - float_raise(float_flag_invalid, s); - if (!s->default_nan_mode) { - nan = float64_silence_nan(f64, s); - } - } - if (s->default_nan_mode) { - nan = float64_default_nan(s); - } - return nan; - } else if (float64_is_zero(f64)) { - float_raise(float_flag_divbyzero, s); - return float64_set_sign(float64_infinity, float64_is_neg(f64)); - } else if (float64_is_neg(f64)) { - float_raise(float_flag_invalid, s); - return float64_default_nan(s); - } else if (float64_is_infinity(f64)) { - return float64_zero; - } - - f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac, false); - - /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */ - val = deposit64(0, 61, 1, f64_sign); - val = deposit64(val, 52, 11, f64_exp); - val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8)); - return make_float64(val); -} - -uint32_t HELPER(recpe_u32)(uint32_t a) -{ - int input, estimate; - - if ((a & 0x80000000) == 0) { - return 0xffffffff; - } - - input = extract32(a, 23, 9); - estimate = recip_estimate(input); - - return deposit32(0, (32 - 9), 9, estimate); -} - -uint32_t HELPER(rsqrte_u32)(uint32_t a) -{ - int estimate; - - if ((a & 0xc0000000) == 0) { - return 0xffffffff; - } - - estimate = do_recip_sqrt_estimate(extract32(a, 23, 9)); - - return deposit32(0, 23, 9, estimate); -} - -/* VFPv4 fused multiply-accumulate */ -dh_ctype_f16 VFP_HELPER(muladd, h)(dh_ctype_f16 a, dh_ctype_f16 b, - dh_ctype_f16 c, float_status *fpst) -{ - return float16_muladd(a, b, c, 0, fpst); -} - -float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, - float_status *fpst) -{ - return float32_muladd(a, b, c, 0, fpst); -} - -float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, - float_status *fpst) -{ - return float64_muladd(a, b, c, 0, fpst); -} - -/* ARMv8 round to integral */ -dh_ctype_f16 HELPER(rinth_exact)(dh_ctype_f16 x, float_status *fp_status) -{ - return float16_round_to_int(x, fp_status); -} - -float32 HELPER(rints_exact)(float32 x, float_status *fp_status) -{ - return float32_round_to_int(x, fp_status); -} - -float64 HELPER(rintd_exact)(float64 x, float_status *fp_status) -{ - return float64_round_to_int(x, fp_status); -} - -dh_ctype_f16 HELPER(rinth)(dh_ctype_f16 x, float_status *fp_status) -{ - int old_flags = get_float_exception_flags(fp_status), new_flags; - float16 ret; - - ret = float16_round_to_int(x, fp_status); - - /* Suppress any inexact exceptions the conversion produced */ - if (!(old_flags & float_flag_inexact)) { - new_flags = get_float_exception_flags(fp_status); - set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); - } - - return ret; -} - -float32 HELPER(rints)(float32 x, float_status *fp_status) -{ - int old_flags = get_float_exception_flags(fp_status), new_flags; - float32 ret; - - ret = float32_round_to_int(x, fp_status); - - /* Suppress any inexact exceptions the conversion produced */ - if (!(old_flags & float_flag_inexact)) { - new_flags = get_float_exception_flags(fp_status); - set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); - } - - return ret; -} - -float64 HELPER(rintd)(float64 x, float_status *fp_status) -{ - int old_flags = get_float_exception_flags(fp_status), new_flags; - float64 ret; - - ret = float64_round_to_int(x, fp_status); - - /* Suppress any inexact exceptions the conversion produced */ - if (!(old_flags & float_flag_inexact)) { - new_flags = get_float_exception_flags(fp_status); - set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); - } - - return ret; -} - -/* Convert ARM rounding mode to softfloat */ -const FloatRoundMode arm_rmode_to_sf_map[] = { - [FPROUNDING_TIEEVEN] = float_round_nearest_even, - [FPROUNDING_POSINF] = float_round_up, - [FPROUNDING_NEGINF] = float_round_down, - [FPROUNDING_ZERO] = float_round_to_zero, - [FPROUNDING_TIEAWAY] = float_round_ties_away, - [FPROUNDING_ODD] = float_round_to_odd, -}; - -/* - * Implement float64 to int32_t conversion without saturation; - * the result is supplied modulo 2^32. - */ -uint64_t HELPER(fjcvtzs)(float64 value, float_status *status) -{ - uint32_t frac, e_old, e_new; - bool inexact; - - e_old = get_float_exception_flags(status); - set_float_exception_flags(0, status); - frac = float64_to_int32_modulo(value, float_round_to_zero, status); - e_new = get_float_exception_flags(status); - set_float_exception_flags(e_old | e_new, status); - - /* Normal inexact, denormal with flush-to-zero, or overflow or NaN */ - inexact = e_new & (float_flag_inexact | - float_flag_input_denormal_flushed | - float_flag_invalid); - - /* While not inexact for IEEE FP, -0.0 is inexact for JavaScript. */ - inexact |= value == float64_chs(float64_zero); - - /* Pack the result and the env->ZF representation of Z together. */ - return deposit64(frac, 32, 32, inexact); -} - -uint32_t HELPER(vjcvt)(float64 value, CPUARMState *env) -{ - uint64_t pair = HELPER(fjcvtzs)(value, &env->vfp.fp_status[FPST_A32]); - uint32_t result = pair; - uint32_t z = (pair >> 32) == 0; - - /* Store Z, clear NCV, in FPSCR.NZCV. */ - env->vfp.fpsr = (env->vfp.fpsr & ~FPSR_NZCV_MASK) | (z * FPSR_Z); - - return result; -} - -/* Round a float32 to an integer that fits in int32_t or int64_t. */ -static float32 frint_s(float32 f, float_status *fpst, int intsize) -{ - int old_flags = get_float_exception_flags(fpst); - uint32_t exp = extract32(f, 23, 8); - - if (unlikely(exp == 0xff)) { - /* NaN or Inf. */ - goto overflow; - } - - /* Round and re-extract the exponent. */ - f = float32_round_to_int(f, fpst); - exp = extract32(f, 23, 8); - - /* Validate the range of the result. */ - if (exp < 126 + intsize) { - /* abs(F) <= INT{N}_MAX */ - return f; - } - if (exp == 126 + intsize) { - uint32_t sign = extract32(f, 31, 1); - uint32_t frac = extract32(f, 0, 23); - if (sign && frac == 0) { - /* F == INT{N}_MIN */ - return f; - } - } - - overflow: - /* - * Raise Invalid and return INT{N}_MIN as a float. Revert any - * inexact exception float32_round_to_int may have raised. - */ - set_float_exception_flags(old_flags | float_flag_invalid, fpst); - return (0x100u + 126u + intsize) << 23; -} - -float32 HELPER(frint32_s)(float32 f, float_status *fpst) -{ - return frint_s(f, fpst, 32); -} - -float32 HELPER(frint64_s)(float32 f, float_status *fpst) -{ - return frint_s(f, fpst, 64); -} - -/* Round a float64 to an integer that fits in int32_t or int64_t. */ -static float64 frint_d(float64 f, float_status *fpst, int intsize) -{ - int old_flags = get_float_exception_flags(fpst); - uint32_t exp = extract64(f, 52, 11); - - if (unlikely(exp == 0x7ff)) { - /* NaN or Inf. */ - goto overflow; - } - - /* Round and re-extract the exponent. */ - f = float64_round_to_int(f, fpst); - exp = extract64(f, 52, 11); - - /* Validate the range of the result. */ - if (exp < 1022 + intsize) { - /* abs(F) <= INT{N}_MAX */ - return f; - } - if (exp == 1022 + intsize) { - uint64_t sign = extract64(f, 63, 1); - uint64_t frac = extract64(f, 0, 52); - if (sign && frac == 0) { - /* F == INT{N}_MIN */ - return f; - } - } - - overflow: - /* - * Raise Invalid and return INT{N}_MIN as a float. Revert any - * inexact exception float64_round_to_int may have raised. - */ - set_float_exception_flags(old_flags | float_flag_invalid, fpst); - return (uint64_t)(0x800 + 1022 + intsize) << 52; -} - -float64 HELPER(frint32_d)(float64 f, float_status *fpst) -{ - return frint_d(f, fpst, 32); -} - -float64 HELPER(frint64_d)(float64 f, float_status *fpst) -{ - return frint_d(f, fpst, 64); -} - -void HELPER(check_hcr_el2_trap)(CPUARMState *env, uint32_t rt, uint32_t reg) -{ - uint32_t syndrome; - - switch (reg) { - case ARM_VFP_MVFR0: - case ARM_VFP_MVFR1: - case ARM_VFP_MVFR2: - if (!(arm_hcr_el2_eff(env) & HCR_TID3)) { - return; - } - break; - case ARM_VFP_FPSID: - if (!(arm_hcr_el2_eff(env) & HCR_TID0)) { - return; - } - break; - default: - g_assert_not_reached(); - } - - syndrome = ((EC_FPIDTRAP << ARM_EL_EC_SHIFT) - | ARM_EL_IL - | (1 << 24) | (0xe << 20) | (7 << 14) - | (reg << 10) | (rt << 5) | 1); - - raise_exception(env, EXCP_HYP_TRAP, syndrome, 2); -} - -#endif -- 2.30.2